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ABSTRACT

Graphical representation of DNA sequences provides a simple and intuitive way of viewing,

anchoring, and comparing various gene structures, so a simple and non-degenerate method

is attractive to both biologists and computational biologists. In this study, a universal

graphical representation method for DNA sequences based on S.S.-T. Yau’s method is

presented. The method adopts a trigonometric function to represent the four nucleotides

A, G , C , and T . Some interesting characteristics of the universal representation are

introduced. We exploit frequency analysis with our representation method on DNA se-

quences, demonstrating possible applications in coding region prediction, and sequence

analysis. Based on the statistically experimental results from this frequency analysis, a

simple coding region predictor and an optimized one are presented. An experiment on the

broadly accepted ROSETTA data set demonstrates that the performance of the optimized

predictor is comparable to that of other popular methods.

Key words: bioinformatics, frequency analysis, mining methods and algorithms, representations,

signal processing.

1. INTRODUCTION

FOR DECADES, one of the key challenges for biologists is to understand the structure and function

of DNA sequences. More recently, computer scientists have tried to provide powerful and flexible

computational tools for biologists to make more progress in this area. In particular, graphical representation

of DNA sequences provides a simple way of viewing, anchoring, and comparing various gene structures.

It is an attractive and promising research tool for bioinformatics.

The first important and simple method in this direction is the three-dimensional curve used about 20 years

ago to represent a DNA sequence (Hamori and Ruskin, 1983; Hamori, 1985). Unfortunately, sophisticated

computer graphic tools are needed to produce the H curve (Hamori, 1994). In the 1980s, a two-dimensional

graphical representation was proposed that was simpler than the H curve (Gates, 1985, 1986). Gates’

graphical representation, however, has high degeneracy (i.e., repetitive closed loops or circuits will appear
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in the DNA representation graph) for some sequences. In 1990, Jeffrey (1990) presented a chaos game

representation (CGR) of gene structures. In his method, however, no strict mathematical description was

provided. On the other hand, such mathematical work was done by Tiňo (1999), but the work remains

far from the real graphical representation of a DNA sequence. In 1992, Berthelsen et al. used a fractal

method to represent DNA sequences (Berthelsen et al., 1992). Their main contribution is the estimation

of the global fractal dimension of a DNA sequence, but the estimation is affected seriously by the length

and the embedding dimension of the sequence. In 1993, Wu et al. used an iterated function system to

unify the H-curve, the chaos game representation, and W-curve (Wu et al., 1993). The newly presented

W-curve, however, cannot provide detailed representation when the sequence is too long. This shortcoming

is due to the compactness of the W-curve. In 1994, Zhang and Zhang used the Z-curve to represent and

analyze DNA sequences (Zhang and Zhang, 1994). It seems that the Z-curve representation was the most

successful method for the graphical representation of DNA sequences.

Recently, digital signal processing methods and other mathematical tools provide another flexible way

to analyze this kind of representation (Anastassiou, 2000). Cheever et al. mapped DNA symbols into the

plane of complex numbers, i.e., “A” to 1, “T ” to �1, “G” to i (where i D
p

�1/, and “C ” to �i . Based

on this mapping, they tried to find similarities between two sequences by correlating their corresponding

complex sequences (Cheever et al., 1989). Wang and Johnson (2002) directly mapped “A,” “C ,” “G,”

“T ” into 1, 2, 3, 4, respectively, and performed scalogram and spectrogram analysis on various sequences,

but this mapping faces a fundamental problem of adding a property in which one symbol is larger than

another. By doing so, this mapping may not reflect the original information from DNA. Su et al. (2003)

provided a mapping method based on a “pattern” filtering, the resulting gap sequences abstractly represent

the original sequence in the form of gaps. This method has side effects at both the beginning and the end

of the output signal.

To improve the performance of a graphical representation method, Yau et al. (2003) presented a

method which used a two quadrant Cartesian coordinate system for denoting DNA sequences. The

authors have proved that their two-dimensional graphical representation method is the best method for

graphical representation. Obviously, Yau’s idea works well as long as the nucleotides “A,” “C ,” “G,” “T ”

are represented by four linearly independent vectors in the right half plane.

In this study, we rewrite Yau’s idea into a universal representation method as follows:

.cos.�.�=2 � �//; sin.�.�=2 � �/// ! A;

.cos �; sin �/ ! C;

.cos.��/; sin.��// ! G;

.cos.�=2 � �//; sin.�=2 � �// ! T:

(1)

that is,

.sin �; � cos �/ ! A;

.cos �; sin �/ ! C;

.cos �; � sin �/ ! G;

.sin �; cos �/ ! T:

(2)

where 0 < � < �=2 and � ¤ �=4.

In principle, a good representation method should not cause degeneracy; otherwise, not only is it worse

than a traditional one in this point, but also loses the ability to retain the biological information. By a

method similar to one found in Yau’s paper, one can easily prove that there is no circuit or degeneracy in

the universal graphical representation.

There is a one-to-one correspondence between the universal graphical representation and the original

DNA sequence, and sequence alignment can be done by simply identifying similar segments of the graph.

On the other hand, the original DNA sequence can be recovered from its graph mathematically without

loss of any biological information.
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The rest of the article is organized as follows. The universal representation method’s characteristics are

given in Section 2. In Section 3, coding region prediction based on our representation method is detailed.

