
J Supercomput (2007) 40: 185–212
DOI 10.1007/s11227-006-0041-0

Survey on index based homology search algorithms

Xianyang Jiang · Peiheng Zhang · Xinchun Liu ·
Stephen S.-T. Yau

Published online: 23 March 2007
© Springer Science+Business Media, LLC 2007

Abstract Up to now, there are many homology search algorithms that have been in-
vestigated and studied. However, a good classification method and a comprehensive
comparison for these algorithms are absent. This is especially true for index based
homology search algorithms. The paper briefly introduces main index construction
methods. According to index construction methods, index based homology search
algorithms are classified into three categories, i.e., length based index ones, trans-
formation based index ones, and their combination. Based on the classification, the
characteristics of the currently popular index based homology search algorithms are
compared and analyzed. At the same time, several promising and new index tech-
niques are also discussed. As a whole, the paper provides a survey on index based
homology search algorithms.

Keywords Algorithm · Bioinformatics · Genomic indexing · Homology search ·
Sequence alignment

X. Jiang (�)
IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex, France
e-mail: xyjiang@ncic.ac.cn

X. Jiang · P. Zhang · X. Liu
Institute of Computing Technology, CAS, 100080, Beijing, People’s Republic of China

S.S.-T. Yau (�)
MSCS, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
e-mail: yau@uic.edu

S.S.-T. Yau
Institute of Mathematics, East China Normal University, Shanghai, People’s Republic of China

186 X. Jiang et al.

1 Introduction

Molecular biologists frequently query genomic databases for sequence homology.
One important goal of homology search, sequence matching, or sequence anchor-
ing is to determine whether there are any sequences known in the database similar
to a query sequence. If two sequences are very similar by a defined standard, for
example, a distance, it is likely that:

• The sequences have a related structure or function. In most cases, there is some
available information on the structure and function of the sequences in the data-
base. A scientist with a sequence similar to a known sequence may be able to gain
some information about the form and function of the new sequence by studying
similar known sequences.

• The sequences may have a common ancestor sequence. If two sequences are rea-
sonably similar, it is likely that both sequences evolved from a common ancestor
and an evolutionary relationship may exist between the source of each sequence.

• If the query sequence is a partial sequence, it may be possible to gain information
about the sequence’s position and role in the sequence which it comes from.

However, homology search or similarity computation has a time complexity of
either linear or quadratic to the length of the sequences (or database) involved. Such
time complexity is a serious problem for the following states:

• Genomic databases are increasing in size in terms of both number of sequences
and length of the sequence, and the size is doubling every 15 or 16 months.

• The number of queries directed at these databases are over 40,000 queries every
day, and at the same time, the user numbers and query rates are growing very
quickly.

• There is an increasing demand to mine a sequence database for useful informa-
tion. This typically requires to do all pair wise similarity computation for all the
sequences; such job will need a large computing resource and a lot of time.

These factors together increase the need for high computation ability, and if the
former successive exhaustive search techniques are not practical or economical now,
then it is necessary to invent novel and efficient methods for searching genomic data-
bases.

One developed and promising direction in literature is to generate an abstraction
or index for the database sequences or inquiry sequences at first, and then, based on
the index, to refine the computation to get a candidate answer. Most indices represent
a sequence by its “subsequences” (motifs). The “subsequences” can be either real
subsequences, or subsequences in a translated meaning (e.g. transformed index).

In most cases, an index is only a fraction of the database, thus the query evaluation
costs, i.e., computing time and memory requirements, can decrease. When the total
index is not a fraction of the database, the access can still be limited to a fraction of
the index which is produced based on a filtering or filtration function.

As to the index based methods for genomic homology search, Navarro [23] et
al. in 2001, along two dimensions: data structure and search method, presented a
simple classification for the approaches up to that date. Based on the classification,
the authors pointed out that the most promising alternatives were those looking for an

Survey on index based homology search algorithms 187

optimum balance point between exhaustively searching for neighborhoods of pattern
pieces and the strictness of the filtration produced by splitting the pattern into pieces.

Because there are many more new techniques proposed for genomic search since
then, the classification should be updated now. On the other hand, until now, no good
and total classification for index based homology search algorithms is available in lit-
erature. In this paper, we introduce several index models, classify the algorithms, and
compare characteristics of the algorithms based on the proposed index models. Based
on the classification and comparison, we provide the promising research directions.

There are at least two goals for this survey. First, most of the index based algo-
rithms are motivated by the issues of mathematical description of the sequence, thus
the classification of them is possible and we can even invent new techniques along
this way. Second, a strong and consistent basis is necessary for index based homol-
ogy search algorithms. This survey will provide a theoretical base at this point, and
although this paper does not accomplish this task, the intention is at least to raise the
issue.

The paper is organized as following. In Sect. 2, we introduce the motivation to
adopt index for homology search, the characteristics of genomic index, the index
models and their construction methods. Then, in Sect. 3 and Sect. 4, the algorithms
based on different index models are briefly described respectively. The algorithms
using combined techniques are introduced in Sect. 5. Finally in Sect. 6, the conclusion
and some discussions are provided.

2 Genomic data structure and index necessity

2.1 Genomic data structure

Most text databases are with hierarchical structure. However, for the genomic data, it
is a little different. The most popular genomic databases are GenBank (Gene Bank),
DDBJ (DNA Data Bank of Japan), EMBL (European Molecular Biology Labora-
tory). The bases of these databases are linear DNA sequences and primary protein
sequences. DNA sequence is composed of four kinds of nucleic acids, and it is the
basic genetic information carrier. Primary protein sequence is composed of 20 kinds
of amino acids, also known as subunits or residues. The knowledge about the orga-
nization of these series is rare; the flat file format of these databases hides semantics
of data, and the relationships/hierarchies are not clear, too. These databases do not
support ad hoc and complicated queries, thus the data structure has many differences
from traditional text.

From a basic and optimistic view, “a sequence is a mapping between a collection
of similarly structured records and the positions of an ordering domain” [32]. Thus
various sequences are just differently ordered domains and collections of record com-
binations. The mapping mechanism is shown in Fig. 1. We can say that the mapping
method between DNA sequence and its database is in time domain and that between
protein sequence and its database is in coordinate domain. Under this investigation,
we can find that the basic and essential unit of the mapping is an “index,” so it is
possible for an index to be a base for a database that is efficient enough for homology
search.

188 X. Jiang et al.

Fig. 1 A sequence mapping mechanism

2.2 Index necessity for genomic homology search and its advantages

An index for a genomic homology search is a “subsequence” extracted from genomic
databases by a lexical analysis routine. Sometimes the “subsequence” is real subse-
quence of a sequence, while sometimes it is the one in a translated meaning, for
example, a transformed one. The goal of an index is to minimize the storage require-
ments for the necessary access or retrieve and to minimize the cost of obtaining the
original data relevant to the index. The cost includes the time to build an index, the
time of filtration process and the space to store the index on disk. Tradeoffs between
these requirements must often be taken.

For an exhaustive search method, caching is very important to reduce the access
time to the genomic data. However, the cache system is too expensive and its capacity
is very limited in current technology. The primary goal of caching is to reduce the
amount of access and the access time. The index method is an efficient way to solve
such kind of problems by cutting down the memory storage requirement and access
time. Until finding other better methods, the index method is necessary for solving
the serious problems faced by exhaustive search methods.

Until now, popular opinion on index based search algorithms is that despite the
likely benefits of indexing in reducing query evaluation costs, existing indexed-based
systems are not favored over exhaustive approaches because of limitations in index
systems. However, index based search tools are true candidates for solving the prob-
lem for the following prominent advantages:

1. Economical: The index works as a filter in the homology search procedure, index
based search algorithms only fetch a small number of sequences as likely answers

Survey on index based homology search algorithms 189

from the database, thus they are much faster, and use less computing resources.
The cost of the same search will be greatly decreased;

2. User independence: The indices act as an intermediary between user and genomic
databanks; it removes reliance on the external service, network delays, and the
characteristics of the databanks, thus lets users be independent to the genomic
databanks and the platform of servers;

3. Convenience: It is fully integrated with a database engine, the user can be trans-
parent to retrieve one database with the indices, and so it is very convenient;

4. High quality: The index based algorithm is exhaustive instead of heuristics and
can also allow approximate search. Its search time only depends on the index and
does not need to depend on the databases;

5. Flexibility: It enables different statistics in sequence evaluation. That is to say, it
can apply statistics based on the indices while it is not necessary to consider the
genomic sequence.

2.3 Index construction method

Index based search algorithms are a very important part of genomic search methods,
and how to construct indices is the key to an index based search algorithm. To con-
struct an index, many lexical analysis schemes are possible and have been tried by
experts. However, all the works start from a small viewpoint of the authors and are
not guided by a total view of index models, such kinds of practical ideas make the
index not as powerful as it should be. From a total analysis and view, we classified
the index construction methods into three categories.

