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a b s t r a c t

A novel clustering method is proposed to classify genes or genomes. This method uses a natural

representation of genomic data by binary indicator sequences of each nucleotide (adenine (A), cytosine

(C), guanine (G), and thymine (T)). Afterwards, the discrete Fourier transform is applied to these

indicator sequences to calculate spectra of the nucleotides. Mathematical moments are calculated for

each of these spectra to create a multidimensional vector in a Euclidean space for each gene or genome

sequence. Thus, each gene or genome sequence is realized as a geometric point in the Euclidean space.

Finally, pairwise Euclidean distances between these points (i.e. genome sequences) are calculated to

cluster the gene or genome sequences. This method is applied to three sets of data. The first is 34 strains

of coronavirus genomic data, the second is 118 of the known strains of Human rhinovirus (HRV), and

the third is 30 bacteria genomes. The distance matrices are computed based on the three sets, showing

the distances from each point to the others. We used the complete linkage clustering algorithm to build

phylogenetic trees to indicate how the distances among these sequence correspond to the evolutionary

relationship among these sequences. This genome representation provides a powerful and efficient

method to classify genomes and is much faster than the widely acknowledged multiple sequence

alignment method.

& 2011 Elsevier Ltd. All rights reserved.
1. Inspiration and motivation

Recently, there has been much research regarding methods to
classify genomes into correct biological groups. A prominent method
in use today is the multiple sequence alignment method. However,
while this method is widely recognized as an accurate means of
grouping genomes, it is extremely time consuming and can take up
to several days or more depending on the amount of data being
examined. In this project, we seek to find an alternative method to
cluster genomes that does not require vast computational power.

Multiple sequence alignment arranges the genomes and finds
the differences and similarities in the nucleotide data. Typically,
parts of the genome that are compared include DNA and RNA.
This allows for accurate determination of functional, structural, or
evolutionary relationships between genomes.

Our method is based on Fourier analysis. Fourier analysis has been
used in previous research. While researching applications of Fourier
analysis, we see that it has been used before to differentiate exons
from introns using 3-base periodicity (Yin and Yau, 2005, Prediction
of protein coding regions by the 3-base periodicity analysis of a DNA
ll rights reserved.
sequence, 2007). Yin and Yau (2007) showed that the discrete Fourier
transform has powerful uses in extracting useful information from
genomic data. This leads us to wonder if we could use the Fourier
power spectrum to introduce a new method to cluster genomes
rather than use multiple sequence alignment.

To do this, we propose using a method involving the discrete
Fourier transform and moment vectors. A quicker, but still accurate
method to cluster genomes would allow people to better under-
stand evolution of organisms as well as the relationships between
various genomes because multiple sequence alignment takes too
much time to be a reasonable approach for a huge data set.

Our research provides an efficient method to cluster genomes
with much less time-consumption compared to the multiple
sequence alignment method. This work can lead to discoveries
in the world of biology as scientists are able to more quickly
analyze the relationships between various organisms.
2. Methods

2.1. Reinterpretation of genomic data

We begin with genomic data composed of the nucleotides
adenine (A), cytosine (C), guanine (G), and thymine (T). These data
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are easier to work with if they are in numeric sequences. As a
result, we convert the genomic data of length N into four separate
binary indicator sequences—one for each nucleotide. Each value
will be either 1 or 0; 1 if that nucleotide appears in that position
and 0 otherwise.

We define the indicator sequence uaðnÞ of the DNA sequence:

uaðnÞ ¼
1, a appears at location nof the DNA sequence,

0, otherwise,

(

where aA I¼ fA,T ,C,Gg, n¼ 0,1, . . . ,N�1, and N is the length of the
DNA sequence (i.e., number of base pairs).

For example, for the sequence ACTGTCGATT, the correspond-
ing indicator sequences are
uA
 : 1000000100

uC
 : 0100010000

uG
 : 0001001000

uT
 : 0010100011.
2.2. Discrete Fourier transforms

After the genomic data have been converted into these indi-
cator sequences, they can be manipulated with mathematical
methods. The discrete Fourier transform is applied to each indi-
cator sequence f(n) and a new sequence of complex numbers,
called F(k), is obtained:

FðkÞ ¼
XN�1

n ¼ 0

f ðnÞe�ið2p=NÞkn, for k¼ 0,1,2, . . . ,N�1, ð1Þ

where f(n) is any of the four indicator sequences, uA,uC ,uG,uT ,
introduced in the last subsection. The discrete Fourier transform
thus converts a sequence in state space into a sequence in
frequency space (Peebles, 2000), better revealing hidden statistical
characteristics of the original data.

