
Prediction of Primate Splice Site Using Inhomogeneous
Markov Chain and Neural Network

LIBIN LIU, YEE-KIN HO, and STEPHEN YAU

ABSTRACT

The inhomogeneous Markov chain model is used to discriminate acceptor and donor sites in genomic DNA

sequences. It outperforms statistical methods such as homogeneous Markov chain model, higher order

Markov chain and interpolated Markov chain models, and machine-learning methods such as k-nearest
neighbor and support vector machine as well. Besides its high accuracy, another advantage of inhomogeneous

Markov chain model is its simplicity in computation. In the three states system (acceptor, donor, and neither),

the inhomogeneous Markov chain model is combined with a three-layer feed forward neural network. Using

this combined system 3175 primate splice-junction gene sequences have been tested, with a prediction ac-

curacy of greater than 98%.

INTRODUCTION

W ITH THE DEVELOPMENT OF TECHNOLOGY, DNA sequencing

has become easier now than ever before. The number of

DNA sequences deposited in GenBank increased exponentially

in recent years. The number of newly sequenced genomes has

also dramatically increased. One of the most significant events is

the completion of the human genome project in 2003. The

abundance of these data demands highly accurate computational

tools to extract useful information. Identification of protein-

coding genes in genomic DNA sequences has been one of the

most challenging topics in the last few decades. In prokaryotes,

the coding region is the single open reading frame (ORF), while

in eukaryotes genes are usually organized as exons and introns.

Genomes of eukaryotes, especially higher eukaryotes, may have

less than 10% coding sequence. Therefore, to find out the genes

from eukaryotes, it is important to find splice sites. Several

computational methods have been developed to predict splice

sites, using either stand-alone splice site finders, or gene finders,

which use splice finder as subroutine (Stormo, 2000; Pertea

et al., 2001). The performance of splice finder directly affects

the performance of gene finder. If a splice finder method iden-

tifies all the splice sites correctly, it would identify almost all the

protein-coding regions correctly.

Artificial neural network was originally developed to model

the information process in the brain (Wu and McLarty, 2000).

However, its development led to a highly efficient machine-

learning algorithm that is independent of biological processes.

One of the most important properties of the neural network is its

capability to learn from examples. Due to this property, it has

been successfully implemented in many fields with immature

theory but abundant data. Applications of neural network in bio-

informatics include coding region recognition, transcriptional

and translational signal prediction, protein secondary and tertiary

structure prediction, protein folding class prediction, protein

family classification, and so on. These successful applications

stimulate more research to implement neural network in other

areas of bioinformatics.

Markov chain model is a well-established statistical model

used in the prediction of a variety of signal sites (Durbin et al.,

1998; Roelin et al., 2003). As it reflects the correlation between

neighboring nucleotide bases, this model and its variations are

widely used. Higher order Markov chain model usually has

more accuracy than lower order Markov chain model. However,

in the higher order model, estimating all transition probabilities

may be difficult. Interpolated Markov chain model overcomes

this problem by combining probabilities from different order

models (Avery, 2002; Deshpande and Karypis, 2002). Hidden

Markov models also have been used to detect homogeneous

DNA segments (Boys et al., 2000).

In this paper, we propose the use of the inhomogeneous

Markov chain model in splice site prediction. Compared to

other Markov chain models (Blaker and Merz, 1998), this one

offers higher accuracy with less computation. It has been
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successfully used to discriminate donor and acceptor sites. For

the three states system (donor, acceptor, and others), neural

network is combined with the inhomogeneous Markov chain

model to make the accuracy of prediction greater than 98%.

ALGORITHM DESCRIPTION

Inhomogeneous Markov model

Statistical models have been used for a long time in DNA

sequence analysis. The simplest statistical model is the ‘‘nu-

cleotide dice.’’ The DNA sequence could be regarded as an

outcome of continuous tossing of a nucleotide dice with four

sides. Each side of the dice represents a nucleotide, A, T, G, or

C. The parameters of this model are the probabilities of each

nucleotide: PA, PT, PG, PC. The sum of these four probabilities

equals one. We could estimate these parameters by scanning

the DNA sequence database and counting the number of each

nucleotide. The ratio of the number of each nucleotide to the

total number of nucleotides in the sequence represents its

probability. Thus, the probability of a new DNA sequence can

be computed using the following formula:

P¼
Yn
i¼ 1

Pi ¼PnA
A PnT

T PnG
G PnC

C ;

where n is the total length of the DNA sequence; nS, S [ (A, T,

G, C) is the number of each nucleotide.

