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Multiple sequence alignment (MSA) is a prominent method for classification of DNA sequences, yet it is
hampered with inherent limitations in computational complexity. Alignment-free methods have been
developed over past decade for more efficient comparison and classification of DNA sequences than
MSA. However, most alignment-free methods may lose structural and functional information of DNA
sequences because they are based on feature extractions. Therefore, they may not fully reflect the actual
differences among DNA sequences. Alignment-free methods with information conservation are needed
for more accurate comparison and classification of DNA sequences. We propose a new alignment-free
similarity measure of DNA sequences using the Discrete Fourier Transform (DFT). In this method, we
map DNA sequences into four binary indicator sequences and apply DFT to the indicator sequences to
transform them into frequency domain. The Euclidean distance of full DFT power spectra of the DNA
sequences is used as similarity distance metric. To compare the DFT power spectra of DNA sequences
with different lengths, we propose an even scaling method to extend shorter DFT power spectra to equal
the longest length of the sequences compared. After the DFT power spectra are evenly scaled, the DNA
sequences are compared in the same DFT frequency space dimensionality. We assess the accuracy of the
similarity metric in hierarchical clustering using simulated DNA and virus sequences. The results
demonstrate that the DFT based method is an effective and accurate measure of DNA sequence
similarity.
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1. Introduction provides insights into the hierarchical relationships among genes,

genomes and organisms, and thus becomes a fundamental

With the advent of next generation sequencing technologies, a
large volume post-genomic DNA sequence data are available, it has
become increasingly important to develop effective and accurate
similarity measure for comparing DNA sequence data. The dis-
covery of novel biological knowledge from the ab initio analysis of
DNA sequence data relies upon sequence comparison, classifica-
tion, and clustering techniques. Phylogenetic tree analysis
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research approach in structure comparison and function analysis
of biological sequences (Eisen, 1998). Construction of a phylo-
genetic tree of DNA sequences has two phases. The first phase is to
construct distance matrix from pairwise distance measure of the
DNA sequences using either multiple sequence alignment (MSA)
or alignment-free methods on DNA sequences. The second phase
is to construct the phylogenetic tree from the distance matrix
using UPGMA or neighbor-joining tree construction method.

The traditional algorithms for comparing biological sequences
are based mostly on sequence alignment. MSA plays a fundamen-
tal role in sequence comparison and is typically used to cluster
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DNA and protein sequences (Warnow, 2013), but it has high
computational complexity and requires large processing memory
for long DNA sequences (Edgar and Batzoglou, 2006; Kemena and
Notredame, 2009). In addition, most MSA methods try to minimize
the number of insertion or deletion gaps in DNA sequences;
therefore, MSA may create misalignments if the sequences contain
weak homologous regions or mutations that involve longer seg-
ments of genomic sequences.

To overcome these problems in MSA, considerable researches
on alignment-free methods have been developed. Blaisdell (1986)
first proposed an alignment-free method based on the frequency
of k-mer words of DNA sequences. This method is now widely
used as an alignment-free method for genome analysis (Vinga and
Almeida, 2003; Sims et al., 2009; Jun et al., 2010; Comin et al.,
2012). The k-mer words in a DNA sequence are all possible
permutations of length k from four nucleotides A, T, C, G.
For example, if k=5, there are 4° =1024 such possible 5-mer
fragments. The k-mer words method constructs fixed-length fea-
ture vectors by counting the frequencies of occurrence of all k-mer
words in DNA sequences. The pairwise distances of the k-mer
frequency vectors of different DNA sequences are measured by
different distance metrics such as the Euclidean distance (Blaisdell,
1989) and Mahalanobis distances (Wu et al., 1997), or by informa-
tion content measures such as Kolmogorov complexity (Li et al.,
2001) and Lempel-Ziv complexity (Otu and Sayood, 2003). Dai et al.
(2011) studied numerical characteristics of word frequencies, pro-
posed a novel similarity measure by both the word frequencies and
overlapping structures of words, and added directly k-word dis-
tribution statistics to Markov model to improve the performance of
the k-mer method (Dai et al.,, 2008). This method is successfully
used in many applications in biological sequence analysis, however,
those distances depend considerably on the parameter k, and how
to choose the optimal k that is dependent on varied degrees of
divergence in sequence data (Jun et al, 2010). It also needs to
address the issue for high computation complexity due to large
number of k-mer string matching and high dimension of resulted
frequency vector for large k-mer sizes. More recent developments
in sequence comparison employ statistical and graphic properties of
DNA and protein sequences (Dai et al., 2013; Qi et al., 2010; Yu et al,,
2010; Deng et al., 2011). Although current alignment-free methods
may solve the problems that MSA brings up, these alignment-free
methods often require high computation time and memory space
when words size k is large. More importantly, these methods also
lose information within DNA sequences and have limited accuracy
in clustering sequence data. It is therefore of an advantage to derive
a similarity distance directly from the full information contents of
DNA sequences.