2.3. Power spectrum analysis

It is easier to work with the power spectrum of the sequence,
rather than the original discrete Fourier transform. The power
spectrum (PS) for frequencies k¼ 0,1,2, . . . ,N�1 is defined as

PSðkÞ ¼ jFðkÞj2: ð2Þ

Although this loses some of the information from the complex
numbers such as the angle/direction, the power spectrum still
contains significant information while being simpler to analyze.

2.4. Moment vectors

It is a challenging problem to compare various genomes by
only looking at the power spectra data. As a result, we must look
at the mathematical moments of the data involved. There are
several ways to look at moments as well as several ways to
normalize them. The usual moments are ~Mj ¼ ð1=NÞ

PN�1
k ¼ 0ðPSðkÞÞj

for j¼ 1,2, . . ..
However, ~Mj increases very rapidly as j increases. Conse-

quently, when comparing genomes based on multiple moments,
the higher moments hold much greater weight due to their
magnitude. To compensate for this, we use various normalization
factors. In the above ~Mj definition, N is the denominator, but it
can be altered to vary with the order of the moment as well. This
can be done as follows:

Mj ¼
1

Nj

XN�1

k ¼ 0

ðPSðkÞÞj, j¼ 1,2, . . . : ð3Þ
Additionally, N is the length of the whole sequence, but we split
the sequence into four separate vectors for the four nucleotides.
As a result, each nucleotide has its own associated sequence
length, or the number of that specific nucleotide. These values
will be known as NA,NC ,NG, and NT. Because the whole genome
consists of nucleotides A, C, G, and T, they can also be incorpo-
rated into the equations to normalize the moments to make
higher moments at similar values to the lower moments. This is
important at later steps when we are comparing the genomes.
The new lengths can be incorporated into the normalization in
the following equation:

MA
j ¼

1

Nj�1
A Nj�1

XN�1

k ¼ 0

ðPSðkÞÞj: ð4Þ

Moreover, instead of only analyzing ðPSðkÞÞj, central moments can
be calculated by instead analyzing the value of the difference
between the power spectrum value at a point k and the mean of
all values of the power spectrum. In other words, we would do the
following to calculate central moments with a normalizing factor
of just (1/N):

Mean¼
1

N

XN�1

k ¼ 0

PSðkÞ,

CMj ¼
1

N

XN�1

k ¼ 0

ðPSðkÞ�MeanÞj: ð5Þ

Just as we altered the normalizing factors with the regular
moments, we can do the same for the central moments to get
several other equations as shown below:

CMA
j ¼

1

Nj�1
A Nj�1

XN�1

k ¼ 0

ðPSðkÞ�MeanÞj: ð6Þ

2.5. Genomic comparisons

These equations for calculating moments are used to analyze
various genomic data. To do this, several moments of each
genome are computed, which is done in Cþþ, and we built the
phylogenetic trees using the function hclust in R (R Development
Core Team, 2008), where the complete linkage clustering algo-
rithm is used. Specifically, we calculate the first few regular and
central moments of the genome for each nucleotide and assign
that genome a point in Euclidean space with those moments as
the coordinates. Then, a distance matrix can be generated from
the pairwise distances of the genomes using Euclidean distance.
A distance matrix can then be used in clustering algorithms to
separate genomes into various clusters or groups. Here, we
have used the complete linkage clustering algorithm and the
average linkage clustering algorithm. In complete linkage cluster-
ing, the distance between two clusters is computed as the
distance between the farthest two elements in the two clusters
(Dawyndt et al., 2005). On the other hand, the distance between
two clusters in average linkage clustering is defined as the
average pairwise distance between the points of two clusters.
The clustering algorithms then create a phylogenetic tree to show
how the genomes are grouped together.

We realize that just a few moments may not be enough to give
stable, accurate clustering results. However, we do not need too
many moments either. This is because as the number of moments
increases, the clustering results will quickly stabilize due to the
fact that the magnitude of the higher moments quickly drops
close to 0, rendering their effect negligible. We take 20 moments
here: the first three regular moments, and the second and third
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central moments for each of four nucleotides. This gives each
nucleotide five moments, resulting in a 20-dimensional point in
Euclidean space. The same combination gives good results for all
the examples in the present paper (coronavirus, human rhino-
virus, and bacteria), although fewer moments may be needed for
the (smaller) coronavirus genomes to achieve the same results.

