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This paper proposes a novel method for comparing DNA sequences. By using a graphical rep-
resentation, we are able to construct the probability distributions of DNA sequences. These
probability distributions can then be used to make similarity studies by using the symmetr-
ised Kullback–Leibler divergence. After presenting our method, we test it using six DNA
sequences taken from the threonine operons of Escherichia coli K-12 and Shigella flexneri.
Our approach is then used to study the evolution of primates using mitochondrial DNA data.
Our method allows us to reconstruct a phylogenetic tree for primate evolution. In addition,
we use our technique to analyze the classification and phylogeny of the Tomato Yellow Leaf
Curl Virus (TYLCV) based on its whole genome sequences. These examples show that large
volumes of DNA sequences can be handled more easily and more quickly by our approach
than by the existing multiple alignment methods. Moreover, our method, unlike other
approaches, does not require human intervention, because it can be applied automatically.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With the development of biotechnology, more and more biological sequence information has been acquired. The number
of sequences in GenBank has been growing exponentially in the past 20 years (http://www.ncbi.nlm.nih.gov). Many compu-
tational and statistical methods have been proposed for comparing biological sequences. Nevertheless, biological sequence
comparison remains one of the most active and important research areas in bioinformatics and computational biology. Exist-
ing methods for sequence comparison (i.e., studying the similarity/dissimilarity of sequences) can be classified into align-
ment-based methods and alignment-free methods.

Alignment-based methods use dynamic programming, a regression technique that finds an optimal alignment by assign-
ing scores to different possible alignments and picking the alignment with the highest score. Several algorithms have been
developed that target specific goals such as global alignment, local alignment, with or without overlap [20,27,12]. Subse-
quently, some heuristic approaches were proposed, based on the recognition of alignment ‘‘seeds’’, with BLAST [1,2] and
FASTA [21,22] being the most widely applications. However, the search for optimal solutions using sequence alignment turns
out to be computationally difficult with large biological databases, especially when comparing three or more biological se-
quences at a time, i.e., multiple sequence alignment. Therefore, alignment-free approaches have been developed to overcome
the critical limitations of alignment-based methods.

Among all existing alignment-free methods for comparing biological sequences [10,28,23,5,25], sequence graphical rep-
resentation provides a simple way to view, sort, and compare gene structures [11,13,29,24,18,15,14]. The aim of graphical
representation is to display DNA or protein sequences graphically so that we can easily find out visually how similar or
. All rights reserved.
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how different they are. Of course, only performing visual comparison of sequences is not enough for the follow-up research
work. We need more a precise way of making the comparison. In our previous work, we transformed a DNA sequence into a
vector (feature vector [19,6] or moment vector [30,31]), and then used the Euclidean or Mahalanobis distance between these
vectors as an index for comparing DNA sequences. Recently Pham and Zuegg [23] introduced a probabilistic measure of sim-
ilarity between two DNA sequences without alignment. Their method is based on the concept of comparing the similarity/
dissimilarity between two constructed Markov models. Their work gave us a fresh idea that we can apply to DNA sequence
comparison. For each DNA sequence, we can construct its ‘‘probability distribution’’ from its graphical representation. Then
we use the Kullback–Leibler divergence (relative entropy) to get a new measure of similarity/dissimilarity among various
DNA sequences based on their probability distributions.

In our previous work [29], we constructed a pyrimidines–purine graph using two quadrants of the Cartesian coordinate
system, with pyrimidines (T and C) in the 1st quadrant and purines (A and G) in the 4th quadrant. In this paper, we make a
minor modification of the previous method. We assign the four nucleotides only in the 1st quadrant of Cartesian coordinate
system. This small change in the graphical representation gives us a breakthrough because it allows us to construct a prob-
ability distribution for the DNA sequence. After obtaining the probability distributions of DNA sequences we use the sym-
metrised kullback–Leibler divergence [16] to perform similarity studies. Our approach is tested with six DNA sequences
taken from the threonine operons of E. coli K-12 and S. flexneri. We also use our method to study primate evolution using
mitochondrial DNA data. A phylogenetic tree of primate evolution is reconstructed using our new method. Finally, we apply
our new technique to analyze the classification and phylogeny of Tomato Yellow Leaf Curl Virus (TYLCV) based on whole
genome sequences of the virus. The results show that our approach can be used to study the clustering and phylogenetic
relationship when you have a large volume of DNA sequence data.
2. Materials and methods

2.1. New graphical representation of DNA sequence

We have constructed the new DNA sequence graphical representation in the first quadrant of the Cartesian coordinate
system. Fig. 1 shows the four vectors corresponding to the four nucleotides A, G, C, and T are as follows: A (1,0.8), G
(1,0.6), C (1,0.4), T (1,0.2).