Section 4 concludes the article.

2. CHARACTERISTICS OF OUR REPRESENTATION GRAPH

Though our representation method seems to be a minor modification on that by Yau et al. (2003), it has

some interesting characteristics not possessed by other similar representation methods.

2.1. Unification with other representation methods

From our idea we can easily draw out that the unit vectors presented by Gates in the Cartesian coordinate

plane can be rewritten as follows:

.cos.��=2/; sin.��=2// ! A;

.cos.��/; sin.��// ! C;

.cos 0; sin 0/ ! G;

.cos.�=2/; sin.�=2// ! T:

(3)

Based on Equation (3), Gates’ representation satisfies a trigonometric function to a certain extent, though

such kind of representation generates degeneracy as pointed out by Yau et al. (2003).

In this point of view, with a variable � , our representation method can unify some different representation

methods, which is new for a representation method.

2.2. Amplitude characteristic

It is easy to see that the amplitude of each point in our representation graph is the sum of the amplitudes

of the preceding nucleotides. Therefore, looking at the differentials from a piece of the representation line,

we get:

�y0 D .�nt � �na/ cos � C .�nc � �ng/ sin � (4)

where �na, �nc , �ng , �nt , and �y0 represent the changes of the four nucleotides A, C , G, T , and the

change of amplitude respectively between two points in the DNA representation graph.

From Equation (4), if the change of the four nucleotides are almost the same, i.e., �nt D �na D �nc D
�ng, then �y0 ' 0. In other words, if the distribution of the four nucleotides is the same for one segment

of a sequence, then the amplitudes for the two ends of the segment in the representation will be the same.

If we apply the symmetry of the four nucleotides, we also get other similar representations of the same

segment:

�y1 D .�na � �nt / cos � C .�nc � �ng/ sin �

�y2 D .�ng � �na/ cos � C .�nc � �nt/ sin �

�y3 D .�na � �ng/ cos � C .�nc � �nt/ sin �

(5)

If �y0 D �y1 D �y2 D �y3 D 0, then we get �nt D �na D �nc D �ng . In other words, if the

amplitudes for the two ends of the segments in the representative graphs are the same, then the distributions

of the four nucleotides in the segments are almost the same.

This characteristic is useful for predicting the probability of the appearance of each nucleotide as well

as the locations of exons and introns. Similar measures for discrimination between exons and introns are

well developed by Kotlar and Lavner (2003) and C. Mathé et al. (2002).
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2.3. Frequency characteristic

For the frequency analysis of a sequence of complex numbers, we shall use a Discrete Fourier Transform

(DFT).

Let S D fa1; a2; : : : ; aN g be a given DNA sequence. For each A, T , C , and G, we shall associate

it with a numerical vector by our graphical representation method. In general, let y D fy1; y2; : : : ; yN g,

where yk is the numerical representation for ak by our method and 1 � k � N . The DFT of sequence y

is another sequence Y Œk� of the same length as defined by:

Y Œk� D
N

X

nD1

yne�j 2�.k�1/.n�1/=N ; k D 1; 2; : : : ; N: (6)

The sequence Y Œk� provides a measure of the frequency content at “frequency” k, which corresponds

to an underlying “period” of N=.k � 1/ samples (Anastassiou, 2000).

Here we first do the following to transform the original sequence into four sequences:

SaŒk� D

8

<

:

sin � � i cos � for ak D A

0 for ak ¤ A

ScŒk� D

8

<

:

cos � C i sin � for ak D C

0 for ak ¤ C

SgŒk� D

8

<

:

cos � � i sin � for ak D G

0 for ak ¤ G

St Œk� D

8

<

:

sin � C i cos � for ak D T

0 for ak ¤ T

(7)

Sequence SaŒk� has a relation with sequence uA.k/ adopted by Yin and Yau (2005), which is expressed by

SaŒk� D .sin � � i cos �/uA.k/: (8)

Other three sequences SgŒk�, ScŒk�, and St Œk� have the same relation with their corresponding sequences

uG.k/, uC .k/, and uT .k/ defined by Yin and Yau (2005), respectively.

Then the DFT is applied to each of these four sequences SaŒk�, Sg Œk�, Sc Œk�, and St Œk� to get four

spectral representations SA.k/, SG.k/, SC .k/, and ST .k/. The power spectrum of DNA sequence S is

defined as

S.k/ D jSA.k/j2 C jSC .k/j2 C jSG.k/j2 C jST .k/j2 : (9)

Because the DFT is linear, we have

jSA.k/j2 D j sin � � i cos � j2PSA.k/ D PSA.k/; (10)

where PSA.k/ is the Fourier power spectrum of sequence uA.k/. Similar relationships exist between

SC .k/, SG.k/, and ST .k/ and the respective sequences PSC .k/, PSG .k/, and PST .k/. Therefore, our

new spectrum S.k/ is equal quantitatively to the spectrum PS.k/ by Yin and Yau (2005) and power

spectrum S.k/ can be used to demonstrate the distinctive feature of protein coding regions in DNA.

