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� We propose to use Fourier power spectrum to cluster genes and genomes.
� We construct mathematical moments from the power spectrum.
� We perform phylogenetic analysis of genes and genomes based on moments.
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a b s t r a c t

A novel clustering method is proposed to classify genes and genomes. For a given DNA sequence, a
binary indicator sequence of each nucleotide is constructed, and Discrete Fourier Transform is applied on
these four sequences to attain respective power spectra. Mathematical moments are built from these
spectra, and multidimensional vectors of real numbers are constructed from these moments. Cluster
analysis is then performed in order to determine the evolutionary relationship between DNA sequences.
The novelty of this method is that sequences with different lengths can be compared easily via the use of
power spectra and moments. Experimental results on various datasets show that the proposed method
provides an efficient tool to classify genes and genomes. It not only gives comparable results but also is
remarkably faster than other multiple sequence alignment and alignment-free methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, several methods to classify genes and
proteins have been proposed. Most of these methods are alignment-
based in which optimal alignments are obtained by using selected
scoring systems. These methods provide accurate classification of
biological sequences, and several algorithms have been developed
and successfully applied (Katoh et al., 2002; Edgar, 2004; Larkin
et al., 2007). Nevertheless, their major drawback is due to significantly
high time and memory consumption which is not suitable when a
quick clustering needs to be made, for example on a new deadly virus
(Marra et al., 2003). Henceforth, an alignment-free technique is a
trending method that often gives much faster classification on the

same dataset (Vinga and Almeida, 2003; Yau et al., 2008; Yu et al., 2011,
2013). For example, the k-mer method is among the most popular
alignment-free methods. In order to measure how different the two
sequences are, the set of k-mers, or subsequences of length k, in the
two biological sequences are collected and then the evolutionary
distance between them is computed (Vinga and Almeida, 2003;
Pandit and Sinha, 2010). The k-mer method gives comparable results
to alignment-based methods while being computationally faster
(Blaisdell, 1989).

Discrete Fourier Transform (DFT) is a powerful tool in signal
and image processing. During recent years, DFT has been increas-
ingly used in DNA research, such as gene prediction, protein
coding region, genomic signature, hierarchical clustering, periodi-
city analysis (Tiwari et al., 1997; Anastassiou, 2000; Kotlar and
Lavner, 2003; Vaidyanathan and Yoon, 2004; Afreixo et al., 2004,
2009; Tenreiro Machado et al., 2011). A DFT power spectrum of a
DNA sequence reflects the nucleotide distribution and periodic
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patterns of that sequence, and it has been applied to identify
protein coding regions in genomic sequences (Fukushima et al.,
2002; Yin and Yau, 2005, 2007). In this paper we provide a new
alignment-free method to classify DNA sequences based on the
DFT power spectrum. The method is tested and compared to other
state-of-the-art methods on various datasets for speed and
accuracy.

2. Materials and method

2.1. Mathematical background

In signal processing, sequences in time domain are commonly
transformed into frequency domain to make some important
features visible. Via that transformation, no information is lost
but some hidden properties could be revealed (Oppenheim et al.,
1989).

One of the most common transformations is Discrete Fourier
Transform (Oppenheim et al., 1989). For a signal of length
N; f ðnÞ;n¼ 0;…;N�1, the DFT of the signal at frequency k is

FðkÞ ¼
XN�1

n ¼ 0

f ðnÞe� ið2π=NÞkn

for k¼ 0;…;N�1. The DFT power spectrum of a signal at
frequency k is defined as

PSðkÞ ¼ jFðkÞj 2; k¼ 0;…;N�1

Notice that by definition, PSð0Þ ¼ j Fð0Þj 2 ¼ j PN�1
n ¼ 0 f ðnÞj 2.

The DFT is often used to find the frequency components of a
signal buried in a noisy time domain. For example, let y be a signal
containing a 60 Hz sinusoid of amplitude 0.8 and a 140 Hz
sinusoid of amplitude 1. This signal can be corrupted by a zero-
mean random noise:

y¼ 0:8n sin ð2nπn60ntÞþ sin ð2nπn140ntÞþrandom

The frequencies can hardly be identified by looking at the original
signal as in Fig. 1(a), but can be seen quite clearly when the signal
is transformed to frequency domain by taking the DFT (Fig. 1(b)).