2.3.1 Length based construction method

In genomic databases, the sequences are linear, so it is intuitive to find some short
subsequences (words) to construct the index, the length of the adopted subsequence
can be either fixed or a variable. During the construction procedure, when a certain
length and a certain alignment score are satisfied for a sequence segment, one item
of an index is generated. The index can be constructed based on query sequences
or object sequences, and ordering mechanism can also be applied to the index to
improve its efficiency.

2.3.2 Special transformations based construction method

This method uses special transformations to construct an index. The special trans-
formation can be of modern technologies such as wavelet, metric analysis, genomic
statistics, and etc. For this method, the sequence should be changed into one kind
of vectors (events) with a time, frequency, or another characteristic variable at first,
then, based on the vectors, specific transformation is applied to the vectors to con-
struct the index. The advantage of this kind of index is that it can prune most of
non-desired sequences and reduce the real search problem to only a fraction of the
original databases.

190 X. Jiang et al.

2.3.3 Mixed techniques based construction method

This stems from the above two kinds of indexing methods. So, in this method, the
two above methods are mixed to generate the index.

Normally, there is an assumption that the genomic databases are static, thus the in-
dex is developed based on a fixed set of sequences. In a limited period and for a fixed
genomic database, the index will stay consistent and will not need to be updated
frequently.

In the following sections, basing on the analysis of the index methods used, we
try to classify the popular index based homology search algorithms, and analyze and
compare their characteristics.

3 Length based index algorithms

For the length based index ones, one can imagine distinctly there are two kinds: fixed
length based index ones and variable length based index ones.

3.1 RAMdb

Rapid Access Motif database (RAMdb) is a algorithm used for finding short patterns
in genomic databases [12]. In this system, each genomic sequence is indexed by
its constituent overlapping intervals in a hash table structure. For each interval, an
associated list of sequence numbers and offsets is stored. This allows a quick search
of any sequence matching a query sequence.

RAMdb is best suited for the lookup of query sequences whose length is on the
order of the indexed interval length. RAMdb has been shown to result in a up to
a 800-fold speedup in search time over comparable exhaustive approximate pattern
matching approaches.

Its limitations are multiple. RAMdb requires a large inverted index twice the size
of the original flat-file database (including the textual descriptions), and suffers from
lack of special-purpose ranking schemes designed for identifying initial match re-
gions. In addition, the non-overlapping interval means false dismissals unless the
frame happens to coincidentally align with the start of the interval frame.

3.2 FLASH

The FLASH search tool [6] redundantly indexes genomic data based on a proba-
bilistic scheme. For each interval with length n, the FLASH search structure stores,
in a hash-table, all possible similarly-ordered contiguous and non-contiguous subse-
quences with length m that begin with the first base in the interval, where m < n.

The hash-table stores every permuted m-length subsequence, the sequences con-
taining the permuted subsequences, and the offsets within each sequence of the per-
muted subsequence. The key idea of the FLASH tool is that the permuted scheme
gives an accurate model that approximates a reasonable number of insertions, dele-
tions, and substitutions in genomic sequences.

Survey on index based homology search algorithms 191

The authors pronounced that FLASH was tens of times faster for a small test
collection than BLAST [3, 4] and was superior in determining homologies accurately
and sensitively in database searching.

FLASH has also great limitations. FLASH utilizes a redundant inverted index
which is uncompressed, stored in a hash-table, and impractically large. For a nu-
cleotide collection of around 100 Mb, the index requires 18 Gb on disk, around 180
times of the collection size. The 10 times performance is doubted to be attained on
general purpose hardware unless the collection is sufficiently small such that swap-
ping the index in and out of memory is not a serious problem.

3.3 Variable-length interval based algorithm

Twee-Hee Ong et al. [26] proposed a filter-and-refine approach to speed up homology
search processes. It has some new aspects:

• The approach can handle motifs (one kind of index) of variable length.
• Inexact match is introduced, this can improve the effectiveness.
• Motifs are represented by a m-bit signature vector, where m can be chosen depend-

ing on the trade offs between performance and storage. The set of all signatures
corresponding to the database sequences builds the signature file.

The filter-and-refine process extracts motifs from the query sequence(s) and gener-
ates a query signature at first, then the query signature is matched against the signature
file to return a candidate set of sequences.

The method use one efficient and compact strategy to represent the motifs of the
database sequences. The procedure is as follows: in order to map each database se-
quence to a V -bit signature vector, for a sequence with k motifs, m1, . . . ,mk , initially,
all the V bits of the signature are set to 0 and a hash function h(m) is defined to map
a motif m to a value in the range 1 to V . Then, for motif mi , where 1 ≤ i ≤ k, bit
h(mi) is set to 1. If there is a collision case for mi �= mj such that h(mi) = h(mj),
false drops occurs.

Two sequences are similar if they share some common motifs. With the signature
representation, a simple logical “AND” operation is used to compute the intersection
between two signatures (two sequences). The similarity measure SIM between query
sequence signature Q and database sequence signature D is calculated as follows:

SIM(Q,D) = BitSet(Q ∧ D)

BitSet(D)
, (1)

where BitSet(BS) denotes the number of bits in the vector BS, and ∧ represents the
bitwise logical-AND operation.

If both sequences share many common motifs, the similarity computed will be
close to 1. These values can be ranked to form the candidate set by the top ranking
sequences.

The process is really quick because it is a bit vector comparison. In the refinement
phase, query sequence and candidate sequences are matched directly by exhaustive
methods such as FASTA [29] or BLAST to pick out the answer set.

The author adopted the entire protein sequence database PIR1-PIR4 that have
about 190874 protein sequences to test the algorithm. With lmin set to 3 and 4, and

192 X. Jiang et al.

minimum support set to 4.0% and 0.9% respectively, a total of 3322 and 3326 motifs
were generated. When scanning only 20% of the database sequences, less than 10%
of the good answers are missed by this scheme when compared to FASTA, and the
missed answers rank fairly low under FASTA’s answers.

As for the retrieval efficiency, for long sequence, for example, 600bp query se-
quence, it gains 50% more than that of FASTA. For short sequences, the gain is less
significant.

The authors concluded that:

• For test on real data set with reasonable size m, the algorithm has good perfor-
mance.

• The sensitivity of the algorithm is comparable to FASTA and the computation of
the algorithm is faster.

The doubtful part is the result. We found the length of chosen query is around
several hundreds, though this is a normal state, it is not enough to predict that the
algorithm is more efficient for long query sequences. More experiments are necessary
to argue the viewpoint.

Similar multi-step methods, filter-and-refine methods, are detailed in other pa-
pers [19, 21]. Some characteristics used in these papers may be borrowed to sequence
alignment, but the structure of GenBank is a limitation.

Chattaraj [8] provided another variable length interval based approach for homol-
ogy search. The authors showed that one can achieve a balance between the speed and
accuracy of fixed length choices. The method can be integrated with other algorithms
as a preprocessing procedure, at least it can work with CAFE.

3.4 BLAT

BLAT (BLAST-Like Alignment Tool) [20] is similar in a lot of ways to BLAST. The
program rapidly scans for relatively short matches (hits), and extends these into high-
scoring pairs (HSPs). However, BLAT differs from BLAST in some significant ways.
BLAST builds an index of the query sequence and then scans linearly through the
database. However, BLAT first builds an index of the database and then scans linearly
through the query sequence. BLAST triggers an extension when one or two hits occur
in proximity to each other, while BLAT can trigger extensions on any number of per-
fect or near-perfect hits. BLAST returns each homology area between two sequences
as separate alignments, while BLAT stitches them together into a larger alignment.

BLAST delivers a list of exons sorted by exon size, with alignments extending
slightly beyond the edge of each exon. BLAT has special code to handle introns
in RNA/DNA alignments. BLAT effectively unsplices mRNA onto the genome by
a single alignment that uses each base of the mRNA only once and correctly positions
splice sites.

BLAT uses a simple and reasonably effective search stage to look for subsequences
of a size k which are shared by the query sequence and the database.

BLAT can be divided into 4 steps:

• To find an initial match;
• To clump hits and identify homologous regions;

Survey on index based homology search algorithms 193

• To search for near perfect matches;
• To execute detailed alignment (maybe continued by a stitching and filling in pro-

cedure).

BLAT can handle very long database sequences efficiently, but it is more efficient
when used for a short query sequence than for a long query sequence. It is not rec-
ommended when the query sequence is longer than 200000 bases.