The points in the graphical representation are obtained by summing the vectors representing nucleotides in the sequence.
The endpoint of every vector represents one nucleotide. Fig. 2 shows the graphical representation of the DNA sequence
(ATGGTGCACC) which consists of the first 10 nucleotides of human beta-globin coding sequence. The graphical curve has
no circuits or degeneracy and the correspondence between the sequence and the graphical curve can be mathematically
proved to be one-to-one [29].

2.2. Probability distribution of DNA sequence

For a DNA sequence of length n, we define its probability distribution as (p1,p2, . . . ,pn),
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Fig. 1. Nucleotide vector system based on A (1,0.8), G (1,0.6), C (1,0.4), and T (1,0.2).



Fig. 2. Graphical representation of DNA sequence (ATGGTGCACC) based on the vector system shown in Fig. 1.
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pi ¼
xi �~yi
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;

where (xi,yi) represents the position of the ith nucleotide in the DNA graphical curve,~yi represents the choice of y-coordinate
value at the ith nucleotide in the DNA graphical curve according to Fig. 1. For example, for DNA sequence (ATGGT),
~y1 ¼ 0:8; ~y2 ¼ 0:2; ~y3 ¼ 0:6; ~y4 ¼ 0:6; ~y5 ¼ 0:2; y5 ¼ 2:4;
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Next, we prove that this distribution is a discrete probability distribution:
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2 > 0 when n P 3. So, pi > 0.
Therefore, when n P 3, 0 < pi < 1.

By (1) and (2) we have proved that (p1,p2, . . . ,pn) is a discrete probability distribution.

2.3. Similarity measure by symmetrised Kullback–Leibler divergence

Now that we have a discrete probability distribution for DNA sequences, we want to find a similarity/dissimilarity mea-
sure between two discrete probability distributions k1 = (p1,p2, . . . ,pn) and k2 = (q1,q2, . . . ,qn). A well-known dissimilarity
measure between two probability distributions is the Kullback–Leibler divergence [7].

Let P1 and P2 be two discrete probability distributions on a universe X, the Kullback–Leibler divergence (KLD) or the rel-
ative entropy, denoted as H(P1,P2) of P1 with respect to P2 is defined by HðP1; P2Þ ¼

P
x2Xp1ðxÞ log p1ðxÞ

p2ðxÞ
: HðP1; P2Þ ¼ 0 if and

only if P1 = P2. H(P1,P2) is often called a distance, but it is not a true metric because H(P1,P2) – H(P2,P1). Moreover, it does
not satisfy the triangle inequality.

Thus, given two discrete probability distributions k1 = (p1,p2 , . . .,pn) and k2 = (q1,q2, . . . ,qn) for two DNA sequences, we
now can define the symmetried similarity measure, denoted by d(k1,k2), as dðk1; k2Þ ¼ Hðk1 ;k2ÞþHðk2 ;k1Þ

2 . Clearly, d(k1,k2) =
d(k2,k1). Therefore, we have obtained a symmetrised similarity measure between two DNA sequences with the same length.

To test that the measure obtained in this way truly incorporates clustering and phylogenetic analysis, we apply it to the
complete coding sequence of beta-globin genes from 10 different species, which are human (U01317), woolly monkey
(AY279114), tufted monkey (AY279115), rat (X06701), rabbit (V00882), hare (Y00347), gallus (NM_001081704), duck
(X15739), opossum (J03642), salmon (NM_001123672). All these DNA sequences have 444 nucleotides. The similarity ma-



Table 1
the similarity matrix of the complete coding sequence of beta-globin genes from 10 different species.

1.0e�005⁄ Human Woolly monkey Capuchin monkey Rat Rabbit Hare Gallus Duck Opossum Salmon

Human
Woolly monkey 0.0192
Capuchin monkey 0.0132 0.0090
Rat 0.0679 0.0666 0.0774
Rabbit 0.0560 0.0539 0.0482 0.0956
Hare 0.0482 0.0501 0.0449 0.0924 0.0090
Gallus 0.0896 0.0961 0.0911 0.1324 0.0720 0.0684
Duck 0.0882 0.0936 0.0910 0.1200 0.1064 0.1028 0.0511
Opossum 0.0684 0.0646 0.0716 0.1005 0.0889 0.0858 0.1101 0.1012
Salmon 0.1582 0.1525 0.1658 0.1459 0.1726 0.1677 0.1438 0.1145 0.1519

Fig. 3. Phylogenetic tree of 10 different species based on their complete coding sequence of beta-globin genes by using our new approach.
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trix of these 10 DNA sequences is shown in Table 1, and the phylogenetic tree for them by using UPGMA algorithm of MEGA
4 package [17] is represented in Fig. 3. Here we should point out that the phylogenetic relationship of these 10 species may
not be accurate because we did not use the whole genome information for constructing the tree, but the figure still clearly
shows similarity of these 10 DNA sequences.

