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The current K-string-based protein sequence comparisons require large amounts of computer memory because
the dimension of the protein vector representation grows exponentiallywith K. In this paper, we propose a novel
concept, the “K-string dictionary”, to solve this high-dimensional problem. It allows us to use a much lower di-
mensional K-string-based frequency or probability vector to represent a protein, and thus significantly reduce
the computer memory requirements for their implementation. Furthermore, based on this new concept, we
use Singular Value Decomposition to analyze real protein datasets, and the improved protein vector representa-
tion allows us to obtain accurate gene trees.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

With the development of biotechnology, more and more biological
sequences have been acquired. The discovery of new protein sequences
is accelerating, but many of these proteins show similarity to existing
amino acid sequences. Sequence comparison problems arise when
detecting the similarity of proteins, and explaining their phylogenetic
relations as well as when handling the huge amount of data. Existing
methods for sequence comparison can be classified into alignment-
basedmethods and alignment-free methods. Alignment-basedmethods
use dynamic programming, a regression technique that finds an optimal
alignment by assigning scores to different possible alignments and pick-
ing the alignment with the highest score (Gotoh, 1982; Needleman and
Wunsch, 1970; Smith andWaterman, 1981). However, the search for op-
timal solutions using sequence alignment turns out to be computa-
tionally difficult with large biological databases, especially when
comparing three or more biological sequences at a time, i.e., multiple
sequence alignment. Therefore, alignment-free approaches have
been developed to overcome the critical limitations of alignment-
based methods.

The recent reviews (Davies et al., 2008; Vinga and Almeida, 2003) on
published methods of alignment-free sequence comparison report
several concepts of distance measures, such as Markov chain models
and Kullback–Leibler discrepancy (Wu et al., 2001), chaos theory
(Almeida et al., 2001), Kolmogorov complexity (Li et al., 2001), decision
A,multiple sequence alignment;
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tree induction algorithm (Huang et al., 2004), graphical representation
(Liao andWang, 2004; Randic et al., 2003; Yau et al., 2003), probabilistic
measure (Pham and Zuegg, 2004; Yu et al., 2011a,b), and pseudo amino
acid composition (Chou, 2011; Chou and Shen, 2009). Furthermore, se-
quence vector representation approaches without alignment are also
prevalent, such as feature vector (Carr et al., 2010; Liu et al., 2006), mo-
ment vector (Yau et al., 2008; Yu et al., 2010, 2011a,b), and natural vec-
tor (Deng et al., 2011; Yu et al., 2013). Among all existing alignment-free
methods, the K-string-based methods (Chu et al., 2004; Gao and Qi,
2007; Lu et al., 2008; Qi et al., 2004; Takahashi et al., 2009) have re-
ceived substantial attention. Basically, the first step of these methods
is, for a fixed integer K, to count the number of overlapping K-peptides
in one protein sequence, and form a frequency or probability vector of
dimension 20K. Then using some probabilistic or optimization models
these vectors are converted into more complicated composition
vectors (Chan et al., 2012), but the dimension of the vectors remains
unchanged in this process. Finally, the distance between two composi-
tion vectors is used to compute the distance between two taxa, and
once the distances among all taxa are obtained, the phylogenetic trees
can be reconstructed. Thesemethods are able to provide good phyloge-
netic tree topologies for DNA or proteins; however, because large values
needed to be chosen (see the discussion in Section 2), the resulting high
memory usage becomes a disadvantage.

In this paper, we provide a novel concept, the “K-string dictionary”,
to solve this problem. It allows us to use a much lower dimensional
frequency or probability vector to represent a protein, and thus signifi-
cantly reduce thememory requirements for their implementation. Fur-
thermore, after obtaining the lower dimensional frequency vectors, we
use Singular Value Decomposition (SVD) to get an improved protein
vector representation which allows us to obtain accurate gene trees.
We have analyzed 290 proteins from 3 families and 50 beta-globin
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Fig. 1. The cardinalities of K-string dictionary of real and simulated datasets including 290 proteins.
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proteins from different animal species using this method, and found it
to be a powerful classification tool for proteins.
2. Materials and methods

2.1. Background on K-string frequency or probability vector

Given a protein sequence of length L, the frequency of appear-
ances of a K-string α = a1a2, …aK in this sequence is defined as
f(α), where αi is an amino acid single-letter symbol. This frequency
divided by the total number (L − K + 1) of K-strings in the given
protein sequence is defined as the probability p(α) of appearance
of the K-string α in the sequence: p αð Þ ¼ f αð Þ

L−Kþ1. For example, given
a protein sequence (AMFAMCAMFS), f(α) = 2 for 3-string α =
(AMF), and p αð Þ ¼ 2

10−3þ1 ¼ 0:25.
Table 1
The cardinalities of K-string dictionary of real and simulated dataset.