Discrete Fourier Transform (DFT), a broadly used digital proces-
sing approach, may reveal hidden periodicities after transforming
data from time domain to frequency domain space. The DFT
method has been extensively used to study periodicities and
repetitive elements in DNA sequences, genomes and protein
structures (Anastassiou, 2001; Marhon and Kremer, 2011;
Sharma et al., 2004; Marsella et al., 2009). One of the main results
from applications of DFT in DNA sequence studies was the
3-periodicity property in DNA sequences, which gives a prominent
peak in the Fourier power spectrum of protein coding-regions
at frequency f=1/3 (Anastassiou, 2001). The power spectrum at
f=1/3, the characteristic of protein coding regions in DNA
sequences, reflects the non-uniform distribution of nucleotides
in the three codon positions in the sequences (Yin and Yau, 2005).
The 3-periodicity property is used to recognize coding and non-
coding regions in DNA sequences (Tiwari et al., 1997; Yin and
Yau, 2007; Yin et al., 2006). Because the DFT spectrum of a DNA
sequence reflects the distribution of nucleotides on different
periodic positions, it not only reveals the periodicities but also

offers different views of data in frequency domain space. Due to
the fact that the power spectrum conserves energy levels of signal
in frequency domain according to Parseval's Theorem (Agrawal et
al., 1993), the DFT method has been employed in efficient
similarity searching in time-series and sequence databases and
thus has potential as an alignment-free method for hierarchical
clustering genome sequences.

Time series clustering has become an important topic, particu-
larly for similarity search amongst long time series such as those
arising in bioinformatics. To measure the distance between two or
more time series of different lengths in Euclidean space, Dynamic
Time Warping (DTW) has been applied in time series comparisons
to resolve the difficulty caused when clustering time series of
varying lengths (Gupta et al., 2005). DTW is time computation
expensive for comparing multiple sequences. To overcome the
heterogeneous lengths problems in DNA sequences, the most
prominent method is to use DTW (Kruskal, 1983). But DTW may
generate false information. In addition, DTW is only applicable to
time series and cannot be used to compare two sequences in
frequency spaces, where global hidden periodicity and periodic
domain structures can be revealed and compared. The Euclidean
distance is the most common method for discerning similarity in
time series clustering, and it requires that the time series being
compared are of exactly the same length dimensionality. New
methods to address the different length problems are critical to
compare and match time series in the Euclidean distance space.

In this study, we employ DFT power spectrum as a similarity
measure for DNA sequences. The similarity metric uses the full
Fourier power spectra of DNA sequences due to information
congruence between time and frequency domain of the DNA
sequences. To solve the length heterogeneous problem in DFT
spectra of different sequence lengths, we propose an even scaling
approach to extend short sequence to long sequence before
comparing the absolute distance of power spectra for DNA
sequences of different lengths. We present comprehensive experi-
ments demonstrating the applicability and effectiveness of the
proposed method in the hierarchical clustering of a variety of DNA
sequences and genomes.

2. Methods and algorithms

2.1. Numerical representations of DNA sequences by 4-D binary
indicators

DNA molecules are composed of four linearly linked nucleo-
tides: adenine (A), thymine (T), cytosine (C), and guanine (G).
A DNA sequence can be represented as a permutation of four
characters A, T, C, G at different lengths. The character strings of
DNA molecules are mapped into one or more numerical
sequences. One of the methods in literatures is to use binary
indicator sequences (Voss, 1992). A DNA sequence, denoted as,
s(0), s(1), ..., sS(N-1), can be decomposed into four binary indicator
sequences, ua(n), ugn), udn), and ug(n), which indicate the
presence or the absence of four nucleotides, A, T, C, and G, at the
n-th position, respectively. The indicator mapping of DNA
sequences is defined as follows:

1, sm=«a
0 otherwise

() = {

where a€A,C,G,T,n=0,1,2,....N—1. The four indicator
sequences correspond to the appearance of the four nucleotides
at each position of the DNA sequence. For example, the indicator
sequence, us(n) =0001010111..., indicates that the nucleotide A is
present in the positions of 4, 6, 8, 9, and 10 of the DNA sequence.
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2.2. Discrete Fourier Transform

Discrete Fourier Transform (DFT) is the transformation of N
observation data (time domain) to N new values in frequency
domain. DFT spectral analysis of DNA sequences may detect any
latent or hidden periodical signal in the original sequences. It may
discover approximate repeats that are difficult to detect by
algorithms based on tandem repeat search. Let Uy, Ur, Uc, and Ug
be the DFT of the binary sequences ug4, ur, Uc, and ug, respectively;
the DFT of the numerical series u, of length N is defined as

N-1 X
Uk = X ux(me™ ‘r/min O
n=0

where i=+/—1. The DFT power spectrum of the signal u, at the
frequency k is defined as

PSky= Y Uk k=0,1,2,..,N—-1 )
G}

xe(ATC,

where U[K] is the k-th DFT coefficient.