Namely, the power spectrum has an absolute peak at frequency k D N=3 for a coding region, but such a

phenomenon does not occur in a non-coding region. As pointed out by Yin and Yau (2005), this is due

to the fact that the DNA code consists of triplets(codons) and that not all nucleotides are used equally in

codons/triplets positions.
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FIG. 1. Spectrum of human ˇ-globin gene coding region when � D �=3.

Our analysis method is slightly different from those presented by Anastassiou (2000) because our method

is based on our two-dimensional representation for coding regions.

We show the spectrum of the DNA coding region of the human ˇ-globin gene (from AF527577 or

gi:22094826) and the mouse ˇ-globin gene (from J00413 or gi:193793) in Figures 1 and 2, respectively.

The spectrum of mouse ˇ-globin major gene based on the above analysis is shown in Figure 3. From these

figures we can see that the Fourier spectrum of a coding DNA typically has a peak at frequency k D N=3,

FIG. 2. Spectrum of mouse ˇ-globin gene coding region when � D �=3.
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FIG. 3. Spectrum of mouse ˇ-globin major gene when � D �=3, without significant peak due to including non-coding

regions.

but for a non-coding DNA sequence the power spectrum generally does not have any significant peaks. In

Figures 1 and 2, both coding regions consist of 444 bp, and the peaks are correctly shown at N=3 D 148.

In Figure 3, it is clearly demonstrated that there is no significant peak for the power spectrum; this is due

to the fact that the mouse ˇ-globin major gene includes some non-coding regions.

3. CODING REGION PREDICTION BASED ON OUR REPRESENTATION

3.1. Peak significance evaluation for the spectrum

Quantitatively, we use a two-step method with z-score to evaluate the “significance” of the peak in the

spectrum of a coding region indicated by S.k/.

Step 1: This step is applied to each sequence to pick out those with a peak of a certain significance at

frequency N=3.

For a certain � , let m1 and d1 be the mean and the standard deviation, respectively, of the series S.k/.

We calculate the z-score for each nucleotide position of the sequence by

Z1.k/ D .S.k/ � m1/=d1; k D 1; 2; : : : ; N: (11)

For series Z1.k/, when the largest value is larger than 3.0 and located at frequency N=3, we call the

peak corresponding to the largest z-score in the spectrum “significant.”

Step 2: This step is used to verify the peak’s significance obtained in Step 1.

In this step, each coding sequence with a significant peak picked out by Step 1 is shuffled p times. For

each shuffled sequence we get a series S.k/i , where i D 1; 2; : : : ; p and k D 1; 2; : : : ; N . From them we

get a series S.N=3/i , where i D 1; 2; : : : ; p.

Let m2 and d2 be the mean and the standard deviation, respectively, of series S.N=3/i , where i D
0; 1; : : : ; p. S.N=3/0 is from the real coding sequence. Then we get z-scores for these shuffled sequences

and the real sequence

Z2.i/ D .S.N=3/i � m2/=d2; i D 0; 1; : : : ; p: (12)
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If all Z2.i/ for i D 1; 2; : : : ; p are less than Z2.0/ (the z-score for the real coding sequence at frequency

N=3), then we verify that the sequence has a “real” significant peak at frequency N=3.

In order to demonstrate the possibility of applying our method for detecting coding regions, we have done

some statistical experiments on human gene coding regions by the two-step method. In our experiments, all

the test data were downloaded from NCBI gene database (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene).

The shortest coding region is 17 bp (from AC073127 or gi:14589774), and the longest coding region is

6858 bp (from NM_006015 or gi:21264564 and AF231056 or gi:11320941). All the coding regions are

randomly selected by a fair chance from genes in the database. The annotation information of their source

genes is used to make sure the coding regions are from real genes. Therefore, by the two-step method,

we obtained the coding regions with significant peak as indicated by z-score Z1 and the sequences with

significant peak as verified by z-score Z2 for a certain � .

It is interesting that when � changes from �=30 to 7�=15 with a step �=30, the sets obtained in Step 1

and Step 2 remain the same respectively, in other words, the statistical results for Step 1 and Step 2 keep

consistent for different values � . So we only list the experimental results without showing the � we used.

The experimental results on human gene coding regions are shown in Table 1, where the first column

is the length range for real coding regions in the test set; Ntotal is the total number of real coding regions

within the length range in the first column in the table. This number can be obtained from the annotation

information of DNA sequences downloaded from the genebank; NZ1
is the number of coding regions with

significant peak checked by Step 1 from the total Ntotal coding regions; NZ2
is the number of coding

regions verified by Step 2 from those checked by Step 1.

From these results, we can see that, for long coding regions with length greater than 300 bp, there is a

high probability (> 70%) that their spectra will contain a significant peak at frequency k D N=3, but for

short coding regions with length less than 300 bp, the probability is low. After detailed investigation, we

have found an interesting phenomenon. The spectrum of a short coding region sometimes contains one or

more significant peaks. Although the frequency of these peaks is not fixed, most of them are at frequency

k D N=3. When there are one or more peaks in the spectrum of a short coding region the peak is not as

distinctive as that shown in the spectrum of a long coding region.

Most of peaks gotten from Step 1 can be verified by Step 2. In other words, when the length of each

sequence is less than 300 bp, the significance of the peak in Step 1 for some sequences cannot be verified

by the results of Step 2; when the length of the sequence is larger than 300 bp, all the significance of the

peak in Step 1 can be verified by Step 2 and so the peak does not appear by chance.