All computations in this paper are done on a Dell laptop
equipped with Intel i3 Processor under Windows 7 Home Pre-
mium with 4 GB RAM, together with the statistic computing
software R (Version 2.9.2) and Microsoft Visual Studio 2008
(with Cþþ).
3. Results and discussions

To verify that the data found using these methods really
corresponds to true biological groups from literature, we apply
our moment vectors and clustering algorithms first for corona-
virus and human rhinovirus to compare with existing phyloge-
netic trees, and then for bacterial species to generate biologically
correct phylogenetic trees.
3.1. Clustering method

We sought to verify some clustering results with our own
method. To do this, we apply our method to three sets of
genomes: coronaviruses, human rhinoviruses, and bacteria. To
cluster various genomes, we experimented with various combi-
nations of types of moment, normalization factor, and clustering
methods. Accurate results came from a combination of the use of
regular moments and the use of central moments of all four
nucleotides. The normalizing factor used was 1=ðNj�1Nj�1

m Þ with m

being the nucleotide of that particular moment. The first three
regular moments of each nucleotide were calculated with Eq. (4).
Afterwards, the second and third central moments were calcu-
lated with Eq. (6). This gives each nucleotide five moments,
resulting in a 20-dimensional point in Euclidean space. An
Euclidean pairwise distance matrix is then calculated to use with
clustering algorithms (Dawyndt et al., 2005) in the statistical
program R.

To evaluate complete linkage clustering algorithm and the
average linkage clustering algorithm, the cophenetic correlation
coefficients are calculated. The values are shown in Table 1. As
you can see, average linkage clustering has higher cophenetic
coefficients than complete linkage clustering, but the difference is
very small, so we construct the phylogenetic trees with both two
algorithms.
3.2. Coronavirus (respiratory disease)

We begin by studying the taxonomy of coronavirus and how
the complete genomes of 30 separate coronaviruses cluster into
groups. Just as Yu et al. (2010) suggested, we also included four
non-coronavirus genomes to act as an outgroup separate from the
groupings of the coronaviruses. The accession numbers, abbrevia-
tions, group numbers, and descriptions are shown in Table A in
the Supplementary materials.
Table 1
Comparison of cophenetic coefficients.

Human rhinovirus Coronovirus Bacteria

Average linkage clustering 0.93332 0.98939 0.86881

Complete linkage clustering 0.87216 0.98799 0.86481
In Yu et al. (2010), these 34 genomes were separated into five
groups and an outgroup. With 34 points, we then calculated
the Euclidean distance matrix, and used both the complete
linkage clustering and average linkage clustering algorithms
(Dawyndt et al., 2005) in the statistical program R. The results
are shown in the phylogenetic trees shown in Fig. 1.

Traditional clustering has shown the majority of these groups to
be correct. However, a few of the more newly discovered corona-
viruses have been studied to decide which group they belong to. Yu
et al. (2010) and van der Hoek et al. (2004) agree with the placing of
human rhinovirus NL63 into Group 1. However, as Fig. 1 shows,
HCoV-NL63 is slightly separated from the other two members of
Group 1, but close enough to be considered part of the same group,
which is consistent with past work.

Another newer coronavirus, human rhinovirus HKU1, has also
been debated about recently. Woo et al. (2005) contended that
it belonged to Group 2 as it had certain characteristics of
Group 2 coronaviruses (Woo et al., 2005). However, Woo et al.
(2005) also noted that the proteins of HCov-HKU1 coronavirus are
not very closely related to those of other Group 2 coronaviruses
(Woo et al., 2005). As a result, HCoV-HKU1 is identified as a distinct
part of the group of coronaviruses, leading Yu et al. (2010) to place
it in a separate group between the SARS group (Group 4) and
Group 2. As shown in Fig. 1, our method also shows HCoV-HKU1 in
a separate group. In the phylogenetic tree in Fig. 1, Group 5 is close
to both Group 4 and Group 2 but still distinguishable from both
groups, so we agree that Group 5 should be separate from Group 2.

All in all, the clustering of these 30 coronavirus genomes is
accurate according to previous clustering results.

3.3. Human rhinovirus (common cold)

After confirming that our method accurately clustered the
genomes of various coronaviruses, we have also tried our method
on a large set of human rhinovirus (HRV) genomes. Past work has
shown that these HRV genomes can be split into three clades:
HRV-A, HRV-B, and HRV-C (Palmenberg et al., 2009). Palmenberg
et al. (2009) clustered the genomes into these groups with the
multiple sequence alignment method, which takes vast amounts
of time and computational power (Palmenberg et al., 2009). We
attempt to generate these same results with our method while
utilizing much less time. We used the complete genomes of 116
HRV serotypes as well as the three outgroup genomes suggested
by Palmenberg et al. (2009). The accession numbers and abbre-
viations of these genomes are shown in Table B in the Supple-
mentary material.