Fourier Transform gives a unique representation of the origi-
nal underlying signal in frequency domain. The frequency
domain vector Uy(k) contains all the information about u,(n).
Parseval's Theorem for Fourier Transforms implies equivalence in
the energy levels of signal in time and frequency domain. This
property is the main driving force behind the new distance
metric using DFT.

The power spectrum at frequency f=N/3 of a DNA sequence
depends on the variance of nucleotide distributions in the three
codon positions (Yin and Yau, 2005). From the DFT definition of an
indicator sequence, the power spectrum is large when the nucleo-
tide has a significant tendency of appearing about every N/k
positions. In particular, when k= N/3, namely « tends to appear
at a certain codon position. This leads to a prominent peak at
frequency f=N/3. In one aspect, the power spectrum of a DNA
indicator sequence PS(k) represents the nucleotide distributions in
every k-th position of a DNA sequence (Fukushima et al., 2002).
This factor may contribute significantly to discrimination of
sequences when the distribution of nucleotides is non-even.
Otherwise, when the power spectrum is plain, it still serves as a
transform of indicator sequences which contains distribution
information of nucleotides. Because the Fourier power spectrum
contains nucleotide distribution information, we propose to
employ the DFT power spectra as similarity metric for comparing
DNA sequences.

2.3. Even scaling of Fourier power spectrum of different lengths

From the definition of Fourier power spectrum, DNA sequences
of different lengths have power spectra of different lengths and
thus the power spectra cannot be used as a direct comparison of
DNA sequences. In the literature, a solution is to use partial spectra
from the beginning few frequencies or last few frequencies (Wu
et al, 2000; Wang et al., 2013; Rafiei and Mendelzon, 1998), but
this approach may lose information for sequence comparison. To
overcome the above problem, we propose here the following even
scaling method to transform DFT power spectrum of different
lengths into the same length. We take one or two consecutive data
elements in the shorter data series to evenly stretch the short data
series to a new length. In detail, let PSy denote the original power
spectrum of length N and PS,, denote the extended power
spectrum of length M from even scaling of PSy. The symbol [...]
denotes rounding integer operation. The even scaling operation on

the original power spectrum PSy to PSy is defined as follows:

PSn(k), if k=0
L $ psui
PSy(ky={ P—a+1;%, "
_[kN]  [(k=DN] ..,
wherep_{ﬁ],q_{T] if k=1:M-1and M <2N

For even scaling, the new length M is determined according to the
longest length of the DNA sequences in a data set; for example,
when constructing a phylogenetic tree of genomes, each DFT
power spectrum of genomes is evenly scaled to the longest length
among the compared genomes. After even scaling, the DFT spectra
of the DNA sequences being compared are fitted into a new
M-dimensional genome space. The pairwise similarity distance
between two DNA sequences is measured as the Euclidean
distance in the scaled genome space. Though the proposed even
scaling method is applied to power spectrum sequence, it may also
be used in even scaling other time series.

2.4. Algorithm for computing pairwise DFT distances of DNA
sequences

A metric d(x,y) is a non-negative function on a set of pairs (x, y)
of finite sequences over a fixed alphabet. A distance metric of DNA
sequences can be used as a measure of the evolutionary change
from the sequence x to y. The evolutionary changes are reversible,
and the fewest number of evolutionary changes is from x to y
directly. Therefore, a metric is reflective, symmetric and transitive
(Waterman, 1976; Otu and Sayood, 2003). A metric space is a set X
together with a metric d on it. For example, the set of real numbers
R with the function d(x,y) = |x—Y| is a metric space. We have the
following conditions that a true metric shall satisfy in the metric
space:

(1) d(x,y) >0 for all x,y € X; moreover, d(x,y)=0, if and only if
X=y.

(2) d(x,y)=d(y,x) for all x,y e X.