2.4. Normalized probability distribution of DNA sequence

In Section 2.2, we transformed a DNA sequence into a discrete probability distribution using our graphical representation.
However, the probabilistic distribution of a DNA sequence (p1,p2, . . . ,pn) is related to its length n. This limits the comparison
of DNA sequences with different lengths. To overcome this limitation, we need to develop a normalized probability distri-
bution for all DNA sequences. For a DNA sequence of length n and a specific N < n, consider the n � N + 1 subsequences of
length N. By using the approach in Section 2.2, we can get the probability distributions (p1,p2, . . . ,pN) for each of subse-
quences of length N. Then we can average over these probabilistic distributions to obtain a normalized probability distribu-
tion for this DNA sequence. For example, DNA sequence (ATGGTGCACC) has length 10, and we take N = 6. Then it is separated
into 5 subsequences of length 6: ATGGTG, TGGTGC, GGTGCA, GTGCAC, and TGCACC. Thus, by using the approach in Section
2.2, we obtain their probability distributions: (0.0111,0.1000,0.1333,0.1889,0.2667,0.3000), (0.0435,0.0761,0.1304,
0.2065,0.2391,0.3043), (0.0225,0.0787,0.1573,0.1910,0.2584,0.2921), (0.0222,0.1000,0.1333,0.2000,0.2333,0.3111) and
(0.0440,0.0769,0.1429,0.1758,0.2527,0.3077). So, the normalized probability distribution of this DNA sequence is the mean
value of them (0.0286,0.0863,0.1395,0.1924,0.2501,0.3031). It should be pointed out that the choice of N depends on the
length of the shortest sequence in the tested group of DNA sequences. For example, suppose we are comparing a group
of DNA sequences with different lengths. If the shortest sequence in this group has length N, then we use N to get the nor-
malized probability distributions for all DNA sequences in this group.

3. Results

The method is tested with six DNA sequences [23], taken from the threonine operons of E. coli K-12 (gi: 1786181) and
S. flexneri (gi: 30039813). The three sequences taken from each threonine operon are thrA (aspartokinase I-homoserine
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dehydrogenase I), thrB (homoserine kinase) and thrC (threonine synthase), using the open reading frames (ORFs) 337–2799
(ec-thrA), 2801–3733 (ec-thrB) and 3734–5020 (ec-thrC) in the case of E. coli K-12, and 336–2798 (sf-thrA), 2800–3732 (sf-
thrB) and 3733–5019 (sf-thrC) in the case of S. flexneri. All the sequences were obtained from GenBank. In addition, we com-
pared all six sequences with a randomly generated sequence (randomA), using the same length and base composition as ec-
thrA.

The length of ec-thrA and sf-thrA is 2463 nt, the length of ec-thrB and sf-thrB is 933 nt, and the length of ec-thrC and sf-
thrC is 1287 nt. As mentioned above, here we take N = 933, then these 7 DNA sequences are transformed into 7 normalized
probability distributions. By using the symmetrised Kullback–Leibler divergence, the similarity matrix of these 7 DNA se-
quences is displayed in Table 2. This table shows that (ec-thrA, sf-thrA), (ec-thrB, sf-thrB), and (ec-thrC, sf-thrC) have very
high similarity. Although the simulated randomA sequence has high similarity with ec-thrA (0.000065723537205), the true
gene sf-thrA has higher similarity with ec-thrA (0.000000482115678). This is true even though randomA has the same
length and base composition as ec-thrA. This implies that our method can discriminate true matches from random DNA
sequences.

In order to further illustrate the efficiency of our approach we then focus on an interesting question about human origins.
The 19th century discovery of fossilized Neanderthal skeletons in Europe raised many problems about the origin of human
beings, among them the issue of our relation to this species. Now we can answer many questions about human and primate
origins by studying their mitochondrial genomes. Mitochondrial DNA is not highly conserved and has a rapid mutation rate,
thus it is very useful for studying the evolutionary relationships of organisms [4].
Table 2
the similarity matrix of 6 DNA sequences taken from the threonine operons of Escherichia coli K-12 and Shigella flexneri and one random DNA sequence with the
same length and base composition as ec-thrA.

