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In this paper we report a novel mathematical method to transform the DNA sequences into the distribu-
tion vectors which correspond to points in the sixty dimensional space. Each component of the distribu-
tion vector represents the distribution of one kind of nucleotide in k segments of the DNA sequences. The
mathematical and statistical properties of the distribution vectors are demonstrated and examined with
huge datasets of human DNA sequences and random sequences. The determined expectation and stan-
dard deviation can make the mapping stable and practicable. Moreover, we apply the distribution vectors
to the clustering of the Haemagglutinin (HA) gene of 60 H1N1 viruses from Human, Swine and Avian, the
complete mitochondrial genomes from 80 placental mammals and the complete genomes from 50 bac-
teria. The 60 H1N1 viruses, 80 placental mammals and 50 bacteria are classified accurately and rapidly
compared to the multiple sequence alignment methods. The results indicate that the distribution vectors
can reveal the similarity and evolutionary relationship among homologous DNA sequences based on the
distances between any two of these distribution vectors. The advantage of fast computation offers the
distribution vectors the opportunity to deal with a huge amount of DNA sequences efficiently.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

With the exponential growth of DNA sequences in the past
twenty years, it is ineffective to analyze DNA sequences only
through the traditional biological experiments. Various mathemat-
ical methods and computer algorithms are applied to sequence
analysis and related research areas, which help the biological study
to be upgraded into automatic programming from manual opera-
tion. Especially, the multiple sequence alignment is used to con-
struct the phylogenetic tree based on homologous sequences.
Moreover, some alignment-free sequence comparison methods
are also introduced to cluster homologous sequences. For example,
Woese and Fox (1977) defined the Archaea (a new domain or king-
dom of life) in 1977 by phylogenetic taxonomy of 16S ribosomal
RNA. Recently, Yau et al. (2008) developed the moment vectors
to cluster the protein sequences in 2008. Moreover, Takahashi
et al. (2009) estimated the phylogenetic tree of bacterial species
with oligonucleotide frequency distances. In this paper, we intro-
duce the distribution vectors to map each DNA sequence into a
point in a sixty dimensional space. We also study the minimum,
maximum, expectation and standard deviation of the distribution
vectors. The distribution vector method is applied to build the phy-
ll rights reserved.
logenetic trees of the Haemagglutinin (HA) gene of 60 H1N1
viruses from Human, Swine and Avian, the mitochondrial complete
genomes from 80 placental mammals and the complete genomes
from 50 bacteria. All the three trees show the similarity among
the sequences in the three datasets and correspond to the
evolutionary relationship of the the 60 H1N1 viruses, 80 placental
mammals and 50 bacteria respectively. Moreover, it take much less
time to build the phylogenetic tree by our the distribution vector
method than the popular multiple sequence alignment methods,
such as ClustalW (Brown et al., 2007), Muscle (Edgar, 2004), MAFFT
(Katoh et al., 2009) and MISHIMA (Kryukov et al., 2010).
2. Methods

In the beginning, we define the indicator sequence ua(n) of the
DNA sequence.

uaðnÞ ¼
1; if a appears at location n of the DNA sequence;
0; otherwise;

�
ð1Þ

a 2 I = {A,T,C,G}, n = 1, 2, . . ., N and N is the length of the DNA
sequence.

To construct the distribution vectors, we fix k, which is a preset
integer much less than N. Then we define q as the quotient and r as
the remainder in Eq. (2) when dividing N by k.
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Table 1
The grouping of 5000 human DNA sequences.

Number Range of length

Group I 996 <384
Group II 1001 P384 and <651
Group III 999 P651 and <1053
Group IV 1500 P1053 and <2265
Group V 504 P2265
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Fig. 1. The experiment of
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q ¼ N
k

� �
; r ¼ N � k� q ð2Þ

It is clear that 0 6 r < k. Therefore, we divide the DNA sequence into
k segments with almost equal lengths: The first r segments possess
q + 1 nucleotides and the remaining k–r segments hold q nucleo-
tides. Eq. (3) explains the partition clearly.

N ¼ k� qþ r ¼ rðqþ 1Þ þ ðk� rÞq ð3Þ
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Then we define Qa(m,k) as the number of the nucleotides a in the
mth segment of the DNA sequence in Eq. (4).

Qaðm; kÞ ¼

Pmðqþ1Þ

i¼ðm�1Þqþm
uaðiÞ; m ¼ 1;1;2; . . . ; r

Pm�qþr

i¼ðm�1Þqþrþ1
uaðiÞ; m ¼ r þ 1; r þ 2; . . . ; k

8>>>><
>>>>:

ð4Þ

For each k, we define the DVa(k) in terms of Qa(m,k) to describe the
variability between any two of Qa(m,k) for the particular nucleotide
a in one DNA sequence.