(3) The triangle inequality is satisfied, i.e., d(x,y) <d(x,2)+d(z,y)
forall x,y,ze X

The triangle inequality is a property of metric space. It specifies
that direct path between two sequences cannot be longer than
a less-direct path involving other intermediate sequence. If a
distance metric that does not conform to this relation is nonmetric
and is internally inconsistent (Wheeler, 1993), then we will use the
metric definition to verify if the proposed DFT distance is a true
metric for DNA sequences. The most common distance measure
for time series is the Euclidean distance, which is the optimal
distance measure for estimation if signals corrupted by additive
Gaussian noise (Agrawal et al., 1993; Yu et al., 2011). The Euclidean
metric on R" x R" - R is defined by the function d:

(X1 oo Xn). V1 oY) = ,/ki] *— )’

After even scaling the DFT spectrum, we measured the dis-
tances of DNA sequences using the Euclidean distance of the full
DFT power spectra of the DNA sequences. The distance measure in
Fourier frequency domain in this paper excludes the zeroth term
in the power spectrum because it is just the sum of data,
otherwise, it may affect the accuracy of the measure because the
zeroth power spectrum value usually is much larger than the rest
of the power spectrum. Since we embed all the DNA sequence
information via their full power spectrum into the same Euclidean
space, the metric we propose is true induced the Euclidean
distance in this Euclidean space.
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The algorithm for computing pairwise DFT distances of DNA
sequences SEQ1, SEQ2, and SEQ3 is as follows.

Algorithm 1. Algorithm for computing pairwise distances of DNA
sequences in Fourier frequency domain.

Data: DNA SEQ1(length N1), SEQ2(length N2), SEQ3(length M),
with M > N1, M > N2

Result: Pairwise distance of SEQ1, SEQ2 and SEQ3

Steps
1. Convert SEQ1, SEQ2, SEQ3 to binary indicator sequence BS1,
BS2, BS3
2. Compute Fourier power spectrum PS1, PS2, and PS3M from
BS1, BS2, BS3
3. Even scale PS1 as PS1M from length N1 to length M
4, Even scale PS2 as PS2M from length N2 to length M
5. Compute the Euclidean distance d(PS1M,PS2M), d(PS2M,
PS3M), d(PS1M,PS3M) in an M-dimensional space

2.5. Construction of phylogenetic trees

For comparison purpose, we used the following similarity
measures methods: (1) The proposed even scaled DFT similarity
measure implemented in MATLAB R2011b. (2) Alignment-free
k-mer words method: The pairwise distance of the k-mer frequency
vectors of different DNA sequences was measured by the Euclidean
distance. The k-mer words method used a mer size as 7 in all the
tests. The k-mer words method used the implementation as MATLAB
NACS toolbox v4.1 (Vinga and Almeida, 2003). (3) Pairwise sequence
alignment method with the Jukes-Cantor genetic distance measure:
The Jukes-Cantor genetic distance is the maximum likelihood esti-
mate of the number of substitution that occurred per site over the
course of one sequence evolving from another. The pairwise sequence
alignment method was performed using MATLAB R2011b bioinfor-
matics toolbox. (4) MSA using Clustal W multiple sequence align-
ments method and the Jukes—Cantor genetic distance: The Clustal W
method was performed using MEGA 6.0 (Tamura et al, 2007;
Thompson et al., 1994).

The phylogenetic trees were constructed from distance
matrices using UPGMA tree construction method. The UPGMA
tree works by building the phylogenic tree bottom up from its
leaves for the given set of species. It is basically a clustering
algorithm with each species forming a cluster first, then two
smaller clusters of nodes are grouped together recursively until
there is only one phylogenic tree which contains all the species.

The methods and algorithms in this paper were implemented
in MATLAB language and are available from the URL: https://sites.
google.com/site/jtb2014yin/.

3. Results and discussions

3.1. Comparison of sequence similarity from Fourier frequency
domain

Protein-coding regions of a DNA sequence exhibit a 3-base
periodicity due to the non-uniform distribution of nucleotides in
the three codon positions. The 3-base periodicity is rarely
observed in intron regions. This property has been used in
identifying the locations of protein-coding genes in unannotated
sequence (Ficket and Tung, 1992). Before assessing the effective-
ness of the proposed similarity metric based on DFT power spectra
in comparing DNA sequences, we evaluated the consistency of DFT
power spectra by even scaling of DNA sequences which contain
protein coding regions (exons) and intron regions. The even-
scaling method was applied to the DFT power spectra of the

sequences to evenly extend the spectra to longer sizes. Fig. 1 is the
DFT power spectrum of an exon of 731 bp and its evenly scaled
power spectrum to the new length of 1031 bp. Fig. 2 is the DFT
power spectrum of the first intron of human being myeloid cell
leukemia protein 1 (350 bp) and its even-scaled power spectrum
to the new length of 600 bp. Figs. 1 and 2 show that evenly scaled
DFT power spectra resemble the original spectra before scaling.
The basic statistical values for the spectra after even scaling are
similar. For example, the mean values for the intron power
spectrum before and after even scaling are 262.5845 and
262.712, respectively; the standard deviations for the intron power
spectrum before and after even scaling are 150.5198 and 127.4096,
respectively. These results demonstrate strong signal consistency
by the even scaling method in terms of 3-base periodicity signal in
the exon sequence and random power spectrum signal in the
intron sequence.