1.0e�005⁄ ec_thrA ec_thrB ec_thrC sf_thrA sf_thrB sf_thrC randomA

ec_thrA
ec_thrB 0.103515801528209
ec_thrC 0.000036502094026 0.102437899212019
sf_thrA 0.000000482115678 0.103581825228513 0.000037714891986
sf_thrB 0.103192589271809 0.000799729968234 0.102114309213345 0.103258812312576
sf_thrC 0.000042030295348 0.102455599565548 0.000001246963514 0.000043042184261 0.102133014685575
randomA 0.000065723537205 0.102297937628119 0.000074700320295 0.000076709835796 0.101973258727072 0.000083620997234

Fig. 4. Phylogenetic tree of 18 primate species based on DNA sequences of hyper variable region II.
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In this study we have particular interest for a specific region of mtDNA. This region is the only real stretch of non-coding
sequence in the mitochondrial genome and is known as the D-loop. The D-loop does not have any genes; however, it does
contain necessary features including the origin of replication and the mitochondrial promoter. The origin of replication is
where the replication of the circular genome begins; the promoter is where transcription of all of the mtDNA genes begins
The D-loop contains two hyper variable regions I and II (HVR-I and HVR-II). Because HVR is very quickly evolving we can
study variation in the mitochondrial genome by just studying the hyper variable regions [8].

Our method is tested with 18 DNA sequences. They are the Hyper Variable Region II of human, Neanderthal, chimpanzee,
bonobo, gorilla, orangutan, and gibbon. This data can be obtained from the online material of Cristianini and Hahn’s book [8].
Here we take N = 337, then these 18 DNA sequences are transformed into 18 normalized probability distributions. By using
the symmetrised Kullback–Leibler divergence, the similarity matrix of these DNA sequences can be obtained. The phyloge-
netic tree among them by using neighbor-joining algorithm [26] of MEGA 4 package [17] is represented in Fig. 4. Our result
coincides with those found by Cristianini and Hahn. In fact, our tree also shows that Neanderthal are more closely related to
Table 3
TYLCD-causing virus sequences used in this study.

Isolate Accession No. Length

TYLCV_IL X15656 2787
TYLCV_DO AF024715 2781
TYLCV_CU AJ223505 2781
TYLCV_Flo AY530931 2781
TYLCV_Omu AB116630 2774
TYLCV_Alm AJ489258 2781
TYLCV_Mis AB116631 2774
TYLCV_EG_Ism AY594174 2781
TYLCV_Miy AB116629 2774
TYLCV_PR AY134494 2781
TYLCV_MA EF060196 2781
TYLCV_TR_Mer1_04 AJ812277 2781
TYLCV_Tosa_H AB192966 2781
TYLCV_Tosa AB192965 2781
TYLCV_RE4 AM409201 2781
TYLCV_Sic DQ144621 2781
TYLCV_TN EF101929 2781
TYLCV_JO EF054893 2781
TYLCV_MX_Cul DQ631892 2781
TYLCV_Mld_PT AF105975 2793
TYLCV_Mld_Aic AB014347 2787
TYLCV_Mld_Shi AB014346 2791
TYLCV_Mld_ES7297 AF071228 2791
TYLCV_Mld_ES AJ519441 2790
TYLCV_Mld_Sz_Yai AB116632 2791
TYLCV_Mld_Atu AB116633 2787
TYLCV_Mld_Kis AB116634 2787
TYLCV_Mld_Sz_Dai AB116635 2787
TYLCV_Mld_Sz_Osu AB116636 2787
TYLCV_Mld_RE AJ865337 2791
TYLCV_Mld_JO EF054894 2791
TYLCAxV_Alg AY227892 2772
TYLCMalV AF271234 2782
TYLCMLV AY502934 2794
TYLCMLV_ET DQ358913 2785
TYLCSV X61153 2773
TYLCSV_Sic Z28390 2773
TYLCSV_ES1 Z25751 2777
TYLCSV_ES2 L27708 2777
TYLCSV_MA AY702650 2777
TYLCSV_TN AY736854 2772
TYLCCNV AF311734 2734
TYLCCNV_Tb_Y25 AJ457985 2738
TYLCCNV_YM DQ256460 2731
TYLCKaV_TH_Kan1 AF511529 2752
TYLCKaV_TH_Kan2 AF511530 2752
TYLCKaV_VN DQ169054 2751
TYLCTHV X63015 2743
TYLCTHV_MM AF206674 2746
TYLCTHV_Y72 AJ495812 2748
TYLCTHV_ChMai AY514630 2747
TYLCTHV_NoK AY514631 2744
TYLCTHV_SaNa AY514632 2747
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modern humans than any of the other extant Great Apes, including our closest living relatives, the chimpanzees and
bonobos.