Cardinality

K value Real dataset Simulated dataset

1 20 20
2 400 400
3 7186 8000
4 41703 83601
5 61792 115394
6 65733 117083
7 67214 116892
8 68182 116604
9 68898 116314
10 69450 116024
11 69895 115734
12 70255 115444
13 70551 115154
14 70804 114864
15 71012 114574
16 71188 114284
17 71343 113994
18 71482 113704
19 71607 113414
20 71720 113124
There are a total of N = 20K possible types of such K-strings for
protein sequences. Thus the K-string frequency vector of one protein
sequence is defined as (f(α1), f(α2), …, f(αN)), and the corresponding
K-string probability vector of one protein sequence is defined as
(p(α1), p(α2), …, p(αN)).

Many current alignment-free works are based on the K-string fre-
quency or probability vectors as we mentioned in Section 1. However,
the choice of suitable K has always been an important concern. The
main problem is that the dimension of these vectors can quickly become
large. For example, the dimension of the protein K-string frequency or
probability vector for K = 6 is 206 = 64,000,000. Trying to work with
vectors of such a large dimension will exceed the memory limits of or-
dinary personal computers. Thus, when using these vectors, we cannot
evaluate the results for largerK. To overcome this disadvantage,we pro-
pose a novel concept “K-string dictionary” to solve this problem.

2.2. K-string dictionary

The K-string dictionary of a group of protein sequences is the set of
all K-strings existing in these sequences. Note that a set is a collection
of distinct objects, so we only record repeated K-strings once in the
dictionary. For example, given a group of two protein sequences
(AMTHGS) and (MTHAKW), the 3-string dictionary for this group is
the set {AMT, MTH, THG, HGS, THA, HAK, AKW}. The key point is that
the cardinality of a K-string dictionary is far less than 20K. This will sig-
nificantly reduce the memory requirements for computer calculations.

For example, titin is currently the largest known protein; its human
variant (GenBank No.: NP_001243779) consists of 34,350 amino acids
(Minajeva et al., 2001). For example, we take K = 10, then titin has
34,350 − 10 + 1 = 34,341 K-strings. Assume that we are dealing
with 1000 big proteins like titin's size, and all 10-strings of them are to-
tally different, then the cardinality of the 10-string dictionary of this
group is 34,314 × 1000 = 3.4341 × 107. However, this number is still
far less than 2010 = 1.024 × 1013.

2.3. The cardinality of K-string dictionary

Given a group of protein sequences, for differentK, we have different
K-string dictionaries. We will use the real and simulated protein



Fig. 2. The neighbor-joining phylogenetic tree of 290 proteins from 3 families based on 3-
string dictionary.

Fig. 3. The neighbor-joining phylogenetic tree of 290 proteins from 3 families based on 4-
string dictionary.
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sequence datasets to investigate the cardinalities of different K-string
dictionaries.

The real dataset consists of the 290 proteins belonging to three fam-
ilies (PF03296, PF06924, and PF09455) in the Pfam database (Bateman
et al., 2002). Pfam is a database of protein families that includes their an-
notations and multiple sequence alignments generated using hidden
Markov models. Furthermore, according to SCOP (Lo Conte et al.,
2000), a largely manual classification database of protein structural do-
mains, all of these 290 proteins are multidomain proteins. The PF03296
family belongs to Poly (A) polymerase catalytic subunit-like Fold
(SCOP). They have three domains; D1: all-alpha, contains HhH motif;
D2: alpha + beta of nucleotidyltransferase fold (scop_cf 81302); D3:
alpha + beta; beta(3)-alpha-beta(3)-alpha(2). The PF06924 family
belongs to Api92-like Fold (SCOP). They have two domains; D1:
alpha + beta with similarity to ferredoxin-like fold; D2: 6 helices, bun-
dle, one buried central helix, inserted into D1. The PF09455 family
belongs to SSO1389-like Fold (SCOP). They have two domains; D1:
alpha/beta, central parallel beta-sheet of 6 strands, order 321456,
Rossmann-like; D2: alpha + beta, cluster of helices and a small 4-
stranded beta-sheet. PF03296 family has 53 proteins; PF06924 family
has 83 proteins; PF09455 family has 154 proteins. For details of this
dataset, please see Supplementary materials.