In this model, parameters are the same for all the positions.

So it only reflects the number of each nucleotide without

considering the order of nucleotides. In multidice model, we

use different dices for different positions. Parameters could

be estimated by scanning the aligned DNA sequence database.

So the probability of a given DNA sequence could be calcu-

lated as

P¼
Yn
i¼ 1

Psi

Psi is the probability of nucleotide S [ (A, T, G, C) in position i.

In the above models each nucleotide is assumed to be inde-

pendent of others. Obviously it does not reflect the reality. It is

easy to notice that some nucleotides correlate with others in

DNA sequences. A first order Markov chain is a sequence of

random variables where the probability of Si depends only on the

preceding nucleotide, Si�1. P(Si|Si�1)¼P(Si|Si�1, Si�2,… , S1)

There are a total of 16 parameters in the first order Markov

chain: P(A|A), P(A|T),…, P(G|G), of which 12 are independent

parameters. These could be easily estimated by counting the

number of di-nucleotides in the DNA sequence database. Tran-

sition probabilities are computed as follows:

PðSijSi�1Þ¼
f ðSi�1SiÞP

x2fA;T;C;Gg
f ðSi�1xÞ

f(XY) denotes the number of occurrences of string XY in the

database. Given a new sequence, its probability could be com-

puted as

P¼
Yn
i¼ 1

PðSijSi�1Þ

For the kth order Markov chain model, the current nucleotide

Si depends on the preceding k nucleotides. The total number of

independent parameters of this model is 4kþ1� 4. Nucleotide-

dice model could be regarded as 0th order Markov chain

model. Higher order Markov chain usually does better job in

modeling the correlation between nucleotides. As the number

of parameters increases exponentially with order, absence of

some kth combination of nucleotides in the training data may

cause problems in the training process.

To integrate position information in the Markov chain, we

use the inhomogeneous Markov chain model. DNA sequences

are divided into several sections. Parameters of Markov chain

model are estimated for each section. The probability of a new

DNA sequence is computed as

P¼
Ym
i¼ 1

Yni
j¼ 1

PiðSjjSj�1Þ; ð*Þ

where m is the number of sections; ni is the number of nucle-

otides in ith section.

To predict splice junction using inhomogeneous first order

Markov chain model, we need to estimate the transition prob-

abilities for the donor and acceptor sites. As shown in Figure 1,

each training DNA sequence has a total length of 60 and is di-

vided into m sections. Splice junction is in the middle of the se-

quence, either donor or acceptor. Parameters of donor training

data are estimated for each section and the same is done for the

acceptor training data. So we have 32m parameters totally, of

which 16m parameters are for the donor splice junction and the

FIG. 1. Splice junction site dataset and the inhomogeneous
Markov chain model.
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rest are for the acceptor splice junction.When an unknownDNA

sequence of length 60 is given, we can compute the following

discriminator to see whether the middle of the sequence is a do-

nor or an acceptor site.

d¼ log

Qm
i¼ 1

Qni
j¼ 1

Pd;iðSjjSj�1Þ

Qm
i¼ 1

Qni
j¼ 1

Pa;iðSjjSj�1Þ

0
BBB@

1
CCCA;

where m is the number of sections; ni is the number of nu-

cleotides in section i; Pd,i(Sj|Sj�1) is the transition probability

from Sj�1 to Sj in the donor splice junction of section i;

Pa,i(Sj|Sj�1) is the transition probability in the acceptor splice

junction of section i. If d> 0, the new DNA sequence could be

the donor splice junction; otherwise, it could be the acceptor

splice junction.

It is easy to extend the inhomogeneous Markov chain from

the first to the kth order. To achieve this, we only need to find

out the kth transition probabilities for each section.

Neural network

First order inhomogeneous Markov chain model can achieve

above 95% accuracy in discriminating donor and acceptor

splice sites. For the system to discriminate three states, donor,

acceptor, and neither, we could compute the following three

probabilities and choose the biggest one as output:

Pd ¼
Ym
i¼ 1

Yni
j¼ 1

Pd;iðSjjSj�1Þ

Pa ¼
Ym
i¼ 1

Yni
j¼ 1

Pa;iðSjjSj�1Þ

Pn ¼
Ym
i¼ 1

Yni
j¼ 1

Pn;iðSjjSj�1Þ

Pa: probability of the middle of the given sequence to be an

acceptor splice junction; Pd: probability of the middle of the

given sequence to be a donor splice junction; Pn: probability of

the middle of the given sequence to be neither a donor nor an

acceptor splice junction.