TABLE 1. STATISTICALLY EXPERIMENTAL RESULTS

ON HUMAN GENE CODING REGIONS

Length Ntotal NZ1

NZ1

Ntotal

(%) NZ2

NZ2

NZ1

(%)

0–100 16 3 18.8 2 66.7

101–200 28 10 35.7 5 50.0

201–300 18 11 61.1 7 63.6

301–400 32 23 71.9 23 100

401–500 70 68 97.1 68 100

501–600 17 14 82.4 14 100

601–700 11 10 90.9 10 100

701–800 16 13 81.3 13 100

801–900 9 9 100 9 100

901–1000 6 5 83.3 5 100

1001–2000 66 61 92.4 61 100

2001–3000 45 45 100 45 100

3001–4000 5 5 100 5 100

4001–5000 4 4 100 4 100

5001–6000 6 6 100 6 100

6001–7000 3 3 100 3 100
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We have also done some statistical experiments on coding regions of arabidopsis thaliana. The test data

are also from the NCBI gene database and chosen by the same method as for human coding regions to

make sure the coding regions are segments from real genes. The shortest coding region is 60 bp (from

AC004747 or gi:20197263), and the longest coding region is 8055 bp (from AC023673 or gi:7543635).

We adopted the same quantitative measure on human gene coding regions, the experimental results are

shown in Table 2.

From Table 2, we can get results similar to those from Table 1; i.e., for long coding regions with length

greater than 500 bp, significant peak at frequency k D N=3 in their spectra has a high probability (>70%),

but for short coding regions with length less than 500 bp, the probability of this occurring is low. The

characteristics are also verified by the results from Step 2.

From the above statistical experiments, we can see that for coding regions long enough (e.g., >1000 bp),

the power spectra each have a greater than 90% chance with a significant peak at frequency N=3. With

such a high probability, our representation method is thus useful for detecting/predicting coding regions in

long DNA sequences.

In order to investigate deeply whether the power spectrum can be used to find gene coding regions, we

have taken two kinds of experiments on human gene coding regions with lengths above 6000 bp. The

first kind is called DNA walk, which starts from the beginning or end of the sequence. Also, each walk

increases by 500 bp. Thus, the first walk region is from 1 to 500 bp, and the second walk region is from 1

to 1000 bp, etc. Then the same frequency analysis is applied to these walk regions. The mechanism of

the DNA walk is shown in Figure 4. The other kind is a random mode; i.e., the subregion for frequency

TABLE 2. STATISTICALLY EXPERIMENTAL RESULTS

ON Arabidopsis thaliana GENE CODING REGIONS

Length Ntotal NZ1

NZ1

Ntotal
(%) NZ2

NZ2

NZ1

(%)

0–100 2 0 0.0 0 —

101–200 11 2 18.2 1 50.0

201–300 62 34 54.8 18 52.9

301–400 30 11 36.7 11 100

401–500 40 16 40.0 16 100

501–600 21 17 81.0 17 100

601–700 37 30 81.1 30 100

701–800 30 24 80.0 24 100

801–900 40 30 75.0 30 100

901–1000 42 34 81.0 34 100

1001–1100 48 46 95.8 46 100

1101–1200 26 24 92.3 24 100

1201–1300 33 30 90.9 30 100

1301–1400 27 26 96.3 26 100

1401–1500 43 41 95.3 41 100

1501–1600 25 25 100 25 100

1601–1700 24 23 95.8 23 100

1701–1800 18 18 100 18 100

1801–1900 11 11 100 11 100

1901–2000 17 17 100 17 100

2001–3000 58 58 100 58 100

3001–4000 15 15 100 15 100

4001–5000 7 7 100 7 100

5001–6000 2 2 100 2 100

6001–7000 1 1 100 1 100

7001–8000 0 0 — 0 —

8001–9000 1 1 100 1 100
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FIG. 4. DNA walk mode of frequency analysis for sub-coding regions.

analysis is chosen from the sequence with a fixed length of .1000 ˙ ı/ bp randomly, where 0 � ı < 3.

The mechanism of the random mode is shown in Figure 5.

We show the statistical results in Figures 6 and 7.

It is interesting to note that both experiments obtain the same results; i.e., each spectrum of the sub-

coding regions chosen based on the above two rules has its own significant peak at frequency k D N=3;

on the contrary, for non-coding regions and with the same experiments, there is not such significant peak.

Thus we conclude that using our representation method, the characteristic of a peak appears at frequency

k D N=3 is easily detected for coding regions (or their pieces) but is absent for non-coding regions.