Palmenberg et al. (2009) clustered these genomes into three
groups and an outgroup. We can generate these results using our
method via discrete Fourier transform. We used the same combi-
nations of moment, normalization factor, and clustering methods
as used for coronavirus and produced the phylogenetic trees
shown in Fig. 2.

Traditional grouping has shown these groups to be correct
(Palmenberg et al., 2009). Our method was still able to differ-
entiate the groups of HRV into the three clades and the outgroup.

3.4. Bacterial species

Bacteria genome lengths are millions of base pairs long. Due to
their complexity, bacteria genomes are a good test to see whether a
clustering method can handle huge sequences. In fact, most meth-
ods cannot handle bacteria genomes. As a result, we will also apply
our clustering algorithm to 30 bacterial genomes from eight
families: Enterobacteriaceae, Staphylococcaceae, Rhodobacteriaceae,
Burkholderiaceae, Bacilleceae, Spirochaetaceae, Clostridiaceae, and
Desulfovibrionaceae. Each bacterial genome sequence used in this



Fig. 1. These phylogenetic trees show the 30 coronavirus genomes as well as the four outgroup genomes. Our method has split them into the correct groups: outgroup and

Groups 1-5.
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present study (around the order of four million base pairs) is
significantly longer than those of the coronavirus and Human
rhinovirus genomes used in the previous two subsections. A list of
the families, species, and accession numbers of these 30 bacteria is
shown in Table C in the supplementary materials.

We cluster the genomes with our Fourier power spectrum
analysis method. We use the same combinations of moment,
normalization factor, and clustering methods as in the previous
two examples. The phylogenetic tree is shown in Fig. 3.

As the tree shows, the bacteria can be separated into the
correct families through the use of our Fourier power spectrum
analysis method and our method is able to accurately group the
genomes according to biological information. Furthermore, our
method was capable of running on such large sequences in
around five minutes. On the other hand, all traditional methods
involving multiple sequence alignment require significantly more
time and computational power, rendering it impossible for a
personal computer to use multiple sequence alignment to cluster
bacteria genomes.
3.5. Phylogenetic trees

Here, the phylogenetic trees generated from the three exam-
ples above are shown. In each figure, two trees are shown: one
created by complete linkage clustering and one created by
average linkage clustering. For the sake of clarity, the trees on
the left will be created by complete linkage clustering and the
trees on the right will be those created by average linkage
clustering.

Fig. 1 shows the trees generated for the 30 coronavirus
genomes and four outgroup genomes. Clearly, our method was
able to cluster the genomes into the correct five groups. Further-
more, the trees created by complete linkage clustering and



Fig. 2. These phylogenetic trees show the 116 human rhinovirus genomes as well as the three outgroup genomes. Our method has split them into the correct groups

(HRV-A, HRV-B, HRV-C, and HEV-C (outgroup)) in complete linkage clustering, but there are seven misplaced HRV-A genomes in the tree created by average linkage clustering.
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average linkage clustering are extremely similar. The genomes are
correctly clustered, only the orientation of the tree is different.

Fig. 2 shows the trees generated for the 113 HRV genomes and
three HEV (outgroup) genomes. Using complete linkage cluster-
ing, the genomes were correctly clustered into HRV-A, HRV-B,
HRV-C, and HEV-C. However, the tree created using average
linkage clustering shows subtle imperfections. A small group of
HRV-A genomes is misplaced and put between the HRV-B
genomes. Those genomes were originally on the edge of the
HRV-A cluster in complete linkage clustering. When switching
to average linkage clustering, the clusters changed. This mistake
in the clustering tree shows that although average linkage
clustering has a higher cophenetic coefficient, complete linkage
clustering still provides better clustering results that match with
previously proven results.

Finally, Fig. 3 shows the trees generated for 30 bacterial
genomes from the families Enterobacteriaceae, Staphylococcaceae,
Rhodobacteriaceae, Bacilleceae, Burkholderiaceae, Spirochaetaceae,
Clostridiaceae, and Desulfovibrionaceae. As shown in the trees,
both complete linkage clustering and average linkage clustering
provide accurate clusterings. As with Fig. 1, the only difference is
the orientation of the groups. In this case, the families of Enter-
obacteriaceae and Bacilleceae are always together. Meanwhile,
Staphylococcaceae, Rhodobacteriaceae, Burkholderiaceae, Spiro-
chaetaceae, Clostridiaceae, and Desulfovibrionaceae bacteria are
always clustered together.