The accuracy of the three states system is lower than that of

the two states system. Let us look for the reason in the model

itself. The three states system model integrates position infor-

mation and correlation between neighboring nucleotides. If we

take logarithm on both sides of equation (*), we get

logP¼
Xm
i¼ 1

Xni
j¼ 1

logPiðSjjSj�1Þ

This equation sums up the probability contribution from

each section. To know if each section has the same weight of

contribution or if some sections have larger weight of contri-

bution than others, we use neural network to assign weight to

each section.

As shown in Figure 2, the system is designed as a three-layer

feed forward fully connected neural network. The first layer is

the input layer. The number of neurons in this layer is 3m,

where m is the number of sections. Probability contribution of

each section for each state corresponds to each neuron in the

input layer. The input data is normalized with zero means and

unity standard deviations. The second layer is the hidden layer.

We try different number of neurons and determine the optimal

number of neurons in the hidden layer. The last layer is the out-

put layer, which contains three neurons. The outcomes of neu-

ral network are converted to indication vectors h1 0 0i, h0 1 0i,
and h0 0 1i, which represent the donor, acceptor, and neither

states, respectively. The conversion is realized by using com-

pete function, which converts the highest element in the vector

to one and the other two elements to zero.

The initial weights are assigned randomly between 0 and 1.

Back propagation method is used to minimize the mean square

error of all neurons. The number of iterations is set as 2000, but

this number could be increased if the error drops dramatically

after 2000 iterations.

RESULTS AND DISCUSSION

To evaluate the performance of the combined system de-

scribed above, we need a DNA database with donor and ac-

ceptor splice junctions accurately annotated. This database

should also contain DNA sequences that are neither donor nor

acceptor. To compare the performance of this system with

other algorithms, we choose the primate splice junction gene

sequences dataset, which is distributed as part of the UCI KDD

FIG. 2. Structure of the neural network.
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Archive (Blaker and Merz, 1998). Many other algorithms have

been evaluated using this dataset.

Dataset description

All examples in the dataset are selected from GenBank. The

donor and acceptor categories contain all gene splice junctions

for primates in GenBank 64.1. The nonsplice category contains

known DNA sequences that do not include splice sites. Each

entry includes a category (donor, acceptor, neither), a name, and

60 nucleotides. The possible junction sites are in the middle of

the 60 nucleotides. There are a total of 3190 entries, of which

767 are donor sites, 768 are acceptor sites, and 1655 are neither.

Some DNA sequences contain special characters besides A, T,

G, and C to indicate the ambiguity of nucleotide. After removing

these entries, there are 762 donor sites, 765 acceptor sites, and

1648 neither sites. Thus the total number of entries used in the

experiments is 3175.

We used a 10-fold validation in the experiments to estimate

the performance of the systems. The whole dataset is divided

into 10 equal-sized disjoint partitions. Each partition contains

approximately 25% donor sites, 25% acceptor sites, and 50%

neither sites. For each partition, we use all data outside the

partition to train the system and then test the system in the par-

tition. The reported accuracy represents the average of the ac-

curacies computed for all 10 partitions.

The two states system

The two states system discriminates only the donor and

acceptor sites. The performance of this system is shown in

Table 1. The DNA sequences are divided into 0, 2, 4, 6, and 10

sections. Section 0 is the homogeneous Markov chain model.

From the table we can see that inhomogeneous Markov chain

model greatly improves the performance compared to the ho-

mogeneous model. The prediction accuracy of the homoge-

neous model is only around 77%. With the inhomogeneous

Markov chain model, the accuracy of prediction jumps to 90%

even with only two sections and continuously increases with

the number of sections. It reaches above 96% when the number

of sections is 10.