3.2. A simple coding region predictor

Based on the experimental results in the above subsection, we provide an efficient predictor for gene

coding regions. We define W.j; L/ as the predictor for a coding region at nucleotide position j and with

a window size L:

W.j; L/ D jajALj2 C cjCLj2 C gjGLj2 C t jTLj2j; (13)

where parameters a, c, g, and t get the same values in our representation; i.e.,

a D sin � � i cos �;

c D cos � C i sin �;

g D cos � � i sin �;

t D sin � C i cos �:

(14)

FIG. 5. Random mode of frequency analysis for sub-coding regions.
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FIG. 6. Statistically experimental result on human codon with length above 6000 bp under DNA walk mode.

and

AL D 1

L
SA.L=3/j ;

CL D 1

L
SC .L=3/j ;

GL D 1

L
SG.L=3/j ;

TL D
1

L
ST .L=3/j :

(15)

where SA.L=3/j , SC .L=3/j , SG.L=3/j , and ST .L=3/j are DFT coefficients at frequency k D L=3 for a

subsequence with the window width L starting at nucleotide j . When the window slides by one or more

bases (we choose one base) each step along the DNA sequence, we get all W.j; L/.

Furthermore, we use a window with the same size L sliding along W.j; L/ curve and calculate the mean

of W.j; L/ in the window; then we get a smoothed version Ws.j; L/ from W.j; L/. Based on the smoothed

curve, the mean Wsm.L/ of all Ws.j; L/ is used as a threshold. When Ws.j; L/ is above the threshold, an

exon is picked out; otherwise, an intron is picked out. The boundaries of each exon are decided by the

positions j where jWs.j; L/ � Wsm.L/j is minimum.

FIG. 7. Statistically experimental result for human codon with length above 6000 bp under random mode.
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The window width L can be larger than or equal to the minimum length of coding regions of the target

gene to suppress the background 1=f noise spectra (Li and Holste, 2005). Initial studies of the 1=f noise

in DNA sequences were motivated by a model of the spatial 1=f noise of the symbolic sequence evolution.

Subsequently, empirical 1=f noise spectra were indeed observed in non-protein coding DNA sequences,

and their generality in DNA sequences was further illustrated by Voss (1992). Here we leave out the details

about it because its description is beyond the main scope for this paper. In our study, first let L be an

arbitrary value between the minimum length and the maximum length of the coding regions of the target

gene to simplify the calculation. For example, we let L be 153 this step in the following experiments;

then when we get the predicted exons with length L1; L2; : : : ; Le, we changed L to be Lm and did the

prediction to get the final prediction results, where e is the number of the predicted exons gotten by the

first prediction step and Lm D
P

e

numD1
Lnum

e
.

We calculated W.j; L/ and its smoothed version Ws.j; L/ of gene F56F11.4 in the C-elegans chro-

mosome III with widow width L D Lm D 327 and � D �=30; the results are shown in Figure 8.

The gene has five exons (relative position 929–1135, 2528–2857, 4114–4377, 5465–5644, 7255–7605,

respectively); we can see that the boundaries of these five exons are picked out accurately at positions

j where jWs.j; L/ � Wsm.L/j is minimum. The diagram of W.j; L/ and its smoothed version Ws.j; L/

for the human germ line ˇ-globin gene (from V00499 or gi:29440) with window width L D Lm D 147

and � D �=3 are shown in Figure 9. The gene has three exons (relative position 104–245, 376–598,

1449–1709, respectively) whose boundaries are also correctly obtained by our method.

Now, we use statistics to evaluate the efficiency of the predictor W.j; L/. In order to do this, we calculate

the percentage of the picked number Np of coding regions. Np is the number of coding regions picked

out by the mean Wsm.L/ based on Ws.j; L/ from the Ntotal coding regions within a length range shown

in the left columns in Tables 3 and 4.

The statistically experimental results for predictor W.j; L/ on arabidopsis thaliana and human gene

coding regions are shown in Tables 3 and 4, respectively. It is interesting that the statistical results for

predictor W.j; L/ are consistent with those gotten from power spectra by Step 1 shown in Tables 1 and 2,

FIG. 8. Predictor W.j; L/ and its smoothed version Ws .j; L/ for gene F56F11.4. The horizontal line is the mean

Wsm.L/.
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FIG. 9. Predictor W.j; L/ and its smoothed version Ws.j; L/ for gene V00499. The horizontal line is the mean

Wsm.L/.

this demonstrates the consistency between W.j; L/ and the power spectrum S of a DNA sequence with

our representation.

Anastassiou (2000) provided one method for the identification of gene coding regions. In that method,

however, one needs to use complicated optimization techniques to yield the parameters a, c, g, and t . For

our method, we just need to take the values of a, c, g, and t from our representation, thus our method

is simpler from this point of view. In addition, if we use some of the filter techniques mentioned by

Vaidyanathan and Yoon (2002), the result can be improved.

3.3. An optimized coding region predictor

Based on predictor W.j; L/, we can define an optimized coding region predictor as follows.

Definition 1. Using the above defined DNA walk mode with walk length equal to 1, for a sequence with

length N , we calculate all W.j; L/ for its sub-pieces with window size L at nucleotide position j from 1

to N � L, the predictor P.L/ is the mean of all ratios between the value of W.j C Œ L
3
� C 1; L/ (where j

is the position offset from the sequence starting point) and window size L for the same sequence; i.e.,

P.L/ D
PN�L

j D1

W.j CŒ L

3
�C1;L/

L

N � L
; (16)

where Œx� is the maximum integer less than or equal to x.

The reason to use value W.j C Œ L
3
� C 1; L/ in our optimized predictor is based on the characteristic

which is demonstrated by the above investigation on power spectrum of DNA sequences.