Based on this real dataset, we generate one simulated dataset. It also
includes 290 protein sequenceswhich have the same lengths as the real
sequences in the above real dataset, but each sequence has the amino
acid content of equal probability.

In Fig. 1, we show the cardinalities ofK-string dictionary of these two
datasets. The cardinality is first increasing then decreasing with the
increase of K. It is due to the fact that, when K becomes larger and ap-
proaching the length of the sequence, the number of K-strings in the se-
quence becomes smaller. Thus, we can obtain themaximum cardinality
value for someK value.We alsofind that the cardinalities of theK-string
dictionary of the simulated dataset are always larger than those of real
dataset when K ≥ 3, as shown in Table 1. Furthermore, after the cardi-
nality of the K-string dictionary of the simulated dataset reaches the
maximumvalue, it is linearly decreasing. The reason for these is because
we generate the simulated sequences by assuming equal probability for
each amino acid. In this case, the probability that two K-strings agree is
1/20K. Thus, with the increase of K, this probability becomes very small.
This implies that all K-strings are different in this simulated dataset
when K is large. So, suppose there is a group of n simulated se-
quences with amino acid content of equal probability, and each se-
quence has the length Li (i = 1, 2, …, n). Then, when K is large, the

cardinality of the K-string dictionary for this group is ∑
n

i¼1
Li−K þ 1ð Þ,

and also, when K increases by 1, the cardinality decreases by n. This
explains that why the cardinality is linearly decreasing after the
peak. In Table 1, we can see that when K is larger than 8, the cardinal-
ity of the simulated dataset decreases by 290 with the increase of K.
Furthermore, the cardinality of both the real and simulated datasets
is clearly far less than 20K.

2.4. New K-string frequency or probability vector based on
K-string dictionary

After obtaining the K-string dictionary, we can redefine the K-string
frequency or probability vector. Given a group of protein sequences, let
D be the K-string dictionary of this group:D = {d1,d2, …,dc}, where di is
the K-string in D and c is the cardinality of D.

For one sequence in this group, the frequency of appearances of a
K-string di in this sequence is defined as f(di), thus the new frequency
vector of the sequence is defined as (f(d1), f(d2), …, f(dc)). Clearly, if

the length of this sequence is L, then L−K þ 1 ¼ ∑
c

i¼1
f dið Þ . Thus the

corresponding K-string probability vector is p d1ð Þ;p d2ð Þ;…;p dcð Þð Þ ¼

f d1ð Þ

∑
c

i¼1
f dið Þ

; f d2ð Þ

∑
c

i¼1
f dið Þ

;…; f dcð Þ

∑
c

i¼1
f dið Þ

0
BB@

1
CCA.

2.5. Distance measurement

Given two vectors, there are many different distances to measure
their similarity/dissimilarity (Vinga and Almeida, 2003). An angle-
based distance is widely used when dealing with DNA sequences. Let
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Table 2
50 beta-globin sequences of animal species.

Animal names Accession number

Human AAA16334.1
Goshawk P08851.1
Lesser panda P18982.1
Giant panda P18983.2
Sheep P02075.2
Duck P02114.2
Mallard P02115.1
Goose P02117.1
Rat CAA33114.1
Penguin P80216.1
Swift P15165.1
Coyote P60525.1
Catfish O13163.2
Bison P09422.1
Swan P68945.1
Buffalo P67820.1
Dog P60524.1
Chimpanzee P68873.2
Dolphin P18990.1
Goldfish P02140.1
Polar bear P68011.1
Rhinoceros P09907.1
Chicken P02112.2
Wolf P60526.1
Turtle P13274.1
Pigeon P11342.1
Black bear P68012.1
Asiatic elephant P02084.1
African elephant P02085.1
Tortoise P83123.3
Grivet P02028.1
Gorilla P02024.2
Shark P02143.1
Hippopotamus P19016.1
Horse P02062.1
Gibbon P02025.1
Whale P18984.1
Bat P24660.1
Red fox P21201.1
Marmot P08853.1
Salmon Q91473.3
Sparrow P07406.1
Pheasant P02113.1
Flamingo P02121.1
Pig P02067.3
Dragonfish ADD73488.1
Parakeet P21668.1
Zebra P67824.1
Cod O13077.2
Langur P02032.1
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α = (p1,p2, …,pn) and β = (q1,q2, …,qn) be two vectors, the cosine of
the angle between vectors α and β is defined as