2.2. Moment vectors

For a DNA sequence composed of nucleotides adenine (A),
cytosine (C), guanine (G), and thymine (T), one typical way to get
numerical representation is to use binary indicator sequences. The
values of these sequences are either 0 or 1 indicating the absence
or presence of a specific nucleotide. Specifically, for a given DNA
sequence of length N, we define uA of the same length as follows:

uAðnÞ ¼
1 if A is present at location n of the sequence
0 otherwise

�

uC ;uG;uT are defined similarly.
For example, for the sequence AGTCTTACGA, the corresponding

indicator sequence of nucleotide A is uA¼1000001001.
The DFT of uA is UA where

UAðkÞ ¼
XN�1

n ¼ 0

uAðnÞe� ið2π=NÞkn

for k¼ 0;…;N�1.
The DFT power spectrum of uA is PSA where PSAðkÞ ¼

jUAðkÞj 2; k¼ 0;…;N�1. The corresponding power spectrum for
nucleotides C;G; T is defined similarly. In general, for a gene
sequence of length N, let NA;NC ;NG;NT be the number of nucleo-
tide A;C;G; T in that sequence, respectively.

It is difficult to compare numerical sequences with different
lengths, so we cannot cluster genes and genomes based on their
power spectra sequences. One common approach to get over this
problem is to use mathematical moments, e.g. for nucleotide A
defines jth moment MA

j ¼ αA
j

PN�1
k ¼ 0 ðPSAðkÞÞj; j¼ 1;2… , where αj

A

be scaling factors. We want higher moments to converge to zero, i.
e. essential information is kept in the first few moments. Thus, the
chosen normalization factors αj

A must reflect the nature of the
sequences. Let us examine the binary indicator sequence of one
nucleotide, A, in more detail.

By Parseval's theorem (Oppenheim et al., 1989),

XN�1

n ¼ 0

juAðnÞj 2 ¼
1
N

XN�1

k ¼ 0

PSAðkÞ since PSAðkÞ ¼ jUAðkÞj 2
� �

The left side is actually NA, i.e. the number of 1 in the A binary
sequence. Hence,

PN�1
k ¼ 0 PSAðkÞ ¼NAN. So it is reasonable for αj

A to
be a power of NAN. As stated above, we want moments converge to
zero gradually so that information loss is minimal, thus αA

j ¼
1=ðNANÞj�1 is the best choice (which will be verified later).
Therefore

MA
j ¼

1

Nj�1
A Nj�1

XN�1

k ¼ 0

ðPSAðkÞÞj

With this normalization, MA
1 ¼

PN�1
k ¼ 0 PSAðkÞ ¼NAN. Our experimen-

tal results on various datasets proved that this is a good normal-
ization. However, by re-examining the formula, we find that a slight
modification can be made to get better outcomes. From Section 2.1,
we know PSAð0Þ ¼ jFAð0Þj 2 ¼ j PN�1

n ¼ 0 uAðnÞj 2 ¼ N2
A. Thus PSAð0Þ
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Fig. 1. Signal in time domain and frequency domain. (a) Signal Corrupted with
Zero�Mean Random Noise. and (b) Single�Sided Power Spectrum

Table 1
Running time comparison.

Datasets Our method MAFFT k-mer ClustalW

Mammals 4 s NA 18 min 15 s 3 h 15 min
Influenza A 0.6 s 22 s 12 s 1 min 55 s
HRV 5 s 17 min 40 s 47 min 28 s 8 h 10 min
Coronavirus 6 s NA 69 min 12 s 11 h 40 min
Bacteria 9 min 41 s NA NA NA
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might hold large weight compared to PSA(k) for other index k, which
in turn leads to unnecessary memory consumption and computa-
tions for higher moments. Therefore, the terms PSAð0Þ are removed
from the moments, and M1

A becomes
PN�1

k ¼ 1 PSAðkÞ ¼NAN�PSAð0Þ ¼
NAN�N2

A ¼NAðN�NAÞ. From the first modified moment, we know
how to adjust the scaling factor for the j-th moment in general, i.e. αj

A

must be a power of NAðN�NAÞ. Thus the new normalization is

MA
j ¼

1

Nj�1
A ðN�NAÞj�1

XN�1

k ¼ 1

ðPSAðkÞÞj

The fact that higher moments tend to zero is verified as follows:

MA
j ¼NAðN�NAÞ

XN�1

k ¼ 1

PSAðkÞ
NAðN�NAÞ

� �j

¼NAðN�NAÞ
XN�1

k ¼ 1

zjk

where zk ¼ PSAðkÞ=NAðN�NAÞ. Notice that
PN�1

k ¼ 1 zk ¼ 1, thus it is
obvious that limj-1

PN�1
k ¼ 1 z

j
k ¼ 0.