BLAT is more accurate and 500 times faster than popular existing tools for
mRNA/DNA alignments. It is 50 times faster for protein alignments at typical sen-
sitivity settings when comparing vertebrate sequences. BLAT’s speed stems from an
index of all non-overlapping K-mers in the genome.

Its index is small enough to be fit inside the RAM of inexpensive computers and
needs only to be computed once for each genome assembly. For example, the BLAT
only needs five bytes per index entry, while it is eight in the published version of
SSAHA. Because BLAT only indexes nonoverlapping words, it can index the human
genome at the nucleotide level in 0.9 GB and index a RepeatMasker masked and
translated human genome in 2.5 GB. It takes 30 minutes to build the index for the hu-
man genome, and once it is ready, it can be used typically for hundreds or thousands
of query sequences.

BLAT also indexes the database rather than the query sequence. This is more than
anything responsible for the relatively high speed of BLAT comparing to BLASTX
or other popular tools. Rather than having to linearly scan through a GB database
of sequences to look for index matches, BLAT only has to scan through a relatively
short query sequence. This is similar to SSAHA, but SSAHA does not implement
unspicing logic and always uses a single perfect match as a seed.

3.5 Piers

Piers [7] is a method similar to PatternHunter for that it allows spans between piers.
The pier p in the model is defined as a segment with length �p and has a location
at position pos in a data sequence. Formally, a pier is defined as a tuple < p,pos >.
The method is based on the observation that similar subsequences would have similar
subsequences.

For the extraction of the piers, the method takes an assumption that users are only
interested in high similarity region which is of length greater than a minimum length
�min. The piers are extracted randomly from the data sequence based on the following
principle: At least k piers should be contained in any subsequence with length no less
than �min, i.e., ((k + 1)�p + k�s) ≤ �min, where �s is the length of span between
neighbor piers.

After extracted, the piers are stored in a hash table HTable to ensure efficient ac-
cess.

The sequence similarity search algorithm based on the hash-based pier model con-
sists of three steps: (1) generating the query pattern with size of �p from query se-
quence Q; (2) searching for pier candidates among the hashed piers; and (3) post-
processing the candidates to concatenate adjacent candidates in order to form final
alignments with a high alignment score.

194 X. Jiang et al.

Let pier set be P . The total space complexity of the Hash structure is O(4λ +
42ω + ω|P |), where ω = �p − λ and λ is the length of Hashed prefix. Typically, the
hash table size is small enough to be kept in the main memory of a computer.

For each query pattern q of the query Q, let the pier set of the neighbors for
q be N , the time complexity of the query is O(α|Q||N |), with the loading factor
α = |P |/4λ. Under symmetric cases, considering letter repetition in a sequence and
the neighboring of query patterns, time complexity can decrease.

The experiments show that the algorithm’s efficiency is higher than BLAST for
a series of query processing. As for the preprocessing, because the model simply
extracts piers and hashes them rather than processes each segment in the sequence
database as BLAST, the efficiency is higher. For the query processing, the method
outperforms BLAST 2 ∼ 10 times when the size of data sets varies for both groups
of test queries adopted by the authors.

The sensitivity and accuracy for a pier model can be provided by theoretical analy-
sis. For the two subsequences with length |S| = |Q| = L, if query Q and candidate
subsequence C have edit(Q,C) ≤ ζ , and if the edit distance between the pier ran-
domly picked in S and the corresponding alignment segment of Q is ζ ′, the proba-
bility for S to be found is:

P(�p,L, ζ ′, ζ) =
∑ζ ′

i=0

(
�p

i

)(
L − �p

ζ − i

)

(
L

ζ

) (2)

4 Transformation based index algorithms

Transformation based index algorithms are all based on special technique(s), and at
the same time, these transformations combine properties of genomic data.

4.1 CAFE

CAFE [34–37] is a partition based search approach, where a coarse search using
an inverted index is used to rank sequences by similarity to a query sequence, and
a subsequent fine search is used to locally align only a database subset with the query.

In our opinion, this method can be extended to other algorithms. For example, by
removing single-member queries and long queries, the query set could be reduced by
a factor of around two.

The CAFE index consists of three components:

1. A search structure. The search structure contains the index terms or distinct in-
tervals, that is, fixed-length overlapping subsequences from the collection being
indexed.

2. Inverted lists. Inverted lists are a carefully compressed list of ordinal sequence
numbers. Each list is an index of sequences containing a particular interval.
The cafe inverted file indexing scheme is extended so that within each post-
ings list is stored not only the ordinal sequence number that contains the inter-
val, but also offset information. For example, consider the following postings

Survey on index based homology search algorithms 195

list ACCC 12, (3 : 144,154,962);38, (2 : 47,1045); . . . in which the indexed se-
quences, the 12th and 38th, contain the interval ACCC. The interval occurs 3 times
in the 12th sequence, at offsets 144, 154, and 962, and twice in the 38th sequence,
at offsets 47 and 1045.

3. A mapping table. Mapping tables map ordinal sequence numbers to the physical
location of sequence data on disk.

Queries are evaluated by representing the query as a set of intervals, retrieving
the list for each interval, and using a ranking structure to store a similarity score of
each database sequence to the query. Similar to FLASH, CAFE uses an overlapping
interval.

CAFE uses a compression scheme to make the index size more manageable. To
reduce the retrieval overhead of using an index, compression techniques used for text
database indices and string indexing are used to reduce index size. The benefits of
compression are two-fold: there is a saving in space used by the index and often
a saving in query evaluation time, if retrieval of compressed lists and subsequent
decompression is faster than retrieving uncompressed lists.

The CAFE method consists of a coarse search and a fine search. The coarse search
is based on an index and used to select candidate strings that have the potential to
be good answers. The fine search is used to decide which candidate is the real one
we want. The coarse search involves retrieval of the inverted lists corresponding to
unstopped intervals in the query string. Those sequences that fall within the top m ac-
cording to frequency of occurrence of query intervals are presented to a fine searching
algorithm for ranking against each other. The CAFE method returns the best m se-
quences regardless of their similarity values for an arbitrary m.

As for the space complexity, being compared to the GENBANK108 and GEN-
BANK97 collections, the CAFE indices are 2.2 times the size of the collections,
while the corresponding VERTE index is 2.5 times the collection size, and the in-
dex for PIRSF is 1.9 times the collection size. If without incorporating the special-
purpose CAFE compression scheme, the uncompressed fine-grain inverted list size
will be about more than two times larger.

As to the retrieval effectiveness, the experiments show that CAFE searching is only
marginally less accurate than BLAST1 and FASTA, and that BLAST2 is 1–2% lower
in precision at low recall levels and has up to 10% lower precision at higher recall
levels. Most importantly, CAFE searching has both similar underlying heuristics and
performance to FASTA which is the most accurate rapid homology search system.

As to the search speed, searching with CAFE can be over eighty times faster than
that with FASTA and eight times faster than that with BLAST2. The comparison is
shown in Table 1.

The author notes that although it is more computationally efficient than the ex-
haustive methods, while “exhaustive systems generally have better retrieval effec-
tiveness.”

The authors also pointed out that applying popular filtering techniques unselec-
tively to all queries may reduce retrieval effectiveness, and CAFE uses the overall
motif distribution in a database and filters all queries to mask low complexity regions
prior to searching, which is a common practice to improve the accuracy of rapid ho-
mology searching and the search speed. XNU, SEG, SIMPLE, SAPS, CENSOR and
CAFE all similarly reduce the retrieval effectiveness.

196 X. Jiang et al.

Table 1 Mean elapsed time in seconds for 41 nucleotide queries

BLAST 1 BLAST 2 CAFE FASTA

GBMAM 0.6 0.4 1.2 8.0

VERTE 6.8 7.4 3.2 108.4

GENBANK97 67.1 19.2 9.2 823.0

GENBANK108 192.5 182.5 20.2 –

Unclear problems, for example, whether the low complexity region is popular,
how many percents of the total and etc., should be dealt with by a good algorithm.
FASTA can be used to assess the reliability of answers to a given query. This is done
by the actual CAFE algorithm.

The advantage of using overall collection frequencies is that frequent motifs com-
mon to both homologous and unrelated sequences are filtered. The method is 14 fold
speedup over BLAST. The disadvantage of the method is that distant sequence rela-
tionships are lost and retrieving effectiveness is lower.

The partition based index and retrieval is a good method shown by CAFE. Another
paper based on this kind of index focuses on text retrieval [38].

4.2 PropSearch

The PropSearch tool [14] is proposed to detect the functional and structural homolo-
gies in the twilight zone of sequence similarity, i.e., when the sequence identity falls
below about 25%, the sequence identity is a sequence structural relationship in case
of convergent or far divergent evolution. The basic idea is to utilize the conserved
properties in the similar structures for database searches. It uses a notion of sequence
space similarity between the two extreme approaches of “strict sequential order” and
“amino acid content irrespective of order.”