We also use similar statistics to evaluate the efficiency of the optimized predictor. Exons and introns are

decided based on the following rule: at first, we use predictor W.j; L/ to get exon-pieces and intron-pieces

and their corresponding boundaries. Then for each of them, we calculate their individual P.L/ values.
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TABLE 3. STATISTICALLY EXPERIMENTAL RESULTS

FOR PREDICTOR W.j; L/ ON Arabidopsis thaliana

GENE CODING REGIONS

Length Ntotal Np
Np

Ntotal
(%)

0–100 2 0 0.0

101–200 11 2 18.2

201–300 62 34 54.8

301–400 30 11 36.7

401–500 40 16 40.0

501–600 21 17 81.0

601–700 37 30 81.1

701–800 30 24 80.0

801–900 40 30 75.0

901–1000 42 34 81.0

1001–1100 48 46 95.8

1101–1200 26 24 92.3

1201–1300 33 30 90.9

1301–1400 27 26 96.3

1401–1500 43 41 95.3

1501–1600 25 25 100

1601–1700 24 23 95.8

1701–1800 18 18 100

1801–1900 11 11 100

1901–2000 17 17 100

2001–3000 58 58 100

3001–4000 15 15 100

4001–5000 7 7 100

5001–6000 2 2 100

6001–7000 1 1 100

7001–8000 0 0 —

8001–9000 1 1 100

TABLE 4. STATISTICALLY EXPERIMENTAL RESULTS

FOR PREDICTOR W.j; L/ ON HUMAN GENE

CODING REGIONS

Length Ntotal Np
Np

Ntotal
(%)

0–100 16 3 18.8

101–200 28 10 35.7

201–300 18 11 61.1

301–400 32 23 71.9

401–500 70 68 97.1

501–600 17 14 82.4

601–700 11 10 90.9

701–800 16 13 81.3

801–900 9 9 100

901–1000 6 5 83.3

1001–2000 66 61 92.4

2001–3000 45 45 100

3001–4000 5 5 100

4001–5000 4 4 100

5001–6000 6 6 100

6001–7000 3 3 100
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TABLE 5. P.L/ VALUE FOR HUMAN

GERM LINE ˇ-GLOBIN GENE

Pieces gotten from W.j; L/ P.L/ value Exon

1–103 0.65868 No

104–245 1.18960 Yes

246–375 0.52682 No

376–598 1.64480 Yes

599–1448 0.67244 No

1449–1709 1.69860 Yes

1710–2052 0.44925 No

When the value of P.L/ is greater than or equal to 1, it is recognized as an exon at last; otherwise,

an intron is picked out. The boundaries of introns and exons remain unchanged. By this rule, we found

that each exon predicted by W.j; L/ can be predicted by P.L/; at the same time, some intron-pieces

predicted by W.j; L/ (actually these pieces are real coding regions based on the annotation information)

are predicted as exons by P.L/. This improvement is due to the fact that predictor P.L/ takes advantage

of both the characteristics of significant peaks in the power spectra of coding sequences and a smoothing

technology.

As an example, we show the P.L/ results for human germ line ˇ-globin gene (from V00499 or gi:29440)

with window width L D 147 and � D �=3 in Table 5 based on the boundaries of its seven pieces (they are

either introns or exons) first decided by W.j; L/. We can see that the gene’s three exons (relative position

104–245, 376–598, 1449–1709, respectively) are correctly picked out.

As to the improvement by using P.L/, there are two cases:

1. When an exon is predicted as an intron by W.j; L/;

2. When an intron is predicted as an exon by W.j; L/.

An example for the first case is as follows. Applying predictor W.j; L/ on human hemoglobin A beta

chain A01592.1 with window width L D 153 and � D �=3, we can get the result shown in Figure 10.

The gene is an exon as a whole; however, only a part of the gene is predicted and its relative position

is from 178 to 321, which is different from reality. We show the P.L/ prediction result for A01592.1

with window width L D 153 and � D �=3 in Table 6 based on the boundaries of the three pieces first

decided by W.j; L/. The result shows the two “introns” predicted by W.j; L/ are now predicted as exons

by P.L/; the exon predicted by W.j; L/ coincides with the prediction result by P.L/. Because the three

exons predicted by P.L/ border each other they are combined into a whole exon which corresponds to

reality. In this example, we can see prediction is improved by predictor P.L/.

An example for the other case is as follows. Applying predictor W.j; L/ on human gene for delta-globin

(V00505.1 or gi:30510) with window width L D Lm D 135 and � D �=3, we can get the result shown in

Figure 11. The gene has three exons (relative position 123–265, 394–615, 1505–1763, respectively), which

are correctly predicted by predictor W.j; L/. Besides the three exons, another “exon” with relative position

from 993 to 1010 is also predicted by predictor W.j; L/, which is different from reality. We show the

P.L/ prediction result for V00505.1 with window width L D 135 and � D �=3 in Table 7 based on

the boundaries of the nine pieces first decided by W.j; L/. The result shows that the “exon” with relative

position from 993 to 1010 predicted by predictor W.j; L/ is now predicted as an intron correctly by P.L/;

the left prediction by P.L/ coincides with the prediction result by W.j; L/. In this case, prediction is also

improved by predictor P.L/.