A common similarity measure between two DNA sequences is
edit distance, which is defined as the minimum number of
insertions, deletions or substitutions of nucleotides needed to
transform one sequence into the other. The edit distance can be
obtained by optimal alignment of DNA sequences. Because DFT is
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Fig. 1. DFT power spectrum of Bubo bubo voucher NHMO-BC120 cytochrome
oxidase subunit 1 (COI) gene. The figures plot only the first half DFT spectrum of the
gene. (a) Original DFT power spectrum and (b) even scaled DFT power spectrum.
GenBank ID: GU571285.
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Fig. 2. DFT power spectrum of the first intron of myeloid cell leukemia protein 1 of
Homo sapiens (human). The figures plot only the first half DFT spectrum of the gene.

(a) Original DFT power spectrum and (b) even scaled DFT power spectrum.
GenBank ID: AAG00896.

an orthonormal time series transformation, which preserves
lengths of vectors and angles between vectors, if we envision the
input time series of length N as a vector in an N-dimensional
space, applying DFT can be seen as a rotation of the space axes.
These transformations do not affect the length of the original
series according to Parseval's theorem, nor the Euclidean distance
between any pair of the time series. Therefore, applying the
Euclidean distance using all DFT coefficients gives the same
classification performance as applying it using all original time
features. Because we use full DFT spectrum in frequency domain,
by Parseval's Theorem, the distance measure by DFT in frequency
domain is expected to relate the edit distance in DNA sequences in
time domain. Though the Euclidean distance of DFT power spectra
in the same Euclidean space mathematically reflects the difference
between two sequences, due to even scaling operation on the full
power spectra DNA sequences, we use the following computa-
tional simulations to verify that the DFT distance of the scaled
power spectrum truly reflects the similarity of the DNA sequences.
To this end, we tested the correlation of the DFT distances and
edit distances of deletions and substitutions on simulated DNA
sequences.

We assessed the accuracy of the proposed similarity distance
metric using a series of artificial deletion mutations of a DNA

a
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>
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Fig. 3. (a) Correlation of the DFT distance and the lengths of deletion mutants of

DNA sequences. (b) Correlation between DFT distance and the number of point
mutations of DNA sequences.

sequence and measured the correlation of the similarity distance
and deletion sizes in these mutants. An intron sequence was
partially deleted from 3’ end to generate different artificial
mutants. The deletion size is from 1bp to 100 bp. Then we
measured the sequence distance between the mutants and the
original sequence by the proposed DFT method. The result in Fig. 3
(a) is the correlation between the deletion lengths and the
distances between the corresponding deletion mutants and origi-
nal sequence. The result shows a sound linear relationship of DFT
distances and the deletion mutations' lengths. This result shows a
robust and reliable behavior of the DFT distance metric in
measuring the different lengths of sequences.

The accuracy of the similarity distance metric was also assessed
using a series of point mutations in DNA sequences. An intron
sequence has introduced many point mutations randomly and the
derived mutated sequences were used in the test. We measured
the sequence distance between the mutants and the original
sequence by the proposed DFT method. Fig. 3 is the correlation
between the amount of point mutations and the distance between
the corresponding point mutants and original sequence. The result
in Fig. 3(b) shows sound linear relationship of DFT distances and
the amount of point mutations. This result demonstrates the
accuracy of the DFT distance metric on the difference of nucleotide
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mutations on the same length DNA sequences. The above results
demonstrate an equivalency in DFT distance and edit distance for
DNA sequence.

For a distance metric, the triangle inequality is a property of
metric space. Distance that does not conform to this relation is
nonmetric and is internally inconsistent. To verify if the distance
metric satisfies the triangle property, we randomly selected 200
exons from the Exon-Intron Database (EID) (Shepelev and
Fedorov, 2006) and measured pairwise distance of exons. For
three randomly chosen exons as a test case, let d 1, d 2 and
d 3 be the three distances measured in DFT frequency domain
and d 3 be the largest distance in a test case. We compared the
value of d 3 and d 1+d 2 to validate the triangle property.
Fig. 4 shows that all the triangle property test cases satisfy the
inequality, d3 <d1+d2. The results demonstrate that the DFT-
based distance is a valid distance measure.

3.2. Simulation of construction of phylogenetic trees on different
DNA mutations

To verify if the similarity distance can be used for hierarchical
clustering DNA sequences, we generated different mutations in

24

22

Distance by DFT

0 100 200 300 400 500 600 700 800 900 1000

DNA sequence cases

Fig. 4. Triangle property test of the DFT distances of DNA sequences.