The authors proposed to neglect the order of amino acids in a sequence and to
represent the sequence as a vector of 144 different characteristics, notably residue
frequency, molecular weight, average residue-size, average hydrophobicity, and av-
erage charge.

One important rule in the algorithm is that characteristics such as hydrophobicity
that are known to be stronger indicators of homology, carry more weight than those
are known to be lesser indicators.

A genetic algorithm optimizes the property weights, and the optimization is
stopped at generation 50. To avoid artifacts from overtraining, database searches were
performed using the weights at generation 30. The optimization is performed us-
ing 100 weight vectors, each vector representing the weights of 144 properties. All
100 × 144 property weights were initialized to 1.0 at generation 0.

The “fitness” of a gene was calculated by a four-step procedure: (1) Take the
1322nd sequence and calculate the distance between the query sequence and all other
1321 sequences; (2) Sort sequences on distance; (3) Calculate the average rank of
family members by Rfam = ∑

(Ri − (i − 1))/N , where i labels the family member,
Ri is the rank of family member i in the list of hits; N is the number of family mem-
bers; (4) Do step (1) to (3) for all 1322 sequences. The fitness of a set of weights is

Survey on index based homology search algorithms 197

defined as the sum of 1322 Rfam. A low average rank or high fitness results when a
query sequence collects its family members at the top of the output, separating them
from members of other families with higher PropSearch distances. In each genera-
tion, the evaluation of fitness was done for 100 genes and the ten highest scoring
genes were reproduced.

After gene reproduction, genes were mutated with a probability of 0.035 and re-
combined with a probability of 0.2, with the exception of the gene number 1, which
was neither mutated nor recombined, but kept. To speed up the optimization, genes
30 to 50 were subjected to a five fold higher mutation rate.

Query sequences are translated into vectors, search results are returned as a ranked
list of sequences in decreasing order of Euclidean distance from database sequence
vectors.

The method is implemented in several steps:

• Calculate a property vector by 144 numerical values;
• Preprocess a database of properties, i.e. for each sequence in the database, Swis-

sProt database for example, a property vector of 144 numerical values is calculated;
• Calculate the property distances as the root weighted mean square difference

of the components of the property vectors (Weighted Euclidean distance) by
D = √∑

(|Ai − Bi |)2Wi , where Ai is property i of protein A after normalization
by database sigma; Bi is property i of protein B after normalization by database
sigma; Wi is weight for property i;

• After all distances between the query vectors and each database vector are calcu-
lated, distances are sorted and high scoring proteins, i.e. those with a small distance
relative to the query protein, can be inspected for potential structural and functional
homology.

The authors pointed out that PropSearch is a useful protein database searching
tool in the context of genome analysis in case for which conventional alignment tools
find no sequences significantly similar to the query protein. The similar sequence sets
identified by PropSearch and other conventional alignment tools are, in general, only
partially identical, and while PropSearch, on the average, finds some known members
of a particular protein family, it may fail to find others. On the other hand, PropSearch
may find family members not detectable by other alignment tools, because no simi-
larity at the level of sequential alignment is present. The tool is not meant to compete
with, but to complement the conventional alignment tools.

The comparison of PropSearch, FASTA, BLAST for the capability to detect re-
mote homologies are shown in Table 2.

In case 1 and case 2, the actual number of top ranking sequences examined is 200
and 1000, respectively. We can see from Table 2 that PropSearch is very sensitive. For

Table 2 The capability comparison of PropSearch, FASTA, BLAST to detect remote homologies

Algorithm Variable Detected sequences in case 1 Detected sequences in case 2

PropSearch – 222 771

FASTA – 134 350

BLAST 0 – –

198 X. Jiang et al.

example, for 592 globin sequences, though the sequence alignment is not detectable
by traditional algorithms, PropSearch found 12 pairs with distance below 12 (i.e.
reliability about 70%) and 93 pairs with distance below 13 (i.e. reliability about 55%).

Because the index is based on the 144 properties, the index size is very small.
As for the speed, the original idea in the literature is to improve the sensitivity

and no report on its speed comparison with other methods is provided. We judge
it is a little faster than other popular methods with the small index and the index
construction payload.

Other studies have found that experience with PropSearch suggests it is only re-
liable for detecting evolutionary close similarities between highly homologous se-
quences and that subsequent alignments are required to verify homology. Lack of
positional information of physicochemical properties, as commonly used in the ex-
haustive schemes, is the likely contributing factor to its poor retrieval effectiveness.
In addition, most, of the properties used by PropSearch are not shared by the nu-
cleotides that generate the amino acid sequences. At present, there are no known set
of properties which may be used to form the nucleotide vector.

4.3 Bitmap indexing structure

The authors [27] employ a bitmap indexing structure to condense and encode each
data sequence into a shorter index sequence. During query processing, the bitmap
index is used to filter out most of the irrelevant subsequences, and false positives are
removed in the final refinement step. The attraction of the strategy is its capability
of reducing response time substantially while incurring only a small space overhead.
The difference between bitmap indexing structure (BIS) and any other structure is
that BIS is compact and has a simple generation mechanism.

The algorithm has three main steps:

1. BIS construction procedure. In this step, a hash function f : D → N is defined
first to map each element d in the database to an index element n. Then, the hash
function f is applied to every sequence in the database to produce a bitmap index.

2. Filtering step. This is a common step in other algorithms.
3. Result analysis based on a cost model.

To study the effectiveness and efficiency of the processing strategy, a cost model
is developed. The purpose of the model is three-fold:

1. When constructing an index for a sequence database, the model can provide the
best setting for Nbits, the number of bits needed for each index element.

2. The model can help a database system to decide whether BIS will speed up a par-
ticular query.

3. The model can estimate the processing time if BIS is employed.

The cost model is more accurate than other models because it considers the I/O
communication time and computation time.

The authors adopted response time and speedup to evaluate the algorithm’s per-
formance. The following effects are considered in the experiments.

• The number of bits per index element Nbits should be as small as possible, a smaller
Nbits lowers filtering cost but raises Rmatch.

Survey on index based homology search algorithms 199

• For the effect of query length, the speedup rises roughly linearly with log2 QLen,
and the response time for BIS gets reduced a lot due to fewer subsequences domi-
nate rising filtering cost and it only rises a little with the longer query.

• As to the effect of data size, the response time increases linearly with the data size,
and the achieved speedup remains constant.

• For the data distribution, if the skew of index distribution is between 20% and 80%,
the performance of BIS remains stable, while for more skewed index distribution,
BIS deteriorates rapidly and the filter should be reconstructed with an updated hash
function to restore BIS’s effectiveness.

• For the effect of “fixed length don’t care” segments, response time of BIS remains
almost unchanged except that when the number of data elements in the query
strings becomes less than six, BIS is faster.

• For the effect of “variable length don’t care” segments, the overall response time
is the sum of the individual segment’s processing time.

• For the effect of edit distance, the BIS is better for larger edit distances if the query
string is longer.

• As to Dbits, it has little effect on either the efficiency of BIS and the accuracy of
the cost models.

As an example, by constructing an index with 1/8 the size of database, BIS gets
five times speedup for query strings that are longer than 100 data elements.

4.4 Metric space indexing techniques

The authors [9, 10] investigated two different indexing techniques, namely the varia-
tions of GNAT trees and M-trees, to support fast query evaluation for local alignment,
by transforming the alignment problem to a variant metric space neighborhood search
problem.

The algorithm integrates a fully sensitive indexing technique for coarse search.
The standard neighborhood query supported by index structures for metric space

searching is for the following problem (P): Given a point x ∈ X and radius r > 0,
find all y ∈ Y s.t. d(x, y) ≤ r .

For the alignment query, we need the index structure to support the query for the
following problem (P∗): Let f be a function from X to the set of real numbers. Given
a point x ∈ X and a radius r > 0, find all y ∈ Y s.t. d(x, y) ≤ f (y) + r .

Based on the above mechanism, what we need to do first is to transform the se-
quence alignments into edit distance evaluation that we can utilize conveniently.

For the transformation of local alignments to an edit distance evaluation, the score
of local alignment for two sequences x and y is defined at first by:

local_alignment_score(x, y) = def max{c × (total length of alignment)

− (penalty of gaps)}, (3)

where c > 0 is a predefined constant, and the gap penalty is a non-negative affine
function with respect to the total length and the number of the gaps.

If there is a score-threshold σ , and let d(x, y) denote the edit-distance between
sequence x and sequence y, then we get

d(x, y) ≤ len(x) + len(y) − 2σ/c. (4)

200 X. Jiang et al.

For a given point x and score σ , we get the corresponding radius r(x, σ) =
len(x) − 2σ/c. The above relation is equivalent to d(x, y) ≤ r(x, σ) + len(y) which
is an instance of problem (P∗).