In addition, we apply our new method to study the classification and phylogeny of Tomato Yellow Leaf Curl Virus (TYLCV)
[9]. This virus possesses a linear single-stranded DNA genome. 53 complete genome sequences of viruses casing TYLCD were
Fig. 5. Phylogenetic tree of 53 TYLCD-causing viral genomes. TYLCV Severe phenotype (�), Mild phenotype (�), and the viruses from Axarquia (M), Malaga
(r), Mali (}), Sardinia (�), China (h), Kanchanaburi (N), Thailand (.) are shown in this tree. The details about these 53 TYLCV genomes can be found in
Table 3.
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downloaded from GenBank, each having lengths of more than 2700 nucleotides (Table 3). The shortest sequence is from To-
mato Yellow Leaf Curl China Virus (TYLCCNV-YM, DQ256460). It has 2731 nucleotides. So, here we take N = 2731, then these
53 DNA sequences are transformed into 53 normalized probability distributions. We used the symmetrised Kullback–Leibler
divergence to get the similarity matrix of these DNA sequences. Fig. 5 shows the phylogenetic tree relating them. This tree
was obtained by using the UPGMA algorithm of MEGA 4 [17], and it agrees with Duffy and Holmes’s result [9]. The tree can
clearly identify the viruses from Axarquia, Malaga, Mali, Sardinia, China, Kanchanaburi, Thailand. For TYLCV Mild phenotype,
we find not only Mld ES and Mld JO are far away from other Mild phenotype viruses as shown by Duffy and Holmes, but also
Mld ES7297, Mld RE and Mld PT. We also suggest TYLCV IL, TYLCV TR Mer1 04, TYLCV Tosa H, TYLCV Tosa, TYLCV Miy, TYLCV
Omu and TYLCV Mis should form a new subcluster of TYLCV Severe phenotype. Furthermore, in order to show the compu-
tational efficiency of our approach we use the existing multiple alignment tool ClustalW to do the same work with those 53
DNA sequences. It took us about 20 min to get the result on our Intel (R) Core (TM)2 Duo CPU E8400@3.00 GHz, 2.99 GHz
Windows PC with 1.93 GB RAM. However, our new approach needs only about 2 min by a Matlab program on the same com-
puter. The codes used to prepare this paper are available from the author upon request.

4. Discussion

It should be pointed out that the construction of our new approach depends on four parameters (the y-coordinates of the
A, C, T, and G in Fig. 1). If we change these four parameters, we shall get a different probability distribution for the DNA se-
quence. Because the nucleotide content (especially GC content) of DNA molecule is found to vary with different organisms,
nucleotide content should be considered when we assign the y-coordinate values of nucleotide vectors. Because most DNA
sequences analyzed in this paper have low AG-content (40%–50%), we have assigned larger y-coordinate values to A and G.
However, the y-coordinate values of the four nucleotides must be between 0 and 1 to assure that we can get the probability
distribution of the DNA sequence. Therefore, in order to obtain a universal probability distribution for DNA sequences with-
out considering nucleotide content, further studies will be needed to determine universal y-coordinate values.

Our aim in this paper is not to conform or refute the previous studies for DNA sequence comparison but rather to bring a
novel direction to comparative genomic analysis at the sequence level. Most existing methods for phylogenetic inference
require multiple alignment of sequences and assume some sort of an evolutionary model [3]. The choice of evolutionary
model totally depends on the researchers. Consequently, the results obtained from different models must be different. In
other word, these results require human intervention and are usually controversial. Our approach does not use any evolu-
tionary model. It does not need this type of human intervention. The results are naturally and automatically generated. Our
new approach also can handle large volumes of DNA sequences more quickly and more easily than multiple alignment meth-
ods . For the normalized probability distribution of DNA sequence the choice of N is very important. In this paper we let N
equal to the length of the shortest sequence in the tested group of DNA sequences. Thus, N may be very large when dealing
with very long DNA sequences such as whole genome sequences. Further studies will be needed to reduce the size of N under
the condition with not losing biological information. In addition, our method may also extend to the protein sequence study
in future.

5. Conclusion

In this paper, we have proposed a novel probabilistic method for DNA sequence comparison that uses a graphical repre-
sentation. After constructing the graphical representation, we were able to construct a probability distribution for a DNA se-
quence. After obtaining the probabilistic distributions of DNA sequences we use the symmetrised Kullback–Leibler
divergence to perform the similarity studies. The results show that our approach provides a new, powerful tool to analyze
the similarity and dissimilarity among various DNA sequences for both molecular biologists and computational scientists.
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