As can be seen from the phylogenetic trees generated by our
method, both complete linkage clustering and average linkage
clustering are able to provide accurate clusterings. However, with
the human rhinovirus situation, average linkage clustering was
unable to accurately group a few genomes while complete linkage
clustering was able to. Although average linkage clustering
provided a higher cophenetic coefficient than complete linkage
clustering, complete linkage clustering provided superior results.
This is because cophenetic analysis is not a definitive method to
select the best clustering method. In the case of genome



Fig. 3. These phylogenetic trees show the 30 bacteria genomes. Our method has split them into the correct families: Enterobacteriaceae, Staphylococcaceae,

Rhodobacteriaceae, Burkholderiaceae, Bacilleceae, Spirochaetaceae, Clostridiaceae, and Desulfovibrionaceae.
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clustering, we see that complete linkage clustering is able to
provide better results in spite of its lower cophenetic coefficients.
As a result, we propose that complete linkage clustering be used
regardless of the cophenetic analysis results.

Overall, our method of clustering via Fourier power spectrum
analysis provides an accurate way to cluster genomes.

3.6. Comparing speed to multiple sequence alignment

Now that this method of clustering via the discrete Fourier
transform has been shown to be capable of calculating accurate
results, its speed is now compared to the most prominent method
of clustering: multiple sequence alignment. Programs used for
multiple ClustalW (Brown et al., 2007), Muscle (Edgar, 2004),
MAFFT (Katoh et al., 2009) and MISHIMA (Kryukov et al., 2010).
Each program gives slightly different results and has its own
strengths and weaknesses. CLUSTALW was among the first
programs to produce results of multiple sequence alignment.
Consequently, it is the most widely used method and gives very
accurate results. However, it is very slow. MUSCLE is very similar
to CLUSTALW and runs at a similar speed and gives similarly
accurate results. MAFFT is a compromise between speed and
accuracy. It runs much more quickly than CLUSTALW and MUS-
CLE, but sacrifices a small amount of accuracy to achieve these
results. Mishima is a relatively newer program that also compro-
mises speed and accuracy.

Our method defined in this paper is now compared to MAFFT
and Mishima in terms of speed to show that our method is faster
than the usual methods of clustering genomes. Our method is not
compared to MUSCLE or CLUSTALW because those methods are



Table 2
Comparison of computing times (in s).

Computing time MAFFT MISHIMA Our method

Human rhinovirus 255 1868 5

Coronovirus 1701.5 8994 12

Bacteria N/A N/A 298
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significantly more time consuming and so should not be com-
pared with our method as they attempt to achieve different goals.
MUSCLE and CLUSTALW hope to achieve the best possible results
with no regard to the speed or efficiency of their process. Mean-
while, MAFFT, Mishima, and our method hope to maximize
accuracy while still maintaining speed and efficiency. As a result,
our method deserves to be compared with Mishima and MAFFT.
The comparison results are shown in Table 2.

When running to create a phylogenetic trees, comparisons were
seen between our method, MAFFT, and Mishima. For the human
rhinovirus genomes, MAFFT required 255 s, Mishima required
1868 s, and this paper’s method required only 5 s. Furthermore,
when running to create a phylogenetic tree for the coronavirus
genomes, MAFFT required 1701.5 s, Mishima required 8994 s, and
our method required a mere 12 s. Finally, MAFFT and Mishima
were unable to run on the bacterial genomes on our personal
computer due to the sheer size of the sequences. However, our
method was able to complete the job in about 5 min (298 s).

As can be shown from the times required to generate phylo-
genetic trees, the method proposed in the present paper is
significantly faster than MAFFT and Mishima.
4. Conclusions

After working with the discrete Fourier transform and various
moment equations and clustering algorithms, we have arrived at
a procedure that is able to quickly and accurately cluster various
groups of genomes including coronaviruses, human rhinoviruses
and bacteria into their correct biological groups. This method
works by converting each DNA sequence into a point in a moment
space and using the Euclidean distances between these points to
provide a measure of closeness or relationship. Instead of taking
hours as the multiple sequence alignment method requires, our
method requires at most a few minutes to finish its calculations
and to draw the phylogenetic tree depending on the number of
sequences and the computer used. This gives significant advan-
tages in doing research and experimenting.
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