This fact also shows that αA
j ¼ 1=ðNAðN�NAÞÞj�1 is the best

scaling factor, as for αA
j ¼ 1=ðNAðN�NAÞÞj, MA

1 ¼ 1 so moments tend
to zero very fast, thus much information can be lost, and for
αA
j ¼ 1=ðNAðN�NAÞÞj�2, MA

1 ¼N2
AðN�NAÞ2 so moments tend to zero

much slower, thus more computational time and memory storage
are needed. Additionally, due to symmetric property of DFT
coefficients (Oppenheim et al., 1989), we only have to consider
the first half of power spectrum. Therefore, the moments are
improved as follows:

MA
j ¼

1

Nj�1
A ðN�NAÞj�1

X⌊N=2c
k ¼ 1

ðPSAðkÞÞj
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Fig. 2. Phylogenetic tree of 31 mammalian mitochondrial genomes by our method, drawn by Mega 6.
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The moments for other nucleotides C;G; T are given similarly. Then
the first few moments are used to construct vectors in Euclidean
space. Our experimental results show that three moments are
sufficient for an accurate clustering. Thus, each gene or genome
sequence can be realized as a geometric point in the 12-
dimensional Euclidean space, i.e. ðMA

1 ;M
C
1 ;M

G
1 ;M

T
1;M

A
2 ;M

C
2 ;M

G
2 ;M

T
2 ;

MA
3 ;M

C
3 ;M

G
3 ;M

T
3Þ. Pairwise Euclidean distances between these

points are calculated to cluster the gene or genome sequences.
We call this Power Spectrum Moments method, or PS-M method.

Power spectrum has been rarely used to study the phylogenetic
analysis of DNA sequences because it is difficult to do comparison
on sequences with different lengths. Zhao et al. (2011) came up
with the idea of using normalized and centralized moments to
compare sequences of different lengths. Motivated by that idea,
we discovered a way to scale moments naturally, and only
normalized moments are used to construct the Euclidean vectors.
Discarding the first coefficient is another novelty of our PS-M
method. The first coefficient holds significant weight and is highly
dependent on the number of the respective nucleotide, which is

redundant information. We also exclude the second half of the
power spectrum due to its symmetry, and we give proof as to why
the moment vectors converge to zero. Experimental results in the
following section show that 12-dimensional moment vectors are
enough to cluster genomes correctly.

3. Results

The PS-M method is tested on different datasets that range
from small to medium size, as well as short to long genomes. In
order to compare and analyze various genomic data, moment
vectors are calculated and a matrix of Euclidean pairwise distances
between those vectors is constructed. To cluster data into biolo-
gical groups, a phylogenetic tree is built based on the distance
matrix using the UPGMA method (Sokal, 1958).

The running time of our PS-M method is compared to three
state-of-the-art methods. The first is the alignment-based method
ClustalW (Larkin et al., 2007) implemented on MEGA 6 (Tamura
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Fig. 3. Phylogenetic tree of 31 mammalian mitochondrial genomes by the k-mer method, k¼5.
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et al., 2013). The second is MAFFT (Katoh et al., 2002), another
alignment-based method using fast Fourier transform. The last
method is the alignment-free k-mer method (Vinga and Almeida,
2003) which is implemented on Matlab by Vinga and Almeida
(2003). The running time is recorded in Table 1.

Even though reasonably accurate, ClustalW is significantly time
consuming, as it aims to achieve the best possible results neglect-
ing speed and efficiency. MAFFT runs much faster than ClustalW,
but it sacrifices some accuracy in exchange. Moreover, errors
occurred when we tested the datasets showing limitations of the
MAFFT method. The errors are discussed in detail in the next
section. Meanwhile, both k-mer and PS-M methods are alignment-
free, and both attempt to improve speed and efficiency with little
sacrifice of accuracy. Thus, our phylogeny results are directly

compared to the k-mer method in this study. Phylogenies of the
ClustalW method are included in the supplementary materials for
reference (Figure S1–S4).