cos α;βð Þ ¼

Xn
i¼1

pi � qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

pi
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qi
2

s :

This cosine distance is not sensitive to repetitions for K-string based
methods. For example, if a sequence X is compared with its double rep-
etition XX, then the corresponding two vectors of the K-string counts
will basically have the same direction in the K-string dictionary space.
Thus the angle distance between these two vectors is roughly equal to
zero. This property is of fundamental value because it automatically
filter repetitions, and thus this distance is robust with respect to dupli-
cation mutation in genome or protein. Here we adopt a distance mea-
surement D α;βð Þ ¼ 1− cos α;βð Þ

2 because it is widely used and achieved a
great success in the phylogenetic analysis of whole genomes of bacteria,
viruses, and vertebrates (Chan et al., 2010).
2.6. SVD-based protein sequence representation

We can construct the K-string frequency matrix M of a group of n
proteins. In the matrix, each protein is represented by a column of a
new K-string frequency vector based on the K-string dictionary of this
group of n proteins. Suppose that the cardinality of this K-string dictio-
nary is c, and then the matrix M is c by n:

M ¼
f 11 f 12 … f 1n
f 21 f 22 … f 2n

…
f c1 f c2 … f cn

2
664

3
775:

Compared to the original frequency matrix (20K by n), M has much
smaller size. This provides an easy tool for describing proteins and al-
lows available application of numerical linear algebra tools.

SVD, a matrix factorizationmethod, has been applied to improve the
protein frequency vectors (Stuart et al, 2002a,b).M is decomposed into
three separate matrices U, Σ, and V using SVD, that is,

M ¼ U � Σ � VT
;

where U is the c × c orthogonal matrix having the left singular vectors
ofM as its column,V is the n × n orthogonalmatrix having the right sin-
gular vectors ofM as its column, and Σ is the c × n diagonal matrix hav-
ing the singular values σ1 ≥ σ2 ≥ … ≥ σmin(c,n) of M in order along its
diagonal. The rank r of the matrix M is equal to the number of nonzero
singular values. Then the Frobenius norm of M is defined as

Mk k F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr

j¼1

σ2
j

vuut :

The Eckart–Young theorem (Eckart and Young, 1936) states that the
distance between M and its rank-m approximations (m ≤ r) is mini-
mized by the approximation Mm. Here

Mm ¼ UmΣmVm
T
;

where Um is the c × mmatrix whose columns are the firstm columns of
U, Vm is the n × m matrix whose columns are the first m columns of V,
and Σm is the m × m diagonal matrix whose diagonal elements are
the m largest singular values of M. The theorem further shows how
the norm of that distance is related to singular values of M:

M−Mmk kF ¼ min
rank Xð Þ≤m

M−Xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

mþ1 þ…þ σ2
r

q
:

This low-rank matrix approximation can improve the relative accu-
racy of protein vectors by discarding a substantial fraction of the noise
(including homoplasy) in the data (Stuart et al, 2002a). If σ1, …, σr

are the positive singular values of M, then by using Frobenius norm,
the singular vectors associated with any particular singular value

(e.g., σj) accounts for the fraction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ j
2

σ1
2þσ2

2þ…þσ r
2

q
of the data. So, choos-

ing them largest values (m b r) explains the fraction
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2þσ2
2þ…þσm

2

σ1
2þσ2

2þ…þσ r
2

q
of

the data, and it also allows the approximation of the matrix from the
firstm singular triplets:

Mm ¼ UmΣmVm
T
:

Determining the number m of ranked singular values that best
serve to separate signal from noise within the data set is challenging
(Berry et al., 1999). In this study, we choose the minimum m such

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2þσ2
2þ…þσm

2

σ1
2þσ2

2þ…þσ r
2

q
≥95% , that is, we consider less than 5% as a rea-

sonably small change to the initial matrix. Then the columns of Mm
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Fig. 4. The neighbor-joining phylogenetic tree of 50 beta-globin proteins from different animal species. The taxa of mammal proteins are marked by red color, the taxa of reptile proteins
are marked by yellow color, the taxa of avian proteins are marked by blue color, and the taxa of fish proteins are marked by green color.
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give us the improved vectors, which can be used to measure the
similarity/dissimilarity of the original proteins.