Table 2 gives a comparison of the performance of inhomo-

geneous Markov chain model and of other algorithms (Desh-

pande and Karypis, 2002). The highest accuracy of prediction

of other algorithms is 93.3%, for the algorithm k-nearest

neighbor when k¼ 5. The predictions of most homogeneous

TABLE 1. THE ACCURACIES OF TWO STATES SYSTEM PREDICTION ON DONOR

AND ACCEPTOR SITES WITH THE FIRST ORDER INHOMOGENEOUS MARKOV CHAIN MODEL

Number

of sections Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Average

0 0.7961 0.7778 0.8105 0.8105 0.7647 0.6863 0.7582 0.8039 0.7368 0.7500 0.7695

2 0.9085 0.9281 0.9085 0.9150 0.8497 0.9150 0.9216 0.8618 0.8882 0.9211 0.9018

4 0.9281 0.9346 0.9346 0.9216 0.8627 0.9085 0.9542 0.9013 0.8882 0.9276 0.9161

6 0.9477 0.9542 0.9150 0.9346 0.9346 0.9281 0.9346 0.9145 0.9013 0.9408 0.9305

10 0.9608 0.9869 0.9542 0.9542 0.9673 0.9542 0.9673 0.9605 0.9342 0.9605 0.9600

TABLE 2. COMPARISON OF THE PERFORMANCE

OF INHOMOGENEOUS MARKOV CHAIN MODEL

WITH OTHER ALGORITHMS

Algorithm Accuracy

Inhomogeneous

Markov chain n¼ 0 0.7695

n¼ 2 0.9018

n¼ 4 0.9161

n¼ 6 0.9305

n¼ 10 0.9600

K-nearest neighbor Cosine 0.7294

k¼ 1 Global 0.9220

Local 0.9115

k¼ 5

Cosine 0.7360

Global 0.9390

Local 0.9200

k¼ 20
Cosine 0.7494

Global 0.9155

Local 0.8866

Simple Markov

chain and SVM
Order¼ 0

SVM 0.7439

Markov 0.7399

Order¼ 1 SVM 0.7812

Markov 0.7700

Order¼ 2 SVM 0.8342

Markov 0.8041

Order¼ 3 SVM 0.8768

Markov 0.8454

Interpolated Markov

chain and SVM
Order¼ 1

SVM 0.7727

Markov 0.7530

Order¼ 2 SVM 0.8022

Markov 0.7864

Order¼ 3 SVM 0.8277

Markov 0.8153

Selective Markov

chain and SVM
Order¼ 1

SVM 0.7865

Markov 0.7721

Order¼ 2 SVM 0.8343

Markov 0.8146

Order¼ 3 SVM 0.8769

Markov 0.8500
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Markov chain models and their variations are 70–80% accu-

rate. None of them is above 90%, even with the help of support

vector machine (SVM). On the contrary, prediction accuracies

of inhomogeneous Markov chain models are above 90% and

the highest is 96%. So we can say that inhomogeneous Mar-

kov chain model outperforms homogeneous Markov chain

model.

We also extended the two states system from first order to

second order inhomogeneous Markov chain model. The results

are shown in Table 3. Comparison between the performances

of these two models is shown in Figure 3. We can see that the

second order model performs slightly better than the first order

model when the number of sections is less than 6. When the

number of sections is greater than or equal to 6, performance of

the second order model is poor compared to that of the first

order model. Higher order Markov chain models usually per-

form better than the lower order models, but easily encounter

problems in the training process. The training data might not

contain enough tri-nucleotides to estimate transition parameters.

With increase in the number of sections, each section contains

lesser and lesser training data. If some sections do not contain

some specific tri-nucleotide, pseudo counts are used. This might

lead to errors in future prediction. This is why the second order

model outperforms the first order model when the number

of sections is small, but shows poorer performance when the

number of sections is large. So the first order inhomogeneous

Markov chain model can be used if we only need to discrim-

inate between donor and acceptor sites.

The three states system

To find splice junction sites in unknown genomic sequences,

distinguishing only the donor and acceptor sites is not enough.

The system should be able to tell whether the middle of any

window of length 60 is donor, acceptor, or neither. We still use

the first order inhomogeneous Markov chain model and the

results are shown in Table 4. As seen, the accuracy of prediction

increases with the number of sections as for the two states sys-

tem. However, the accuracy of prediction is much lower than

that of the two states system. Even when the number of sec-

tions is 10, the accuracy is less than 80%.

We combine the three states system with the artificial neural

network to improve its performance. Different sections play

TABLE 3. THE ACCURACIES OF TWO STATES SYSTEM PREDICTION ON DONOR

AND ACCEPTOR SITES WITH THE SECOND ORDER INHOMOGENEOUS MARKOV CHAIN MODEL

Number

of sections Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Average

0 0.8170 0.8366 0.8301 0.7908 0.7778 0.8301 0.8039 0.7632 0.8289 0.8553 0.8134

2 0.9346 0.9542 0.9020 0.8954 0.8824 0.9346 0.9085 0.9342 0.9013 0.9079 0.9155

4 0.9539 0.9216 0.9346 0.9281 0.9216 0.8954 0.9608 0.9150 0.9605 0.9079 0.9299

6 0.9539 0.9281 0.9281 0.9085 0.9020 0.9150 0.9281 0.9216 0.9539 0.9013 0.9241

10 0.9276 0.8758 0.9346 0.9281 0.9216 0.9020 0.9477 0.9216 0.9605 0.9065 0.9280

FIG. 3. Comparison of the first order and second order inho-
mogeneous Markov chain models.