Table 1

DNA sequences and constructed phylogenetic trees from the
pairwise DFT distances of these mutants. We used an intron
sequence as base sequence (GeneBank ID: AAG00896, 350 bp)
and generated two new sequences A and B from the intron
sequence using point mutations. 10% of mutations were intro-
duced into A and B. We then similarly evolved A and B into
different mutants by four different mutations (substitutions, dele-
tion, insertion, and transposition). Table 1 is the description on the
simulated DNA sequences with different mutations. UPGMA phy-
logenetic trees of the mutations are built from the distance
matrices using the proposed DFT based method, alignment-free
k-mer words method and pairwise sequence alignment method,
as shown in Fig. 5(a), (b) and (c), respectively.

For the different substitution mutations of the sequence A,
Fig. 5(a)-(c) shows that the three methods can correctly classify
and cluster them with correct tree topology. All the three methods
create same tree topology corresponding to the numbers of
substitution mutations in the DNA sequences. This indicates that
the DFT similarity measure has the same capacity as the k-mer
method and MSA method have to identify and measure the
distances between substitutions. For deletion and insertion muta-
tions of the sequence B, Fig. 5(a)-(c) shows the topological
differences in DFT based measure and k-mer method and MSA
method. Deletion and insertion are two serious mutations which
are different from substitutions and most deletion and insertion
may impact significant changes on phenotypes. Fig. 5(a) shows
that DFT method can clearly separate the 5NT substitutions from
5 bp deletion or insertion mutations, but k-mer and MSA method
cannot identify these deletion/insertion mutations from substitu-
tions, mixing them in same branches (Fig. 5(b) and (c)). For
transposition mutations, Fig. 5(a)-(c) also shows the topological
differences in DFT based measure and k-mer method and MSA
method. Transposition and insertion/deletion are different from
substitutions because they cause serious phenotype changes and
may be detrimental mutations in hosts. Fig. 5(a) shows that DFT
method can clearly separate the 5 bp transposition from both
substitutions and insertion/deletion mutations, but k-mer and
MSA method cannot separate transposition mutant from substitu-
tions, mixing them in same branches as shown in Fig. 5(b) and (c).

The possible cause of the problem is that the k-mer method
may lose spatial positions information of nucleotides in DNA
sequences. As an illustrative example, an insertion of nucleotide
A into a short DNA sequence, AACAAAACG, at two different

DNA sequence mutation description in simulation tests.

Sequence name

Description

Aloriginal
A/substitution/2NTs/1
A/substitution/2NTs/2
A/substitution/5NTs/1
A/substitution/5NTs/2
A/substitution/10NTs/1
A/substitution/10NTs/2
B/original
B/substitution/2NTs/1
B/substitution/2NTs/2
B/substitution/5NTs/1
B/substitution/5NTs/2
B/substitution/10NTs/1
B/substitution/10NTs/2
B/deletion/5bp/51:55
B/deletion/5bp/101:105
B/insertion/5bp/51:55
B/insertion/5bp/101:105
B/transposition/5bp /50— 150
B/transposition/5bp /50 — 250

Generated from AAG00896 (GeneBank ID, 350 bp)
2 Random nucleotide substitutions in A

2 Random nucleotide substitutions in A

5 Random nucleotide substitutions in A

5 Random nucleotide substitutions in A

10 Random nucleotide substitutions in A

10 Random nucleotide substitutions in A
Generated from AAG00896 (GeneBank ID, 350 bp)
2 Random nucleotide substitutions in B
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Fig. 5. Clustering analysis of different mutations by phylogenetic trees of simulated
DNA sequences in Table 1. (a) The DFT distance, (b) the k-mer words, (c) pairwise
sequence alignment.

positions, 1 or 6, the resulted insertion mutants are AAACAAACG
and AACAAAAAG, but the two different mutants have the same
k-mer frequency profile [AAA,AAC,ACA, CAAACG,...1=1[2,2,
1,1,1,0,...]. MSA method only captures adjacent nucleotide
sequence similarity and thus cannot recognize gene structure

rearrangements. DFT based method reflects the nucleotide dis-
tribution on the positions in DNA sequences and can capture the
fine characteristics of the sequences and thus recognize different
types of mutations. Both k-mer method and MSA are mainly based
on the orderings of nucleotides appearing in the sequence, but do
not carry full position information of the sequences, thus similarity
measures from k-mer and MSA are less reliable for sequence
rearrangements. This result demonstrates that DFT similarity
measure may have some special capacity to distinguish different
mutations, whereas both k-mer and sequence alignment may miss
these differences.