3. Results

To test that the new improved vectors obtained in this way truly in-
corporates the classification analysis of proteins, we apply it to the real
Table 3
19 NADH dehydrogenase 1 protein sequences of mammal species.

Animal names Accession number

Gibbon NC_002082.1
Gorilla NC_011120.1
Human NC_012920.1
Chimp NC_001643.1
Pygmy Chimp NC_001644.1
Sumatran Orang NC_002083.1
Bornean Orang NC_001646.1
Hedgehog NC_002080.2
Rat AC_000022.2
Mouse NC_005089.1
Rhino NC_001779.1
Donkey NC_001788.1
Horse NC_001640.1
Cow NC_006853.1
Baleen whale NC_001601.1
Fin whale NC_001321.1
Cat NC_001700.1
Gray seal NC_001602.1
Harbor seal NC_001325.1
protein dataset (290 proteins) mentioned in Section 2.3. Firstly, we try
K = 3, then the cardinality of 3-string dictionary of this dataset is
7186. So, the corresponding 3-string frequency matrix M is 7186 by
290. By using SVD mentioned in Section 2.6, we get the improved pro-
tein representation vectors. The distance matrix for the group of pro-
teins is constructed from all pairwise vectors. We use neighbor-joining
algorithm (Saitou and Nei, 1987) of MEGA 5.0 software (Tamura et al.,
2011) to construct the phylogenetic tree based on the distance matrix,
as shown in Fig. 2. The taxa of family PF03296 are marked by red
color, the taxa of family PF06924 are marked by yellow color, and the
taxa of family PF09455 aremarked by blue color.We can see that family
PF03296 and family PF09455 are mixed together. Then we try K = 4,
the cardinality of 4-string dictionary of this dataset is 41,703, far less
than 204 = 160,000. The corresponding 4-string frequency matrix M
is 41,703 by 290. Similarly, we get the phylogenetic tree as shown in
Fig. 3. We can see that the classification result is much improved; only
two taxa of family PF03296 are put into family PF09455. This illustrates
that our new method can give very high classification accuracy for
proteins. In Supplementary materials, we also give the traditional rect-
angular phylogenetic trees of Figs. 2 and 3 with more details (see
Supplementary Fig. 1 and Fig. 2).

Fifty beta-globin sequences of different species (Yau et al., 2008)
were extracted from GenBank as shown in Table 2. As we discussed in
Section 2, the original frequency vector for K = 6 has dimension of
206 = 64,000,000, which exceeded the memory limits of ordinary PC
computers. Here we use the new frequency vector based on the 6-
string dictionary. The cardinality of 6-string dictionary of these 50
beta-globins is 2051 (≪64,000,000). Thus, the corresponding 6-string
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Fig. 5. (A) The neighbor-joining tree for the 19 mammalian species based on multiple se-
quence alignment; (B) themaximumparsimony tree for the 19mammalian species based
on multiple sequence alignment.
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Fig. 6. The phylogenetic tree for the 19 mammalian species based on our new method.
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frequency matrix M is 2051 by 50. By using SVD, the minimum m such

that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2þσ2
2þ…þσm

2

σ1
2þσ2

2þ…þσ r
2

q
≥95% is 23. So, the columns of M23 ¼ U23Σ23V23

T

give us the improved protein representation vectors. In Fig. 4, we
show the phylogenetic tree of these 50 beta-globins, which is also
reconstructed by neighbor-joining program of MEGA 5.0 software. We
note that these 50 beta-globins are clearly separated into four clusters
(mammal, avian, fish, and reptile). Furthermore, the distances between
beta-globin sequences from several primate species (human, grivet,
gorilla, langur, gibbon, and chimpanzee) are very small, and they form
a subcluster in the resulting protein tree.