Two different indexing techniques used by the algorithm is as follows:
GNAT: At the top node of a GNAT, several distinct split points are chosen and the

space is divided into Dirichlet domains based on those points. The remaining points
are classified into groups depending on what Dirichlet domain they fall into. Each
group is then structured recursively in the same manner.

M-tree: M-tree uses a different strategy to maintain the index structure with two
properties:

• The tree is balanced for all paths having the same length;
• In an M-tree, each node n stores the radius r(n) which satisfies r(n) ≤ d(n̂, m̂),

where m is any descendant of n. Especially, r(root) = ∞ and r(n) = 0 for any
leaf n.

The construction of an M-tree is performed by means of a series of node insertions.
The algorithm at first finds the leaf of the M-tree that accomodates the inserted object
and then handles the overflow caused by the insertion.

Aghili [1, 2] integrated a textual data mining technique, Singular Value Decompo-
sition (SVD) dimensionality reduction technique, as an efficient filtration on genomic
data to leverage the cost and scalability of the approximate search process. His work
is a good example using metric space indexing method.

The advantage of the algorithm is that with the transformation, the calculation of
distance in the frequency domain is linear in time/space, which is much more efficient
being compared to the calculation of the distance in the original string domain which
is quadratic in time/space.

The disadvantage is that false positives are introduced by the transformation.
The authors have not provided experiments for the performance evaluation and

comparison with other kinds of methods, thus the method needs to be deeply investi-
gated.

4.5 IDC-based algorithm

This approach [22] extracts homology candidates based on the data structure of
Incrementally Decreasing Cover (IDC) from genomic databases. The new concept
of seriate coverage builds the base of this algorithm. The problem of searching ho-
mology candidates is transformed to a longest increasing subsequence (LIS) problem
with range constraints.

Based on the problem transformation, the algorithm has a two-phase filtration:

• Annotate query sequence and construct the hit list;
• Find homology candidates.

The time complexity to construct the gram index is O(|D|) and the space re-
quirement is O(|D| + |∑ |LI) = O(|D|) for |∑ |LI � |D|, where |D| is the size of
genomic database, |∑ | is the number of alphabet and LI is the length of index.

Let LQ denote the length of query grams and let Z = LI − LQ if LI > LQ, and
0 otherwise. U is the number of nodes in the longest query-related location list, and

Survey on index based homology search algorithms 201

V = |∑ |Z . The time complexity of annotating the query sequence and constructing
the hit list is O(|Q|+|H |+|Q|UV log(|Q|V)) = O(|H | log(|Q|V)) for |Q| � |H |,
where |H | denotes the length of hit list.

The space requirement is O(|Q|V + |H |) = O(|H |) for |Q| � |H |. For finding
the homology candidates, the overall time complexity is O(|H |W(1 + logW)) �
O(|H |W logW) and the algorithm needs O(WQ) = O(W) space.

Another characteristic is that it is a lossless filtration algorithm with user-specified
error and seriate coverage levels. The design of variable-length of query grams pro-
vides more flexibility in various applications.

The authors pointed out IDC based filter (IDCF) is more than three orders of mag-
nitude faster than QUASAR, and more than 10000 times faster than the exhaustive
search with a comparable sensitivity level.

5 Mixed techniques based index algorithms

Mixed techniques based index algorithms take different technique mentioned above
at different step and at least they use two techniques, we here group them into the
third type.

5.1 Indexing using wavelets

By the wavelet indexing method, substrings are mapped into an integer space with
the help of wavelet coefficients. These coefficients are indexed into Multi Resolu-
tion String Index Structure (MRS) using Minimum Bounding Rectangles (MBRs).
Frequency Distance (FD) is used to reduce search space in the method.

Aiming at the problem of the range queries and nearest neighbor queries, Kahveci
[17] in 2001 proposed a method to map the data substrings into an integer space with
the help of wavelet coefficients. With the help of MBR, the method can index the
coefficients and the index can prune 50–95% of the database, which reduces the disk
I/O operations and CPU time. Its advantage is that the typical size of MRS index
structure ranges between 1–2% of the database size, thus the method is a potential
solution for the long query problem because the whole index can be easily stored in
main memory.

Based on the Multi Resolution String (MRS) index structure, Kahveci [18] pre-
sented an algorithm which constructs a boolean match table for a given query string
and database string. The algorithm can efficiently address the alignment of large
genome strings problem. In the algorithm, each entry of the match table corresponds
to a query/database substring pair, and the match table size is negligible compared to
that of a database (typically 0.1% of the database). Later, hash tables are constructed
from the match table. Once the hash table of a string for a slice is constructed, the
marked substrings of the other string are read sequentially and exactly matching sub-
strings (i.e. seeds) of the prespecified size (i.e. 11) are found using this hash table.
The seeds are then extended in both directions to find better matches. In the end, the
results are reported in a descending score order. This technique is called MAtch table
based Pruning (MAP).

202 X. Jiang et al.

The exact string matching algorithm based on wavelets consists of:

1. Building an index. In this step, the data sequences are scanned to build MBRs at
first, then, MBRs are stored in a spatial indexing structure.

2. Given the query string, determining the MBRs in which it is likely to lie;
3. To do a false positive elimination by matching query Q to those portions of data-

base D that lie in the identified MBRs.

Based on the index, an extension is implemented. The objective is to answer
queries of various lengths efficiently, and an MRS is maintained to do this. This
translates to a different R tree corresponding to each resolution (or window size). It
may be noted that only an MRS corresponding to window sizes that are powers of
two will be constructed. This allows one to most efficiently handle a range of query
strings of yet unknown lengths.

The attractiveness of wavelet based index structures [31] lies in the index size
generated which is a fraction of that of comparable methods such as suffix trees. The
author provided the performance comparison between the method and MUMer. The
primary performance metrics include indexing time, querying time, and index size,
and all are better than MUMer’s.

Index size is inversely proportional to cluster size. This can be related by the em-
pirical formula: index_size_per_resolution = 64 × database_size/cluster_size.

The number of searched MBRs are orders of magnitude different between using
queries of length 2, 4 and 8 and using those of length 16 and upwards. For queries of
length 16 and upwards, the number of searched MBRs has a non-monotonic change—
first increasing and then decreasing.

As to the indexing time, although MUMer is able to match incremental query
(IQ) at small database size (under 512 k), it loses out to IQ very quickly, starting at
moderate database size.

Query time is evaluated by the authors for a fixed query string of length 2 KB
chosen from the Elegans gene itself mixed from two different locations. The variable
is the minimum MUM size. The result shows that MUMer outperforms IQ when the
minimum match size is small. However, with a minimum match size of 100, IQ takes
around 8 seconds. Given the minuscule size of its index, that is acceptable compared
to MUMer. MUMer builds a 249 MB index for the gene. In contrast, IQ uses only
0.226 MB.

The advantages of the algorithm lie in: (1) incremental window shifts, and (2) lim-
ited window for duplicate elimination.

The method is similar to BLAST in quality, but up to 97 times faster than BLAST
without decreasing the output quality.

There are also some drawbacks. The efficiency is not comparable with other meth-
ods, and the edit cost is too simple. The method is only based on edit distance, no
general scoring schemes are adopted. Another drawback is that it is not suitable for
average DNA/protein query lengths.

Wavelet theory has not been presented for homology search initially. Here, the
algorithm adopts wavelet theory to code object sequence and query sequence, and
the homology search is executed on the coefficients. So, from the view of wavelet
theory, the index is also transformation based.

Survey on index based homology search algorithms 203

5.2 Indexing using suffix trees

Suffix trees [15, 16] are primarily used for exact matching, but can be adapted for
similarity matching. However, the method has some issues: caching and check point-
ing.

A suffix tree indexing a string of length N has N leaf nodes, one per suffix (suffixes
being numbered from 1 to N). Each edge is labeled with a non-empty substring, and
at each branching node the starting letters of the outgoing edges are different, so each
path from root to a leaf spells the suffix that starts at the sequence position held in the
leaf.

Suffix trees are compressed digital tries. Given a string, all suffixes are indexed.
For example, for a string of length 10, all substrings that starting at index 0 through
9 and finishing at index 9 will be indexed. The root of the tree is the entry point, and
the starting index for each suffix is stored in a tree leaf. Each suffix can be uniquely
traced from the root to the corresponding leaf. Concatenating all characters along the
path from the root to a leaf will produce the text of the suffix.