3.3. Construction of phylogenetic trees on individual genes

To test the utility of the proposed DFT distance measurement
on individual genes, we used the NADH dehydrogenase subunit
4 genes of 12 species of four different groups of primates. The data
source consists of four species of old-world monkeys (Macaca
fascicular, Macaca fuscata, Macaca sylvanus, Macaca mulatta), one
specie of new-world monkeys (Saimiri scirueus), two species of
prosimians (Lemur catta, Tarsisus syrichta), and five hominoid
species (Human, Chimpanzee, Gorilla, Orangutan and Hylobates)
(Qi et al, 2010). In Fig. 6(a), the phylogenetic tree from DFT

0 4 Lemur catta
a

1 Tarsisus syrichta

L o { Chimpanzee

L ‘+ o { Human

L a 1 Gorilla

L o o Hylobates

L ) 1 MacacaB fuscata

L _"H:: 1 MacacaC mulatta
L a1 MacacaA fascicular

r o { Macaca sylvanus

F a1 Orangutan

T
o

Saimiri sciureus

0 01 02 03 04 05 06 07 08 09

Similarity distance

L a - Lemur catta
L o A Tarsisus syrichta
L + a1 Hylobates
L a1 Orangutan
L a - Chimpanzee

[ #
L a4 Human
L a 1 Gorilla

—e

L ) 4 MacacaC mulatta
L o { MacacaA fascicular

F a4 Macaca sylvanus

L a - Saimiri sciureus

0 01 02 03 04 05 06 07 08 09

Similarity distance

Fig. 6. Phylogenetic tree of 12 primate species by the DFT measure on NADH
dehydrogenase subunit 4 gene. (a) Original 12 primates gene sequences,
(b) Original 11 primates gene sequences and Orangutan with deletion mutation
recovered by insertion C at position 558.
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Jukes-Cantor distance using MEGA 6.0.

method of these 12 species is generally consistent with the
previous works with one exception that Orangutan is far from
hominoid species. To investigate the reason of this exception,
using sequence alignment by MEGA, we found that there is a base
deletion mutation at position 558 in the NADH dehydrogenase
subunit 4 of Orangutan compared with the segments from Human,
Chimpanzee, and Gorilla (Fig. 7). If this deletion is recovered by
inserting nucleotide C at position 558, the phylogenetic tree
constructed from DFT method is the same as those from k-mer
method and MSA method as shown in Figs. 6(b), and 8(a) and (b).
The phylogenetic trees using the k-mer method and MSA method
on the segments of Orangutan before and after deletion mutation
recovery are the same. These results indicate that DFT based
method can identify a single nucleotide deletion, but k-mer
method and MSA method cannot recognize the difference of
deletion mutation and its recovery. These results explain the
differences of the phylogenetic trees by the DFT similarity measure,
k-mer words method, and MSA method. This case study on real DNA
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Fig. 9. Phylogenetic tree of influenza A viruses using the DFT distances.

sequence is consistent with previous simulation results, demonstra-
ting that DFT based method can reveal the difference in phylogenetic
tree caused by different mutations.

We assessed the effectiveness of the DFT metric in measuring
individual gene level. In the test, we used Influenza A virus
neuraminidase (NA) gene because of its association with pandemic
influenza and a wide range of natural hosts, including man, birds,
and other animals. We constructed phylogenetic tree based on
pairwise DFT distance of the segment 6 neuraminidase (NA) gene
of different influenza A strains. Figs. 9 and 10 are the phylogenetic
trees of influenza A virus constructed by the proposed DFT method
and sequence alignment method with Jukes-Cantor distance,
respectively. We used two different sequence alignment methods:
one was from MATLAB 2011b bioinformatics toolbox and the
other was from Clustal W in MEGA 6.0. Two sequence alignment
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Fig. 10. Phylogenetic tree of influenza A viruses using MATLAB pairwise sequence
alignment and Jukes-Cantor distances.

methods generated same results (Fig. 10 here and Fig. A1 in
supplementary material). Both trees show correct grouping of
different virus subtypes H7N9, H11N9, H3N2, and HI1NT1. The tree
from DFT distance shows clear branch difference than the tree
from the Jukes—Cartor distance. The virus of highly homologous
sequences such as A/lllinois HIN1 virus, 06/2012, 08/2012, and 01/
2012, 07/2012 cannot be separated by sequence alignment mea-
sured by Jukes-Cartor method, but they are clearly separated with
correct hierarchical relationship in the tree of DFT method. The
other example in the figure is that the N7N9 virus mutants in
China 2013 can only be clearly separated in the tree of DFT
method. The hierarchical relationship among the H7N9 virus
mutants in China is in agreement with the geographic distribution
of the virus and the epidemiological investigation from previous
findings (Xiong et al., 2013). Thus, the DFT tree can display clear
levels of hierarchy and relationship among different viruses, but
Jukes-Cantor cannot have clear spatial separation of similar
species in the tree. These results demonstrate the superiority of
the proposed DFT method on the existing sequence alignment
methods due to the fact that the DFT distance is from calculation
of all the sequence information and does not lose any sequence
information after Fourier transform.