DVaðkÞ ¼
8

3Nðk� 1Þ
Xk

i¼1
i–j

Xk

j¼1

ðQaði; kÞ � Qaðj; kÞÞ2

0
BB@

1
CCA ð5Þ

The intention for choosing the coefficient 8
3Nðk�1Þ is to simplify the

expectation to be a constant. The explanation will be given later.
For each k 2 K = {3,4,5,7,11,13,17,19,23,29,31,37,41,43,47},

we compute the DVA(k), DVC(k), DVG(k) and DVT(k) and put these to-
gether to obtain the sixty dimensional distribution vector DV . It is
clear there is no common factor except 1 among the numbers in
the set K including 14 small odd prime numbers and 4, which
makes the elements in the distribution vector more independent.
We do not choose 2 because the definition of DVa(2) is a little sim-
ple and the value DVa(2) is more unstable than DVa(4). The selec-
tion of the size of the set K is crucial. The distribution vectors
can map the sequences more precisely when the size of K is large.
On the other hand for the short sequences, each segment is too
short to provide the information if the k is too large. In addition,
the larger the size of the set K, the longer the computation time.
All of the above reasons should be considered in the selection of
the set K.

DV ¼ fDVAð3Þ;DVCð3Þ;DVGð3Þ;DVTð3Þ;
DVAð4Þ;DVCð4Þ;DVGð4Þ;DVTð4Þ;
. . .

DVAð47Þ;DVCð47Þ;DVGð47Þ;DVTð47Þg ð6Þ
3. Mathematical and statistical properties

According the definition of Qa(m,k) and DVa(k), We derive the
minimum, maximum, expectation and standard deviation of
DVa(k) when we consider the DNA sequence as a random sequence,
which means every position in the DNA sequence can be A, C, G or
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Fig. 2. The time compari
T with the same probability 1
4 independently. The proof is available

in the Supplement.

MinðDVaðkÞÞ ¼ 0; if Qað1; kÞ ¼ Qað2; kÞ ¼ � � � ¼ Qaðk; kÞ ð7Þ

MaxðDVaðkÞÞ ¼
8

3Nðk� 1Þ
Xk�1

i¼0
i–j

Xk�1

j¼0

ðQaði; kÞ � Qaðj; kÞÞ2

0
BB@

1
CCA

¼
2N

3ðk�1Þ if k is even
2N
3k if k is odd

(
ð8Þ

E½DVaðkÞ� ¼ 1 ð9Þ

And

std½DVaðkÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½DVaðkÞ�

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
2

k� 1

r
ð10Þ

Since the distribution of the four nucleotides for authentic DNA se-
quences is not same as the random DNA sequences. we examine
these properties with two large datasets. One is 5000 Human
DNA sequences from the NCBI database, which are divided into
five groups by the respective lengths of DNA sequences. The detail
of grouping is provided in Table 1. Another dataset is 5000 random
DNA sequences which are divided into five groups also. Each
group consists of 1000 random sequences each with a fixed length.
The lengths of these groups are 200, 400, 800, 1500 and 3000 cor-
responding to the Group I, II, III, IV and V respectively. We com-
pare the maximum, 95th percentile, mean and standard
deviation for the ten groups in Fig. 1. The mean and standard devi-
ation of random sequences are close to theoretical expectation and
standard deviation, which do not depend on the length of se-
quences. The maximum of random sequences is much smaller
than the theoretical maximum because the probability of a high
value of f DVa(k) is very small. On the other hand, the maximum
of human sequences is bigger than the maximum of random se-
quences but still much smaller than the theoretical maximum.
Moreover, the maximum of human sequences increases when
the length of sequences increases, but the acceleration is much
slower. We also locate the 95th percentile for the human se-
quences. Fig. 1c shows that 95% of DVa(k) of human sequences is
smaller than 18. Furthermore, The mean and standard deviation
within the five human DNA sequence groups also converge to
the theoretical expectation and standard deviation when we in-
crease the dimension, even though the convergence is not as good
as those of the random sequences. Therefore, the distribution
vectors of authentic DNA sequences are also bounded and each
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component plays same important role when we compute the dis-
tance matrix and cluster the sequences.
4. Application

We apply the distribution vector method to three datasets. the
first data set includes the Haemagglutinin(HA) gene of 60 H1N1
viruses from Influenza Virus Sequence Database. The average
length of the gene is only around 1600 bp. We know Many viruses
have short generation times and relatively high mutation rates,
such as Influenza Virus. It is very useful to analyze the genes of
these viruses to find the origin and transmission of the viruses,
Especially, the research became crucial in the outbreak of Swine
H1N1 in 2009. Secondly, We collect 80 mitochondrial complete
genomes of placental mammals from NCBI database. The average
Fig. 3. The clustering result of 80 mitochondrial genomes.
length of the genomes is around 16,000 bp. It is useful for studying
the evolutionary relationships based on Mitochondrial genome be-
cause it is inherited from the mother (maternally inherited) in
most multicellular organisms and is not highly conserved and
has a rapid mutation rate. Thirdly, we test ourthe distribution
vector method on the complete genomes from 50 bacteria. Because
the average length of the bacteria genome is around 4,000,000 bp,
this application can verify the high efficiency of our method on the
large dataset.