To change a trie into a suffix tree, each node which has only one child is conceptu-
ally merged with that child, and recursively, the nodes are annotated with the indices
of the start and end positions of a substring indexed by that node. Commonly, a spe-
cial terminator character is also added to ensure a one-to-one relationship between
suffixes and leaves. Otherwise, a suffix that is a proper prefix of another suffix would
not be represented by a leaf. The change from a trie to a suffix tree reduces the storage
requirement from O(n2) to O(n), where n is the sequence length.

The new incremental construction algorithm trades ideal O(n) performance for
locality of access on the basis of two decisions:

• To abandon the use of suffix links;
• To perform multiple passes over the sequence, as well as constructing the suffix

tree for a subrange of suffixes at each pass.

If to encode the tree without making each node an object, one would require 12 B
per node, then one needs around 21 B for each indexed character. Further compres-
sion could be obtained by using techniques similar to those proposed by Kurtz. Its
space is O(n), this is a smaller size, compared to others.

Time consumption is on average O(n logn), and the worst case is O(n2).
The suffix tree can be suitable for large sequence, i.e., the suffix tree is a persistent

method for large sequence.
The authors stated that their algorithm is scalable and can be adjusted to run on

computers with different memory characteristics. But more work is required to opti-
mize the tree building, and to investigate the object placement on disk and as well as
its influence on query performance. The construction procedure parallelization needs
to be studied too.

The main problems of the suffix tree approach are twofold: (a) Suffix trees are
inefficient at managing mismatches. This approach is perfect for highly similar se-
quences but fails to recognize more distant homologies; (b) Suffix trees have a large
space overhead, and the best practical implementations still require about 9 times the
database size and do not handle secondary memory well. Tree compression, alterna-
tive data structures, and data clustering are useful for the improvement of using suffix
tree indexing technique.

204 X. Jiang et al.

Suffix array is a weak version of suffix trees [23]. It requires much less space
(about 4 times the text size), but it has a mall penalty (O(logn) in time penalty factor)
over search time.

In this method, we should construct the suffix tree based on the object sequence
and query sequence first, and then, execute the algorithm on the suffix trees, while not
on the object sequence and query sequence directly, thus the algorithm is also based
on transformation.

5.3 iBLAST

iBLAST [11] is proposed as an indexed version of BLAST. The authors gave an
initial implementation of the method, which uses a sequence-based index to cata-
log genomic databases in an NCR Teradata relational database management system
(RDBMS). The Teradata utilizes parallel processing to achieve fast and accurate an-
swers to queries.

In the method, the initial index based on sequences is comprised of a 16-mer word
from the genomic database and a pointer to the location in the flat file where that
“word” occurs. The index is built by the following method:

• The 16-mer word is converted into an integer for space saving. The conversion
mechanism used the following scheme: A = 00, C = 01, G = 10, T = 11. A 32-bit
binary number is generated to represent each 16-mer, which, in turn, is converted
into an integer. For example, when a 4-mer word AGCA is located at position 1144
in the database, the word is encoded as 00100100, which is equal to the decimal
integer 36, and its record in the database will appear as (36,1144);

• Create a unique primary index using the word and location.

In order to reduce space and maintain speed, a primary index was created on the
word field and no unique index was employed. A unique primary index can facilitate
the data to be more evenly distributed across the access module processors of the
Teradata system. Due to the nature of genomic data, the skew among the processors
is very low, so the unique primary index can be removed without too much sacrifice.

A linear relationship exists between the original database size and the Teradata
RDBMS size. The Teradata RDBMS size is approximately 22 times larger than the
database size due to the overhead of the index; this is a serious problem. The au-
thors also noticed inconsistent behavior in smaller query sizes. A secondary index is
introduced to alleviate the problem. At most, it is 100 times faster than queries per-
formed without a secondary index. However, though query speed increased greatly,
and the spikes and the inconsistent behavior from smaller query sizes are removed,
the addition of a secondary index doubled the size of the database on the RDBMS.

The speed comparison of iBLAST to a sequential search tool, i.e. standalone
BLAST shows that BLAST performs linearly as query size increases and iBLAST
is virtually constant for a variety of query sizes. For the query time of entire ecoli
genome comparing to the entire yeast genome, iBLAST performs 68 times faster
than standalone BLAST.

About the sensitivity, the author did not provide a report, and it is left for the future
version.

Survey on index based homology search algorithms 205

The authors’ work is primary, and their proposal for accuracy, repeatability, speed
test, using biological indices and integrating the relationships between genes are ex-
pected to verify the iBLAST algorithm. In the verification, one can take measures
such as variable interval lengths, number of intervals, input sequence size, data type
and etc.

In this method, the index is constructed based on a 16-mer word integer coding
method, and the index is also based on a relational database management system.
Clearly, it is a transformation based technique from this point of view.

5.4 SSAHA

SSAHA (Sequence Search and Alignment by Hashing Algorithm) [24] is based on
organizing the DNA database into a hash table data structure (an index based on
database), and the fact that computers with sufficient RAM to allow us to store a hash
table that describes a database containing multiple gigabases of DNA, are available.

The authors used wj(S) to denote k tuple of sequence S that has offset j . The
offset is the position of the first base of k-tuple with respect to the first base of S. The
authors also adopted a two-binary digits encoding system for the 4 nucleotides.

The first stage of the algorithm is to convert subject sequences D into a hash table.
The hash table is stored in memory as two data structures: a list of positions L and
an array A of pointers into L. The hash table is constructed by making two passes
through the subject data. On each pass, only the non-overlapping k-tuples in the sub-
ject sequences are considered. On the first pass, all non-overlapping occurrences in D

of each of the 4k possible k-tuples are counted to calculate the pointer positions for A

and allocate the correct amount of memory for L. All words that have a frequency of
occurrence that exceeds a threshold N is ignored to reduce the size of the hash table
as well as effectively filter out the spurious matches attributable to repetitive DNA.
After A is constructed, a second pass is implemented using A to place the position
information into L at the correct positions.

For the search for occurrences of a query sequence Q within the subject database,
it is processed base by base along Q from base 0 to n− k, where n is the length of Q.

For base t , a list of r positions of the occurrences of the k-tuple wt(Q) is ob-
tained, and they are pointed to by entry E(wt(Q)) of A. The list of positions
is:(i1, j1), (i2, j2), . . . , (ir , jr). Then the list of hits is computed:H1 = (i1, j1 −
t, j1),H2 = (i2, j2 − t, j2), . . . ,Hr = (ir , jr − t, jr). The list of hits is added to a mas-
ter hit list M that is accumulated as t runs from 0 to n − k. From the leftmost to right
most, the elements of a hit are referred to as the index, shift, and offset.

After M is built, it is sorted first by index and then by shift. Finally, scanning
through M is used to look for hits for which the index and shift are identical. Each
such hit represents a run of k bases that are consistent with a particular alignment
between the query sequence and a particular subject sequence. The shift between
consecutive hits in a run is allowed to be inserted or deleted by a small number of
bases. With the sorting by offset, the regions of exact match between two sequences
can be determined. Based on these, and by joining exact regions that are sufficiently
close to one another, one can get the gapped matches.

The method will find matches only in the forward direction. For the reverse direc-
tion, it can do that easily by taking the reverse complement of Q and repeating the
procedure.

206 X. Jiang et al.

Storage of the hash table requires 4k+1 + 8W bytes of RAM in total, in which the
first and second terms account for the memory requirements of A and L, respectively,
and W is the number of k-tuples in the database. For the storage of query sequences,
it can be kept to a minimum by loading in query sequences from a disk in batches
and using a 2-bit per base encoding method, normally it will add about 10–20% to
the total RAM usage.

SSAHA is fast for large databases because the database is hashed; search time
is independent of the database size as long as k is selected to keep W/4k small.
Both FASTA and BLAST hash the query sequence and scan the database; therefore,
the search time is related directly to the database size. The tradeoff is that SSAHA
requires large amounts of RAM to keep A and L in memory.

SSAHA algorithm will, under no circumstances, detect a match of less than k con-
secutive matching base pairs between query and subject. 2k−1 consecutive matching
bases are needed to guarantee that the algorithm will register a hit at a point in the
matching region. With default settings, FASTA, BLAST, and MegaBLAST require at
least 6, 12, and 30 base pairs, respectively, to register a match.

SSAHA is more effective for the sequence alignment of the same organism, but it
always uses a single perfect match as a seed and does not adopt unsplicing logic.

SSAHA is based on a hash table and also adopts the two-binary digits encoding
system for the four nucleotides, thus it is similar to iBLAST tool as a transformation
based technique.

6 Conclusion and discussion

6.1 Performance comparison of the index based algorithms

Based on the above review, we show the performance comparison of the index based
homology search algorithms in Table 3.