Phylogenies of our method and the k-mer method are drawn
using Matlab and MEGA 6 respectively (Tamura et al., 2013).
Computations in this research are implemented on a PC with
configuration of Intel Core i7 CPU 2.40 GHz and 8 GB RAM.

3.1. Mammals

The mitochondrial genome is not highly conserved and has a
rapid mutation rate, thus it is suitable for examining the mode and
tempo of molecular evolution (Brown et al., 1982). The PS-Mmethod
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Fig. 4. Phylogenetic tree of 38 Influenza A viruses based on segment 6 by our method, drawn by Mega 6.
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was tested on a mitochondrial DNA dataset of 31 mammalian
genome sequences from GenBank, each sequence has a length range
from 16,300 to 17,500 nucleotides. This dataset was analyzed by
Deng et al. (2011) using the natural vector method. In our method,
these 31 genomes are clustered correctly into 7 groups: Primates,
Cetacea and Artiodactyla, Perissodactyla, Rodentia, Lagomorpha, Car-
nivore, and Erinaceomorpha (Fig. 2), which is consistent with the
work of Deng et al. (2011). Meanwhile, as Fig. 3 illustrates, a majority
part of Carnivore is misplaced by the k-mer method.

3.2. Influenza A viruses

We test the efficiency of the PS-Mmethod at a gene level. Influenza
A viruses have been a major health threat to both human society and

animals (Alexander, 2000). Influenza A viruses are single-stranded,
segmented RNA viruses, which are classified based on the viral surface
proteins hemagglutinin (HA or H) and neuraminidase (NA or N)
(Webster et al., 1992). Eighteen H serotypes (H1 to H18) and eleven
N (N1 to N11) serotypes of Influenza A viruses have been identified.
Influenza A viruses are the most dangerous due to their wide natural
host range, including birds, horses, swines, and humans; and they are
known to have high degree of genetic and antigenic variability (Palese
and Young, 1982; Garten et al., 2009). Influenza A viruses have caused
many pandemic flues, some of the most lethal subtypes are H1N1,
H2N2, H5N1, H7N3, and H7N9. These subtypes will be chosen to test
the efficiency of our method. Specifically, we will examine segment
6 of Influenza A virus genome, which encodes for neuraminidase (NA).
As illustrated by the phylogenetic trees, the virus A/turkey/VA/505477-
18/2007(H5N1) is not correctly clustered in the k-mer method (Fig. 5).
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Fig. 5. Phylogenetic tree of 38 Influenza A viruses based on segment 6 by the k-mer method, k¼4.
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Fig. 7. Phylogenetic tree of HRV by the k-mer method, k¼4.
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On the other hand, the dataset is classified correctly into biological
groups by our proposed PS-M method (Fig. 4).

3.3. Human rhinovirus

The efficiency of PS-M method was examined on a large size
dataset, Human Rhinoviruses (HRV). HRV are associated with upper
and lower respiratory diseases, particularly in patients with asthma.
They are the predominant cause of the common cold and are
responsible for more than one-half of cold-like illnesses. Past works
have classified HRV into three genetically distinct groups within the

genus Enterovirus and the family Picornaviridae (Palmenberg et al.,
2009; Deng et al., 2011). In their paper, Palmenberg et al. (2009)
clustered the complete HRV genomes, consisting of three groups HRV-
A, HRV-B, HRV-C of 113 genomes and three outgroup sequences HEV-
C. While the genomes were well classified, the running time was quite
high due to the use of multiple sequence alignment to construct the
evolutionary tree. By our method, the phylogenetic tree is recon-
structed and the three groups of HRV are clearly separated and are
distinguished from the outgroup HEV-C (Fig. 6). On the other hand, a
small part of HRV-A is grouped on the same clade with HRV-B in the
k-mer method (Fig. 7).
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Fig. 8. Phylogenetic tree of coronavirus using our method, drawn by Mega 6.
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3.4. Coronavirus