TABLE 6. P.L/ VALUE FOR A01592:1

Pieces gotten from W.j; L/ P.L/ value Exon

1–177 1.5554 Yes

178–321 1.1581 Yes

322–438 1.1339 Yes
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FIG. 10. Predictor W.j; L/ and its smoothed version Ws.j; L/ for gene A01592.1. The horizontal line is the mean

Wsm.L/.

FIG. 11. Predictor W.j; L/ and its smoothed version Ws.j; L/ for gene V00505.1. The horizontal line is the mean

Wsm.L/.
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TABLE 7. P.L/ VALUE FOR V00505:1

Pieces gotten from W.j; L/ P.L/ value Exon

1–122 0.4631 No

123–265 1.0858 Yes

266–393 0.6749 No

394–615 1.2926 Yes

616–992 0.3996 No

993–1010 0.6203 No

1011–1504 0.5480 No

1505–1763 1.5170 Yes

1764–1976 0.5859 No

The statistically experimental results for arabidopsis thaliana gene coding regions are shown in Table 8,

where Ns is the number of coding regions with P.L/ value being greater than or equal to 1 from the total

Ntotal coding regions within the length range shown in the left column in the table; i.e., Ns is the number

of coding regions picked out by P.L/. The results show that for most coding regions, P.L/ is greater

than or equal to 1; only for a small portion of them is P.L/ less than 1.

Another result is that for coding regions of certain lengths, the percentage of coding regions with P.L/

value greater than or equal to 1 is much higher than the percentage of coding regions predicted by W.j; L/

TABLE 8. STATISTICALLY EXPERIMENTAL RESULTS

FOR PREDICTOR P.L/ ON Arabidopsis thaliana

GENE CODING REGIONS

Length Ntotal Ns
Ns

Ntotal
(%)

0–100 2 1 50.0

101–200 11 5 45.5

201–300 62 60 96.8

301–400 30 21 70.0

401–500 40 28 70.0

501–600 21 18 85.7

601–700 37 33 89.2

701–800 30 29 96.7

801–900 40 38 95.0

901–1000 42 40 95.2

1001–1100 48 47 97.9

1101–1200 26 26 100

1201–1300 33 30 90.9

1301–1400 27 27 100

1401–1500 43 43 100

1501–1600 25 25 100

1601–1700 24 24 100

1701–1800 18 18 100

1801–1900 11 11 100

1901–2000 17 17 100

2001–3000 58 58 100

3001–4000 15 15 100

4001–5000 7 7 100

5001–6000 2 2 100

6001–7000 1 1 100

7001–8000 0 0 —

8001–9000 1 1 100
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FIG. 12. Comparison between predictor W.j; L/ and P.L/ on Arabidopsis thaliana gene coding regions.

diagrams with the smooth technology, this can be easily seen by comparison between Tables 3 and 8, which

is shown in Figure 12. At the same time, we can see that even for short coding regions, P.L/ has a high

probability (�70%) of a value being greater than or equal to 1.

The statistically experimental results for human gene coding regions are shown in Table 9. From Table 9,

we can obtain the same results as those from Table 8; i.e., for most coding regions, P.L/ is greater than or

equal to 1; only for a small portion of them is P.L/ less than 1, and for coding regions of certain lengths,

the percentage of coding regions for which P.L/ value is greater than or equal to 1 is much higher than

the percentage of coding regions predicted by W.j; L/ diagrams with the smooth technology. This can be

seen by comparing Table 4 with Table 9, which is shown in Figure 13. In the same way, even for short

coding regions, the probability that P.L/ value is greater than or equal to 1 exceeds 80%. Thus, this is

useful for the detection of coding regions.

Based on our optimization and the statistically experimental results, the predictor P.L/ can be used to

detect coding region efficiently, and P.L/ is a more effective predictor than W.j; L/.

In both predictors, � is a parameter. Here we choose an arbitrary value for it, which is based on two

reasons. The first reason is that we find the prediction keeps stable when � changes to any possible value.

The other reason is that we have proved that our new spectrum S.k/ is equal quantitatively to the spectrum

TABLE 9. STATISTICALLY EXPERIMENTAL

RESULTS FOR PREDICTOR P.L/ ON

HUMAN GENE CODING REGIONS

Length Ntotal Ns
Ns

Ntotal
(%)

0–100 16 13 81.3

101–200 28 24 85.7

201–300 18 15 83.3

301–400 32 29 90.6

401–500 70 68 97.1

501–600 17 15 88.2

601–700 11 10 90.9

701–800 16 14 87.5

801–900 9 9 100

901–1000 6 6 100

1001–2000 66 66 100

2001–3000 45 45 100

3001–4000 5 5 100

4001–5000 4 4 100

5001–6000 6 6 100

6001–7000 3 3 100
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FIG. 13. Comparison between predictor W.j; L/ and P.L/ on human gene coding regions.

PS.k/ by Yin and Yau (2005). Naturally, evaluation of the detailed effects introduced by parameter � will

be an interesting work in the future, which is not the main topic of this article.