3.4. Construction of phylogenetic trees on whole genomes

We evaluated and applied the proposed DFT similarity measure
on hierarchical clustering genomes, which contain different genes
and non-coding regions. The test genomes were 80 different
human rhinovirus (HRV) genomes. The DFT distances between
any two HRV species were measured after even scaling each DFT
spectrum to the longest genome size among all compared HRV
genomes. The pairwise DFT distances were used to construct a
similarity matrix in construction of the phylogenetic trees by
UPGMA method (Sneath et al., 1973). To compare the effectiveness
between DFT distance metric and sequence alignments in hier-
archical clustering, we used the Jukes-Cantor sequence alignment
model of DNA sequence evolution (Jukes and Cantor, 1969). The
Jukes-Cantor method assumes that every site evolves independent
of the others, so it suffices to analyze one site at a time. It also
assumes that every base (i.e. the purines A and G and the
pyrimidines C and T) has a constant probability per unit time of
changing into each of the others bases. Fig. 11 is the phylogenetic
tree of HRV genomes constructed by DFT distances. The GenBank
access IDs for the virus are provided as supplementary material
(Palmenberg et al., 2009). The result in Fig. 11 shows correct
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Fig. 11. Phylogenetic tree of HRV genomes by the DFT distances.
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Table 2
Performance comparison by benchmark test on 80 HRV genomes.

Method Time (min) Parameters

DFT 19.50 Max length: 7458 bp

k-mer 7413 NASC MATLAB toolbox, k=7
MSA 897.0 Clustal W

grouping of different virus types HRV A, B and C, and HEVC. The
tree from the DFT method is consistent with k-mer and MSA
methods (data from k-mer and MSA shown in supplementary
materials) (Palmenberg et al., 2009). The results demonstrate that
the DFT distance can be used successfully in comparing and
classifying both individual genes and whole genomes.

We compared the performance of three methods, DFT distance
measure, k-mer distance measure and MSA, on measuring the
pairwise distances or align the sequences among the 80 HRV
genomes. The performance was tested on the same hardware
configurations. The benchmark tests in Table 2 show that the DFT
method reduces 73.7% processing time of the k-mer method and
achieves accurate results as in Fig. 11. Matching k-mer from large
DNA sequence takes significant processing time and memory
resource. This result is consistent with previous study (Melsted
and Pritchard, 2011). The table also shows that MSA needs 13 h to
align the same set of genomes. The time spent in MSA is much
longer than DFT and k-mer methods. Though DFT achieves better
performance compared with k-mer and MSA, it still has a
relatively high computational complexity for very long DNA
sequence such as large whole genomes. Computing DFT for large
values of N is very intensive because we have N> complex multi-
plications for direct DFT. Even using the fast Fourier Transform
(FFT) method, we still need N log N multiplications. Future study
will be on DFT measures from non-overlapped segments of long
DNA genome sequences. We will investigate to reduce computa-
tional complexity while minimizing difference between DFT dis-
tance and edit distance.

Another limitation of the DFT based method in DNA compar-
ison is that if the shortest length of a DNA is less than one half of
the maximum length of the DNA compared, the DFT spectrum of
the shortest length DNA cannot be evenly scaled to the maximum
length. We will address this limitation in future study.

One of the key tasks of the post-genome era is to determine the
functional implications of gene or proteins sequences. From
similarity comparison and hierarchical clustering, we may be able
to infer functions and classify a new sequence or a genome. This
requires accurate and efficient similarity measure for DNA
sequences. Most alignment-free methods such as the k-mer
method and feature based methods may lose information after
extracting sequence or feature information. The Fourier power
spectrum makes a reversible comprehensive map and character-
ization of a DNA sequence and thus retain all the sequence
information for comparison. The proposed DFT distance metric
leads to reliable results in hierarchical clustering of DNA sequences
and shows a better identification of different mutations in hier-
archical tree and improves speed over the k-mer method and MSA.

4. Conclusion

In this work, we establish a new and robust distance measure
method based on Fourier transformation and propose an even
scaling method to compare different length data. The method has
been assessed for accuracy by computer simulations and construc-
tion of phylogenetic trees of different virus genomes and genes. In
the method, we first performed DFT on DNA sequences after

converting symbolic sequences to four binary indicator sequences,
then DFT spectra of different lengths were evenly scaled to the
same length of the longest sequences. The Euclidean distance was
used to calculate the similarity of the scaled power spectrum. We
created different DNA sequence mutants and assessed the accu-
racy of the new DFT metric on the mutants. The similarity metrics
have been evaluated by constructing phylogenetic trees using
different types of DNA sequences. The results show that the DFT
based alignment-free method provides highly accurate and com-
putationally efficient identification of differences caused by a
variety of mutants (point mutations, insertions/deletions and
transposition) in DNA sequences. This study opens an avenue for
future research into efficient DNA comparison algorithms for large
genomes and short reads in next generation sequencing.
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