We calculate the distribution vectors of these sequences and
the distances between any two of these distribution vectors for
each datasets. The phylogenetic trees are built based on the dis-
tance matrix by using the function hclust from the R program (R
Development Core Team, 2008), where the average linkage method
is used in the clustering. The three trees are plotted in Figs. 3–5.
Moreover, we apply the multiple alignment on the same three
Fig. 4. The clustering result of 60 H1N1 viruses.



Table 2
The clustering time (s).

DV MISHIMA MAFFT Muscle ClustalW2

H1N1 viruses <1 67 283 407 463
Mitochondrial 1 1128 2026 73,190 78,211
Bacteria 43 NA NA NA NA
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datasets with ClustalW2, Muscle, MAFFT and MISHIMA and do the
clustering with the average linkage method also. The results are
provided in the Supplement. For the dataset of 60 H1N1 (HA)
viruses, the distribution vector method classifies these viruses into
four groups correctly. The four groups include the avian older than
2009, European swine older than 2009, American swine older than
2009 and the new 2009 viruses from human, swine and avian. The
result shows the 2009 human H1N1 viruses have closer relation-
ship with old American swine than old avian and European swine.
ClustalW2, Muscle, MAFFT and MISHIMA also classify the 60 H1N1
viruses into the four groups except that the virus swine/wisconsin/
1961 is not classified well by ClustalW2, Muscle and MAFFT. More-
over, only the distribution vector method put the 2009 swine and
2009 avain together in the group of new 2009 viruses from human,
swine and avian. Secondly, all the five methods classify most of the
80 animals correctly by the respective orders they belong. Ourthe
distribution vector method divides the animals in the order of Car-
nivora into two groups: bears and non-bears, while other four
methods make more errors with the order of Carnivora. Moreover,
only the distribution vector method puts pig in to the order of Arti-
odactyla successfully. Thirdly, only the distribution vector method
classify 50 bacteria correctly by the respective families they be-
long. However, the other four alignment methods are unable to
process the 50 bacteria genomes in our personal computer (3G
CPU and 2G memory). In general, all the five methods can do the
clustering with the viruses, animals and bacteria corresponding
to the evolution relationship. But the distribution vector method
obtains the more accurate results in the clustering. Furthermore,
the distribution vector method is much faster than the other meth-
ods. We record the time each method takes on each dataset and list
them in Table 2.
Fig. 5. The clustering result of 50 bacteria genomes.
In order to compare the speed of our method and the other four
methods generally, we do the test on two sets of sequences. The
first set consists of eight datasets. The number of sequences in each
dataset is 10, 20, 30, 40, 50, 60, 70 an 80 respectively where the
lengths of all the sequences are around 4000. Another set also con-
sists of eight datasets. All the eight datsets include 40 sequences.
The lengths of all sequences in the eight datasets are around
1000, 2000, 3000, 4000, 5000, 6000, 7000 and 8000 respectively.
We build the phylogenetic tree on each dataset of the two sets
by the four methods and record the time each method takes. The
results in Fig. 2 shows that our method is much faster than the
other three methods. The time of our method increases linearly
when the number of sequences or the length of sequences in-
creases, whereas the acceleration of the time for the other four
methods is much higher. The actual time differences are much
higher than the visual differences in the figure since we are using
the log(time) as the label of y-axis.
5. Conclusion

This paper introduces the distribution vectors to map the DNA
sequences into the sixty dimensional Euclidean space. We prove
that expectation and standard deviation of the distribution vectors
do not depend on the length of the sequences. The experiments on
the human DNA sequences and random sequences confirm the re-
sult. The determined expectation and standard deviation show that
the distribution vector mapping is bounded and stable. Each com-
ponent of the distribution vectors represents the distribution of
one kind of nucleotide in k segments of the DNA sequence and
plays the same important role in the mapping and clustering. Fur-
thermore, we do the clustering on the Haemagglutinin (HA) gene
of 60 H1N1 viruses, 80 mitochondrial complete genomes and 50
complete bacteria genomes with the distribution vector method
and other four methods. The phylogenetic trees we obtain show
that the distances between the distribution vectors correspond to
the evolutionary relationships between these sequences. Our
method works for a set of genome sequences or a set of gene se-
quences. Most importantly, the distribution vector method is much
faster than the other methods. Hence our method is more efficient
to deal with huge datasets than the other methods. Especially, the
distribution vector method only needs to compute the distribution
vector of a new sequence when it is put in the dataset, while those
multiple sequence alignment methods have to do the multiple se-
quence alignment on the new dataset when a new sequence is
added. It will be more practical to find the closest sequence to
the new sequence in a huge dataset with the distribution vector
method. Our method may help to discover the functionality or
the evolution of the new sequence.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ympev.2011.02.020.
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