TABLE 4. THE ACCURACIES OF THREE STATES SYSTEM PREDICTION ON DONOR, ACCEPTOR,

AND NEITHER SITE WITH THE FIRST ORDER INHOMOGENEOUS MARKOV CHAIN MODEL

Number

of sections Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Average

2 0.6456 0.6006 0.6101 0.6226 0.6478 0.6321 0.6415 0.6447 0.6562 0.6171 0.6318

4 0.68084 0.6855 0.6761 0.6918 0.7013 0.6635 0.6918 0.7138 0.6972 0.6677 0.6869

6 0.7215 0.7310 0.7296 0.7390 0.7233 0.7453 0.7358 0.7201 0.7547 0.7445 0.7345

10 0.8145 0.8270 0.7893 0.7987 0.7987 0.8050 0.7830 0.7855 0.7722 0.8133 0.7987
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different roles in the prediction of splice junction sites. The

main function of neural network is to add the weight on every

section and map the relationship between DNA sequences and

splice junction sites. We use a three-layer feed forward neural

network. The number of neurons in the first layer is 3m, where

m is the number of sections. Each neuron corresponds to every

state and every section. The output layer contains three neu-

rons. The outcomes of neural network are converted to the in-

dicator vectors h1, 0, 0i, h0, 1, 0i, and h0, 0, 1i, which represent
the acceptor, donor, and neither states, respectively. The

transfer function is a logistic sigmoidal function. This function

is differentiable and could be used in the back propagation

training.

There is no theoretical guide regarding how to choose the

number of neurons in the hidden layers. So the optimization of

network is focused on the number of sections and the number of

neurons in the hidden layer. We begin with the network having

10 sections. For this neural network, there are 30 input neurons.

We try different number of neurons in the hidden layer. From

Figure 4, we can see that with increase in the number of neurons

in the hidden layer, the mean square error decreases. We also

test the performance of the network. Because the initial weights

of the network are randomly selected, we test every setting of

the network five times and get the average as the accuracy of

performance. The results are summarized in Table 5. The ac-

curacy increases from 71.1% to 98.5% with increase in number

of neurons in the hidden layer (Fig. 5).

We repeat the same procedures for networks with 2, 4, and 6

sections and choose the configuration with the highest accu-

racy. From Figure 6, we see that when the number of sections

increases, the performance improves. When the number of

sections is 10 and the number of neurons in the hidden layer is

30, the accuracy reaches its maximum, 98.5%.

Compared to previous applications of neural network in

predicting splice junction sites, our method has much higher

accuracy rate. In the previous method, DNA sequences or

their numeric representations were input into the network di-

rectly. It contained information only of this single sequence. In

FIG. 5. Relationship between accuracy rate and the number
of neurons in the hidden layer.

FIG. 6. Relationship between accuracy rate and the number of
sections.

FIG. 4. Relationship between mean square error and the
number of epochs in networks with different number of neurons
in the hidden layer.

TABLE 5. THE ACCURACY OF THREE STATES SYSTEM

PERFORMANCE WITH DIFFERENT NUMBER OF NEURONS

IN THE HIDDEN LAYER

Number

of hidden

nodes Average

1 0.7114 0.7100 0.7121 0.7125 0.7104 0.7113

3 0.8828 0.8968 0.8898 0.9014 0.8846 0.8910

5 0.9142 0.9185 0.9217 0.9136 0.9213 0.9179

10 0.9591 0.9563 0.9584 0.9577 0.9521 0.9567

15 0.9675 0.9703 0.9706 0.9738 0.9689 0.9702

25 0.9811 0.9846 0.9818 0.9822 0.9790 0.9817

30 0.9842 0.9885 0.9853 0.9839 0.9867 0.9857
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comparison, in our improved method DNA sequences are pre-

processed using inhomogeneous Markov chain before being

fed into the network. Due to this preprocess, the input of net-

work contains information not only about this sequence but

also about the whole database. Consequently, our new method

helps to reduce the errors in prediction.

CONCLUSION

Inhomogeneous Markov chain model contains information

on position and correlations between nucleotides. It outperforms

the higher order and interpolated Markov chain models in dis-

criminating donor sites and acceptor sites. In the three states

system (donor, acceptor, or neither), inhomogeneous Markov

chain model is combined with neural network. The prediction

accuracy is 98.5%.
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