Coronaviruses, a genus of the Coronaviridae family, can cause a
variety of severe diseases in respiratory and gastrointestinal tract
(HCoV-229E and HCoV-OC43), or even life-threatening pneumonia
(severe acute respiratory syndrome, or SARS). Thus, identification
and classification of coronaviruses, especially human coronaviruses,
are important and have been extensively studied so far. We cluster
the set of 30 coronaviruses and 4 outgroup non-coronavirus
sequences using the PS-M method. This coronaviruses dataset has
been used by various authors before, e.g. Woo et al. (2005) and Yu
et al. (2010). In van der Hoek et al. (2004) the authors put the newly
discovered human coronavirus NL63 into the same group with

human coronavirus 229E (group 1 in our work), which is separated
from other two human coronaviruses groups, HCoV-OC43 (group
2 in our work) and SARS (group 4 in our work). In Woo et al. (2005)
the authors agreed to include the newfound HCoV-HKU1 in group
2 but also claimed that it is a distinct member within the group and
it is not very closely related to the rest of the group. Yu et al. (2010)
noticed that HCoV-HKU1 is an individual coronavirus between SARS
group 4 and the traditional group 2, thus they proposed HCoV-HKU1
belongs to a new group 5. In our phylogenetic tree below (Fig. 8),
HCoV-NL63 and HCoV-229E are clustered into group 1, which is
similar to the work of van der Hoek et al. (2004). Moreover, group
5 is close to both group 4 and group 2 but separated from them, thus
the result is consistent with the work of Woo et al. (2005) and Yu
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et al. (2010). Based on Fig. 9, the HCoV-NL63 is misplaced from
group 1 by the k-mer method.

3.5. Bacteria

Methods like multiple sequence alignment cannot handle large
data. The bacteria genome, consisting of millions of base pairs, is a
useful dataset for checking a method's efficiency. The PS-M method
was tested on the set of 30 bacterial genomes, consisting of 8 families:
Enterobacteriaceae, Bacilleceae, Rhodobacteriaceae, Spirochaetaceae,
Desulfovibrionaceae, Clostridiaceae, Burkholderiaceae, and Staphylococ-
caceae. Most of the data has a length between 3 and 5 million base
pairs. As illustrated by the phylogenetic tree in Fig. 10, the dataset is
well clustered into 8 groups by the PS-M method in about 10 min.
None of the three state-of-the-art methods (ClustalW, MAFFT, k-mer)
are able to cluster these genomes.

4. Discussion

EMBL-EBI (http://www.ebi.ac.uk/Tools/msa/mafft/) is among
the most common online tool for MAFFT. We tested our datasets
on this site but there were errors for coronavirus and mammals
genomes, namely “Raw Tool Output” as it appeared on the EBI
website. Since the input DNA sequences worked for all other
methods, the error seems to be the tool's problem. Therefore,
despite MAFFT's reasonable biological classification and fast pro-
cessing time, it has some drawbacks that is likely to require some
restriction on the underlying dataset. Another obvious disadvan-
tage of this online tool is that it does not allow us to save the
phylogenetic tree directly to the computer, and it does not have
circular tree option for dataset with a large number of elements.
Thus, we do not include the phylogeny of HRV and Influenza A
generated by MAFFT in this paper due to these reasons, even th-
ough the method can reasonably classify these datasets. However,

 Sta-car

 Sta-epi-AT

 Sta-hae

 Sta-lug

 Clo-per-ATCC

 Clo-per-SM101

 Clo-per-13

 Ral-H16

 Ral-JMP

 Des-vul-DP4

 Des-vul-RCH1

 Des-vul-Hild

 Rho-KD131

 Rho-ATCC

 Bor-hermsii

 Bor-tur

 Bor-dut

 Bor-recu

 Bac-A0248

 Bac-Ames

 Bac-Stern

 Bac-CDC

 Ecoil-ABU

 Ecoil-APEC

 Shi-fle-2a

 Shi-fle-17

 Yer-Z176003

 Yer-KIM

 Yer-CO92

 Yer-D106004

050000100000150000200000250000300000

Fig. 10. Phylogenetic tree of 30 bacteria species by our method, drawn by Mega 6.
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the running time of MAFFT for HRV and Influenza A is still
recorded in Table 1.

The k-mer method is alignment-free and it gives fairly good
classification with an acceptable running time. But its major
disadvantage is that we do not know which value of k will produce
the best classification. In our work, we had to try various values of
k and then choose the value with the best outcome.

ClustalW is by far among the best alignment-based method. It
often gives the most accurate biological classification, but its
running time is significantly high in exchange. As a result, it is
not able to perform well on large datasets.

From the performance comparison (Table 1), we can see that
our method is much faster than other methods while still provid-
ing comparable biological classification. Most notably, none of the
above three methods were able to cluster large genome like
bacteria, while our method could do well in about 10 min. The
MATLAB code for our method can be accessed from: http://www.
mathworks.com/matlabcentral/fileexchange/49026.
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