4. Discussion

In order to show the feasibility and efficiency of our approach, we
compare our method with multiple sequence alignment (MSA) and
other alignment-free tools. We use a new dataset including 19 NADH
dehydrogenase 1 (ND1) protein sequences of different species to test
the classification analysis results. The ND1 protein data plays an impor-
tant role in phylogenetic classification of mammals (Cao et al., 1998). In
Table 3, we gave the details of this dataset.
4.1. Comparison with multiple sequence alignment (MSA) method

We use the existing alignment tool ClustalW to make the
multiple sequence alignment for these 19 protein sequences. We
choose the BLOSUM30 amino acid substitution matrix in this pro-
cess. Figs. 5(A and B) show two phylogenetic trees based on the
alignment result with neighbor-joining and maximum parsimony
methods. Both trees are reconstructed by MEGA 5.0 software. On the
other hand, we still use our new frequency vector based on 6-string dic-
tionary. The cardinality of 6-string dictionary of these 19 protein se-
quences is 1849. Thus, the corresponding 6-string frequency matrix M

is 1849 by 19. By using SVD, theminimumm such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2þσ2
2þ…þσm

2

σ1
2þσ2

2þ…þσ r
2

q
≥95% is 11. So, the columns ofM11 ¼ U11Σ11V11

T give us the improved
protein representation vectors. Here we still adopt the distance mea-

surement D α;βð Þ ¼ 1− cos α;βð Þ
2 to get the distance matrix for these

vectors. In Fig. 6, we show the phylogenetic tree of these 19 sequences,
which is reconstructed by neighbor-joining program of MEGA 5.0 soft-
ware. We can see that our method obtains very similar results as MSA
does. For example, the distances between sequences from several pri-
mate species (Sumatran Orang, Bornean Orang, Gibbon, Gorilla, Human,
Chimp, and Pygmy Chimp) are very small, and they form a subcluster
in the resulting protein tree.

4.2. Comparison with another alignment-free method

In 2003 Otu and Sayood (Otu and Sayood, 2003) developed an
alignment-free sequence distance measure for phylogenetic tree con-
struction based on the relative information between the sequences
using Lempel–Ziv complexity. In Fig. 7, we show the neighbor-joining
phylogenetic tree of these 19 sequences by using Otu and Sayood's dis-
tancemethod.We see that this method can also get similar results with
our approach andMSAmethods. Thus, ourmethod brings a novel direc-
tion to comparative proteomic analysis at the sequence level. The novel
concept “K-string dictionary” allows us to use amuch lower dimension-
al frequency or probability vector to represent a protein, and thus save
large amounts of computer memory space. With this approach, we
can get a much smaller frequency matrix. This provides an easy and
precise tool for describing proteins andmakes it possible to use existing
numerical linear algebra tools.

In this study we represent a protein sequence as a low dimensional
numerical vector, butwedonot consider any amino acid physicochemical
properties in the vector. For example, the amino acid hydrophobicity

image of Fig.�5


Donkey

Horse

Rhino

Cat

GraySeal

HarborSeal

Cow

BaleenWhale

FinWhale

Hedgehog

Rat

Mouse

SumatranOrang

BorneanOrang

Gibbon

Gorilla

Human

Chimp

PygmyChimp

0.05

Fig. 7. The phylogenetic tree for the 19mammalian species based onOtu and Sayood's dis-
tance method.

256 C. Yu et al. / Gene 529 (2013) 250–256
plays an important role in protein classification (Fauchere and Pliska,
1983). Thus further studies will be needed to combine some amino acid
properties with the frequency of K-string in the vector. Furthermore, we
adopt SVD to improve the new low dimensional frequency vector. The
computational complexity for SVD is usually high. Thus, other numerical
methods inmatrix theory deserve further consideration and investigation
in the future work.

5. Conclusion

In this paper, we propose a novel concept, the “K-string dictionary”,
to solve the high dimensional vector problem in K-string-based protein
sequence comparisons. It allows us to use a much lower dimensional
frequency or probability vector to represent a protein, and thus signifi-
cantly reduce the computer memory requirements for their implemen-
tation. By using this approach, we can get much a smaller frequency
matrix. This provides an easy and precise tool for describing proteins
and makes it possible to use existing numerical linear algebra tools.
The computer code used to prepare this paper is available from the
author upon request.
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