From the comparison, we can see that all index based algorithms are faster than
classical heuristic algorithms. When it is based on transformations to construct the
index, the index size will be smaller than the database size. For a length based con-
struction method, the index size is larger than the database size. In some cases, it is
too large for execution on long sequence.

6.2 Other applicable index methods

Heuristic algorithms [30] and the indexing scheme are two very different directions
for homology search, although the indexing scheme is sometimes combined into
heuristic algorithm. Heuristic algorithms put time efficiency over the cost of sensitiv-
ity, while index based algorithms try to get time efficiency with high sensitivity. There
are some other techniques used to reduce search time for other types of databases. It
is possible for these techniques to be applied on genomic databases and expand the
successful index based homology search algorithms.

Survey on index based homology search algorithms 207

Table 3 Performance comparison of the index based algorithms

Algorithms Index size Speed Sensitivity

RAMdb 2 times ∼800 unavailable

FLASH 180 times ∼10 more

Variable-length a small part faster than FASTA comparable

BLAT 30% 500 times for mRNA/DNA,50 times for protein comparable

Piers small enough 2 ∼ 10 times faster than BLAST better

CAFE ∼2 times 80 times of FASTA and 8 times of BLAST a little less

PropSearch very small unavailable better

Bitmap a small part 5 times comparable

Metric method linear in space linear in search time a little less

IDC very small 10000 times faster than exhaustive method comparable

Wavelet 1–2% 97 times faster than BLAST comparable

Suffix linear average O(n logn) comparable

SSAHA 4k+1 + 8W average O(n logn) high

iBLAST about 20 times 68 times faster than BLAST unavailable

6.2.1 Feature vectors

Feature vectors are commonly used to compare similarity between query items and a
search set. The goal of a feature vector is to extract features from the database objects
and the query.

The only feature in DNA sequences is that nucleotides make up the patterns, and
the patterns form sequences. Feature vectors consisting of counts of individual nu-
cleotides, or nucleotide sequences, are not very useful for the following reasons:

• One sequence may be a subsequence of the other.
• Order of nucleotides is important and not accounted for by feature vectors.
• Traditional feature vectors only count exact matches.

The efforts in metric space indexing methods can promote the potential application
ability of the feature vector.

6.2.2 Frequency domain mapping

Another technique used to reduce sequence dimensionality is to transform time do-
main sequences into the frequency domain [5]. Discrete Fourier Transform (DFT)
can be used to transform a time sequence into frequency domain. The dimensionality
of the transformed sequences is then reduced by throwing out some coefficients of
the resulting transformation.

A DNA sequence may be viewed as a sequence in the time domain, in which
each nucleotide is considered to occur later in time than the nucleotide to the left and
earlier than the nucleotide to the right. Such a view allows a DNA sequence to be
transformed into the frequency domain. However, since nucleotides may appear in
any order with equal probability, sometimes the sequences will appear as white noise
in the frequency domain.

208 X. Jiang et al.

Aghili [1] used a frequency transformation based method to filter the sequence to
get a smaller index. The transformation method can be easily integrated with other
heuristic algorithms such as BLAST, PatternHunter, and FASTA.

Based on the frequency transformation, the Parseval Theorem keeps frequency
distance at less than or equal to edit distance. This property is the main driving force
behind using frequency transformation.

Another advantage of frequency mapping is that the calculation of frequency dis-
tance is much more time/space-efficient compared to that of edit distance.

Ozturk [28] also proposed an effective method to transfer subsequences into nu-
merical vectors and built efficient index structures on the transformed vectors. The
transformation is similar to that T. Kahveci proposed. The authors did experiments
on the transformation based distance functions and compared their (a) approximation
quality for k-Nearest Neighbor (k −NN) queries, (b) pruning ability and (c) approx-
imation quality for ε range queries. They found that distances FD2 and WD2 (i.e.
Frequency and Wavelet Distance functions for 2-grams) perform significantly better
than the others. The performance evaluation verifies that the frequency transforma-
tion based index structure is effective and promising. However, there is no currently
completed performance evaluation based on true biosequence data.

6.2.3 Precomputation

Both FASTA and BLAST use a comparison of k-tuples as an initial step in the search
process. One kind of precomputations is to generate feature vectors, which can indi-
cate the presence or absence of high scoring k-tuples. Though sizable, such a feature
vector would allow both FASTA and BLAST to quickly perform their first phase
calculations. FASTA would be able to identify sequences containing hot spots and
BLAST would be able to identify “seeds.”

Though precomputation offers potential for a great time savings in the initial
phases of FASTA and BLAST, there are drawbacks as well. Precomputed feature
vectors are too large (4069 dimensions for a 6-tuple vector). To avoid large feature
vectors, it is possible to precompute a lexicon of 6-tuple referencing the locations
they occur in the database. For large databases, the lexicon would be smaller than the
feature vectors. However, the method still suffers from an unreasonable inflexibility.
The tuple size and the scoring matrix for a precomputed method are constant, and
cannot be changed at search time.

6.3 Future directions

The requirements for homology or nearest neighbor search of nucleotide data-
bases make it substantially different from other common search problems. However,
searching for DNA sequences does subject to conventional and newly developed tech-
niques to improve performance of database searching.

The following directions have been prominent in the index based homology search
area. They are still active and have a huge impact on future research on index based
homology search algorithms.

1. Index schemes: Index schemes have been experimented on with great success,
but they are either limited by the types of queries on which they perform well,

Survey on index based homology search algorithms 209

or by the amount of space required by the index. One enhancement way is to
incorporate a highly efficient index compression or to invent new indexing meth-
ods that provide a high mapping efficiency. We also notice that some successful
methods adopt various transformation techniques to build and apply the index, and
most of the time the index is adopted as a preprocessing for the genomic heuristic
searching algorithms. If the index can be small and efficient enough, they will be
used generally and will even be used independently to solve the homology search
problem.

2. Dedicated system: Dedicated system [13, 25] combining several techniques are
also tried. There are too many announced cases which second generation archi-
tectures have not produced because of the high production costs involved, thus a
low cost system would be attractive. Furthermore, efficient parallel indexing al-
gorithm will also promote the dedicated system development. A review of this
topic is outside of the scope of this paper, for we are mainly paying attention to
algorithms.

3. Parallel and distributed implementation: This is the most basic and intuitive
method adopted both by software and hardware [33]. It is also true for index based
homology search algorithms. Both high-level parallelization and fine grain-level
parallelization are important, and hardware will prefer much to the fine grain-level
parallelization to improve performance.

4. Combined techniques: We notice that there is no single index technique that can
accomplish an action for the genomic search problem, and most of the time, var-
ious technique are combined or used in different steps (almost all fast alignment
programs have two stages, while multiple stages are possible) to solve the prob-
lem. Thus, trying more combinatory index techniques is a promising prospect.

Newly proposed indexing and other techniques seem good, but require thor-
ough live testing, including theoretical as well as practical study, in the following
years/decades. Technology is not saturated yet, it is still open for us to make new
contributions, so we have chance to get a new index method.

We can see that many index techniques in literature are similar to a certain extent,
most of them are tested in software under the limitation of currently available com-
puter systems, and few hardware systems have been studied recently. If we can con-
sider hardware development, for example, hardware parallelization, new techniques
such as reconfigurable computing [13, 25], and etc., and tune the algorithms to the
hardware, there should be a new path to take.

Acknowledgement The work is partially supported by NSFC Grant 60403025 and PRA SI04-04. The
authors thank Professor Dominique Lavenier for his valuable suggestions on this paper, and also thank
anonymous reviewers for their comments to improve the readability of this paper.