3.4. Performance comparison of predictor P.L/ and other popular methods

In order to compare the performance of predictor P.L/ and other popular methods, we have tested the

predictor P.L/ on the broadly adopted ROSETTA data set of 117 homologous gene pairs (Batzoglou et al.,

2000) and compared the results with those of ROSETTA, SGP-1, SGP2, SLAM, TWINSCAN, GENSCAN,

and EXONSCAN. Similarly, we measure the prediction accuracy at the exon level by sensitivity Sn and

specificity Sp . The two quantities are defined as follows:

Sn D TP=.TP C FN/;

Sp D TP=.TP C FP/:
(17)

where TP (True Positives) is the number of nucleotides in coding exons predicted as coding ones, FP

(False Positives) is the number of nucleotides in non-coding exons which are predicted as coding ones,

FN (False Negatives) is the number of nucleotides in coding exons that are predicted as non-coding ones.

The experimental results are shown in Table 10. In the table, the results for GENSCAN, TWINSCAN,

ROSETTA, SGP-1, and SLAM were retrieved from Alexandersson et al. (2003). SGP2 results were obtained

from Parra et al. (2003). EXONSCAN results were gotten from Hsieh et al. (2005).

In our experiment, an exon is assumed to be correct predicted only when both of its boundaries are

predicted exactly. The average of Sn and Sp summarizes the overall exon sensitivity and specificity. ME

(Missing Exons) is the proportion of annotated exons not overlapped by any predicted exon, and WE

(Wrong Exons) is the proportion of predicted exons not overlapped by any annotated exons.

With regard to Sn, Sp, and .Sn C Sp/=2, experimental results demonstrate that predictor P.L/ is

comparable with or slightly better than all the other eight popular methods in performance. ME and WE

for predictor P.L/ are bigger than most of those from other popular methods, so we surmise that this

is due to the calculation side effects of our method. At the same time, the optimized predictor has an

advantage that it does not need to be trained by a data set, thus it is simpler than other popular methods.

TABLE 10. PERFORMANCE COMPARISON ON ROSETTA SET

Program Sn Sp .Sn C Sp/=2 ME WE

GENSCAN 0.82 0.77 0.79 0.06 0.11

TWINSCAN 0.85 0.77 0.80 0.03 0.12

SGP2 (single) 0.84 0.85 0.84 0.05 0.03

SGP2 (multiple) 0.71 0.79 0.75 0.12 0.03

ROSETTA 0.83 0.83 0.83 0.05 0.05

SGP-1 0.70 0.76 0.73 0.12 0.04

SLAM 0.78 0.76 0.77 0.04 0.06

EXONSCAN 0.87 0.89 0.88 0.04 0.03

P.L/ 0.83 0.86 0.84 0.08 0.07
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One might argue why we do not use EGASP data as a benchmark (EGASP stands for ENCODE GASP,

which was inspired by the Genome Annotation Assessment Project [Guigó and Reese, 2005]) to test our

predictor. This is attributable firstly to the fact that we are exploring a good representation method and

basing on it to characterize coding regions; on the contrary, ENCODE project has different objectives

(Encode). Secondly, because our adopted test data are broadly accepted and used by many experts in their

rich methods recently (Alexandersson et al., 2003; Parra et al., 2003; Hsieh et al., 2005), and we can get

the experimental results on them easily for performance comparison. At this moment, we consider that the

data set used is sufficient to support our claims. However, we agree that ideally a larger data set will be

needed to provide evidence for stronger claims.

4. CONCLUSION

Graphical representation of DNA sequence provides a simple and intuitive way of viewing, anchoring,

and comparing various gene structures, so a simple and non-degenerate graphical representation is attractive

to both biologists and computational biologists.

The two-dimensional graphical representation of DNA sequences presented in this study, which is simple

and does not cause degeneracy, is a universal version of the method presented by Yau et al. (2003). We

introduce some interesting characteristics of the representation and their possible use.

We have done some statistical experiments on the frequency analysis of human and arabidopsis thaliana

gene coding regions that show there is a high possibility of a significant peak appearing at frequency k D
N=3 in their spectra based on our graphical representation. These results demonstrate possible applications

of our representation in coding region detection or prediction. We have also performed two kinds of

frequency analysis experiments, i.e., the DNA walk and random mode, on coding region pieces and non-

coding region pieces. The results show that a significant peak appears at the frequency k D N=3 in their

spectra for coding regions but such phenomena is absent for pieces of non-coding regions.

Based on the frequency analysis, we provide an efficient predictor W.j; L/ for gene coding regions;

our method is simpler than those of Anastassiou (2000). Unlike the method of Anastassiou which uses

optimization techniques to yield parameters for his predictor, the parameters of our predictor are naturally

given by our graphical representation. Results from statistical experiments demonstrate the consistency

between W.j; L/ and the power spectra of DNA sequences with our representation.

An optimized predictor P.L/ based on our universal representation is provided for the detection of

coding regions. The statistically experimental results have shown that it is more effective for the detection

than those using predictor W.j; L/.

Experimentation on a broadly accepted ROSETTA data set demonstrates that the optimized predictor

P.L/ is also comparable with other popular methods such as GENSCAN, TWINSCAN, ROSETTA, SGP-

1, SLAM, and EXONSCAN in performance. Unlike most other methods, our method does not require the

train data.

In addition, in our method we can select the most preferable unit vectors to represent the four nucleotides.

Therefore, it is an efficient and flexible approach to analyze DNA sequences for both computational

scientists and molecular biologists.
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