References

1. Aghili SA, Agrawal D, El Abbadi A (2003) Filtration of string proximity search via transformation.
In: Third IEEE symposium on bioinformatics and bioengineering (BIBE’03), Bethesda, MD, USA,
2003

2. Aghili SA, Sahin OD, Agrawal D, El Abbadi A (2004) Efficient filtration of sequence similarity
search through singular value decomposition. In: Fourth IEEE symposium on bioinformatics and
bioengineering (BIBE’04), Taichung, Taiwan, 2004

210 X. Jiang et al.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool.
National Center for Biotechnology Information, National Library of Medicine, National Institutes of
Health, Bethesda, MD

4. Altschul SF, Madden T, Alejandro A, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman DJ (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health,
Bethesda, MD, July 1997

5. Argyros T, Ermopoulos C (2003) Efficient subsequence matching in time series databases under time
and amplitude transformations. In: ICDM, 2003, pp 481–484

6. Califano A, Rigoutsos I (1993) FLASH: a fast look-up algorithm for string homology. In: International
conference on intelligent systems for molecular biology, Bethesda, MD, pp 56–64

7. Cao X, Li SC, Ooi BC, Tung AKH (2004) Piers: an efficient model for similarity search in DNA
sequence databases. Sigmod Record, Special Issue

8. Chattaraj A, Williams HE (2004) Variable-length intervals in homology search. In: Asia-pacific bioin-
formatics conference, Dunedin, New Zealand, 2004

9. Chen W, Aberer K (1997) Efficient querying on genomic databases by using metric space indexing
techniques. Technical Report No. 1056, German National Research Center for Information Technol-
ogy

10. Chen W, Aberer K (1997) Efficient querying on genomic databases by using metric space indexing
techniques. In: Eighth international conference and workshop on database and expert-systems appli-
cations (DEXA’97), Toulouse, France

11. Cooper G, Raymer M, Doom T, Krane D, Futamur N (2004) Indexing genomic databases. In: Fourth
IEEE symposium on bioinformatics and bioengineering (BIBE’04), Taichung, Taiwan, 2004

12. Fondrat C, Dessen P (1995) A Rapid access motif database (RAMdb) with a search algorithm for the
retrieval patterns in nucleic acids or protein databanks. Comput Appl Biosci 11(3):273–279

13. Gardner-Stephen P, Knowles G (2003) A novel architecture for genomic sequence searching and
alignment. In: Asia-pacific computer systems architecture conference, pp 180–192

14. Hobohm U, Sander C (1995) A sequence property approach to searching protein databases. J Molec
Biol 251:390–399

15. Hunt E, Atkinson MP, Irving RW (2001) A database index to large biological sequences. In: Proceed-
ings of the 27th VLDB conference, Roma, Italy, 2001

16. Hunt E, Atkinson MP, Irving RW (2002) Database indexing for large DNA and protein sequence
collections. VLDB J 11(3):256–271

17. Kahveci T, Singh AK (2001) An efficient index structure for string databases. In: Proceedings of the
37th VLDB conference, Roma, Italy, 2001

18. Kahveci T, Singh AK (2003) MAP: searching large genome databases. In: Pacific symposium on
biocomputing, Hawai, 2003

19. Kailing K, Kriegel H-P, Schonauer S, Seidl T (2004) Efficient similarity search for hierarchical data
in large databases. In: Proc 9th int conf on extending database technology (EDBT 2004), Heraklion,
Greece, pp 676–693

20. Kent WJ (2002) BLAT: the BLAST-like alignment too. Genom Res 12(4)
21. Kriegel H-P, Schonauer S (2003) Similarity search in structured data. In: Proc 5th int conf on data

warehousing and knowledge discovery (DaWaK’03), Prague, Czech Republic, Lecture notes in com-
puter science (LNCS), vol 2737, 2003, pp 309–319

22. Lee HP, Tsai YT, Sheu TF, Tang CT (2004) An IDC-based algorithm for efficient homology filtration
with guaranteed seriate coverage. In: Fourth IEEE symposium on bioinformatics and bioengineering
(BIBE’04), Taichung, Taiwan, 2004

23. Navarro G, Baeza-Yates R, Sutinen E, Tarhio J (2001) Indexing methods for approximate string
matching. IEEE Data Eng Bul 24(4)

24. Ning Z, Cox AJ, Mulikin JC (2001) A fast search method for large DNA databases. Genom Res
11(10)

25. Oliver T, Schmidt B (2004) High performance biosequence database scanning on reconfigurable plat-
forms. In: IPDPS04 (HiCOMB), Santa Fe, NM, IEEE, 2004

26. Ong TH, Tan KL, Wang H (2002) Indexing genomic databases for fast homology searching. In: Pro-
ceedings of the 13th international conference on database and expert systems applications, September
2002, Aix-en-Provence, France, pp 871–880

27. Ooi BC, Pang HH, Wang H, Wong L, Yu C (2002) Fast filter-and-refine algorithms for subsequence
selection. In: Proceedings of the 6th international database engineering and applications symposium
(IDEAS’02), Edmonton, Canada, July 2002, pp 243–254

Survey on index based homology search algorithms 211

28. Ozturk O, Ferhatosmanoglu H (2003) Effective indexing and filtering for similarity search in large
biosequence databases. In: 3rd IEEE international symposium on bioinformatics and bioengineering
(BIBE 2003), Bethesda, MD, USA

29. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad
Sci USA 85:2444–2448

30. Rognes T, Seeberg E (1998) SALSA: improved protein database searching by a new algorithm for
assembly of sequence fragments into gapped alignments. Bioinf 14(10):839–845

31. Roy A, Mullick A, Genomic indexing using wavelets. Available at: http://people.csa.iisc.ernet.in/
~aroy/gene.doc

32. Seshadri P, Livny M, et al (1996) The design and implementation of a sequence database system. In:
Proc of the 22nd VLDB conf, Mumbai, India

33. Shamir R (1998) Algorithms for molecular biology, Lecture 3. Tel Aviv University, Fall 1998
34. Willams HE (1997) Fast ranking strategies for genomic databases
35. Williams HE (1999) Effective query filtering for fast homology searching. In: Pacific symposium on

biocomputing, Hawaii, pp 214–225
36. Williams H, Zobel J (1996) Indexing nucleotide databases for fast query evaluation. In: Proc of the

5th international conference on extending database technology, Avignon, France, pp 275–288
37. Williams H, Zobel J (2002) Indexing and retrieval for genomic databases. IEEE Trans Knowl Data

Eng 14(1):63–78
38. Yang Y, Liu B, Zhang Z (2003) Partition based hierarchical index for text retrieval. In: WAIM, 2003,

pp 161–172

Xianyang Jiang received the B.S. degree in safety engineering from Shenyang Institute of Aeronautic
Engineering, Shenyang, China, in 1995, the M.S. degree in physical electronics and optoelectronics, and
the Ph.D. degree in pattern recognition and intelligent system from Huazhong University of Science and
Technology, China, in 1998 and 2003, respectively. Since 2005, he has been an Assistant Professor with
Institute of Computing Technology, CAS. From 2004 to 2005, he was a postdoc fellow in INRIA, France.
His current research interests include computer architecture, VLSI design, reconfigurable computing, and
bioinformatics.

Peiheng Zhang received the B.S. degree in electronic engineering from Nankai University, China, in 1989.
Now he is a Professor with Institute of Computing Technology, CAS. His main research interests include
computer architecture, hardware design, and reconfigurable computing.

212 X. Jiang et al.

Xinchun Liu received the Ph.D. degree from Institute of Electronics, CAS, in 2000. He is an Associate
Professor with Institute of Computing Technology, CAS. His current research interests include reconfig-
urable computing and high performance interconnection networks.

Stephen S.-T. Yau received the M.S. and Ph.D. degrees from the State University of New York at Stony
Brook in 1974 and 1976, respectively. In 1976–1977, he was a member of the Institute for Advanced Study
at Princeton. From 1977–1980, he was a Benjamin Pierce Assistant Professor at Harvard University. He
received the Sloan Fellowship from 1980 to 1982. In 1980 he joined the Department of Mathematics,
Statistics, and Computer Science, University of Illinois at Chicago (UIC) as Associate Professor. He was
promoted to Professor at UIC in 1984. He has also held several visiting professorship positions at Princeton
University (1981), Institute for Advanced Study (1981–1982), University of Southern California (1983–
1984), Yale University (1984–1985), Institute Mittag-Leffler, Sweden (1987), The Johns Hopkins Univer-
sity (1989–1990), University of Pisa, Italy (1990). He was awarded the University Scholar (1987–1990)
by University of Illinois at Chicago. In 2000, he received Guggenheim award. In 2002, he was awarded
the IEEE Fellow. In 2005, he received the Distinguished Professorship award from University of Illinois
at Chicago.

Dr. Yau has been the managing editor of Journal of Algebraic Geometry since 1990. He has been
the Director of the Control and Information Laboratory since 1993. He has been the Editors-in-Chief of
Communications in Information and Systems since 2000.

	Survey on index based homology search algorithms
	Abstract
	Introduction
	Genomic data structure and index necessity
	Genomic data structure
	Index necessity for genomic homology search and its advantages
	Index construction method
	Length based construction method
	Special transformations based construction method
	Mixed techniques based construction method

	Length based index algorithms
	RAMdb
	FLASH
	Variable-length interval based algorithm
	BLAT
	Piers

	Transformation based index algorithms
	CAFE
	PropSearch
	Bitmap indexing structure
	Metric space indexing techniques
	IDC-based algorithm

	Mixed techniques based index algorithms
	Indexing using wavelets
	Indexing using suffix trees
	iBLAST
	SSAHA

	Conclusion and discussion
	Performance comparison of the index based algorithms
	Other applicable index methods
	Feature vectors
	Frequency domain mapping
	Precomputation

	Future directions
	Acknowledgement

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

