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H I G H L I G H T S

� We propose a 2D numerical representation of a DNA sequence.
� We propose to incorporate nucleotide composition into similarity measure.
� We propose a method to even scale a time series to any lengths.
� We apply the discrete Fourier transform on whole genomes as distance measure.
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a b s t r a c t

DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The
sequence comparison of closely related DNA sequences and genomes is usually performed by multiple
sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce
incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is
also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an
alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier
Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the
similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional
(2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency
domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D
mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity
measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we
propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the
underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same
dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of
the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased
computational performance by 2D numerical representation, can be applicable to any DNA sequences of
different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical
clustering of different DNA sequences including simulated and real datasets. The method yields accurate and
reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and
effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT
similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole
bacterial genomes.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

DNA sequence comparison is a discipline that has grown
enormously in recent years due to the overwhelming burst in

sequence data. Discovery of novel biological functions from the
ab initio analysis of DNA sequence data depends on sequence
comparison and classification, thus it has become increasingly
important to develop accurate, reliable and efficient similarity
measure in sequence analysis. In similarity comparison, phyloge-
netic analysis provides insights into the hierarchical relationships
between genes, genomes and organisms, and thus becomes a
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fundamental research approach in structure and function analysis
of biological sequences (Eisen, 1998). Construction of a phyloge-
netic tree of DNA sequences has two phases. The first phase is to
construct distance matrix from the DNA sequences using either
multiple sequence alignment (MSA) or alignment-free methods on
DNA sequences. The second phase is to construct the UPGMA or
neighbor-joining phylogenetic tree from the distance matrix. The
majority of biological sequence comparison methods relies on
MSA (Warnow, 2013), however, the sequence alignments become
difficult when DNA sequences share low similarities or the
sequences are very long because the MSA computational load
escalates as an exponential function of the sequence lengths. This
problem makes use of MSA for comparing and searching large
DNA sequence data infeasible (Edgar and Batzoglou, 2006;
Kemena and Notredame, 2009; Chan and Ragan, 2013).

Alignment-free methods, which overcome problems in MSA,
have been developed during last decades (Song et al., 2013; Vinga
and Almeida, 2003; Patil and McHardy, 2013). The alignment-free
methods can be classified into two major categories. The first and
widely used approach is based on word frequencies on DNA
sequences, in which DNA sequences are converted to feature
vectors defined by the frequency of k-mer words of DNA sequence
(Blaisdell, 1986, 1989; Sims et al., 2009; Jun et al., 2010). The k-mer
words in a DNA sequence are all possible permutations of length k
from four nucleotide A, T, C, G. For example, if k¼5, there are
45 ¼ 1024 such possible 5-mer fragments. The k-mer method
constructs fixed-length feature vectors by counting the frequen-
cies of occurrence of all k-mer in DNA sequences. The other
majority of alignment free methods are mostly derived from the
k-mer method, for example, k-string composition vector method
was proposed for whole proteome prokaryote phylogeny without
sequence alignment (Qi et al., 2004). Although the k-mer method
has been successfully used in many applications in biological
sequence analysis, those distances depend considerably on the
parameter k, and how to choose the optimal k depends on varied
degrees of divergence in sequence data (Jun et al., 2010). In
addition, when k-mer sizes become large, the k-mer method
generates very large dimension of frequency vector and has high
computational complexity in k-mer string matching. The second
category of alignment-free methods are based on genome features
including statistical properties of DNA sequences (Kantorovitz et
al., 2007; Dai et al., 2013), the chaos game representation (CGR) of
genomes (Jeffrey, 1990; Wang et al., 2005), and graph representa-
tions (Qi et al., 2011). However, the k-mer based methods and
feature based methods are either computationally extensive or
lose information within DNA sequences to a certain degree,
therefore, these alignment-free methods have limited applications
in phylogenetic analysis of whole genomes.

The limitations in MSA and existing alignment-free method under-
score the necessity in using full information content of DNA sequences
for fast and accurate similarity comparison. An effective solution is to
employ Discrete Fourier Transform (DFT), a well established digital
processing approach, in DNA similarity comparison. After DNA
sequences are converted from symbolic series into numerical series,
DFT can be used to analyze the information content within the DNA
sequences in frequency domain. The associated Fourier power spectra
reflect nucleotide distributions in the sequences, and thus have been
used for detecting periodicities of protein-coding genes in genomes
(Marhon and Kremer, 2011; Sharma et al., 2004; Marsella et al., 2009;
Yin and Yau, 2005, 2007). Previously we presented a novel alignment-
free similarity comparison method by Fourier power spectra of DNA
sequences with even scaling (Yin et al., 2014). However, that method
has a limitation that a DNA sequence cannot be extended to a length of
more than twice of its original length. This limitation restricts the
general application of the method on highly heterogeneous DNA
sequences.

In this paper, we present an improved model for DNA similarity
measure based on DFT of DNA sequences. In this model, we
propose a new algorithm to map DNA sequences to 2D numerical
sequences that incorporates nucleotide composition of the
sequences, and therefore similarity distance measure reflects the
difference of the nucleotide composition. The new mapping can
greatly improve accuracy and significantly increase the computa-
tional performance compared with 4D binary indicator represen-
tation. In addition, we establish a new even scaling algorithm that
can stretch a numerical series to any lengths. This even scaling
algorithm can therefore be used to extend the Fourier power
spectra of any genomes of any lengths to the same length so that
the distance of these genomes can be measured in the same
Euclidean space. We assessed the improved DFT method on
different DNA datasets in phylogenetic analysis. We demonstrate
that the proposed method outperforms the previous method and
gives better alignment results than our previous method for
different empirical evaluations. Its practical application is expected
in genome phylogenetic tree construction and next generation
sequencing data studies. We also evaluated the efficiency and
accuracy of the proposed DFT method in whole genome phyloge-
netic analysis, our results demonstrate that a total of 40 full large
bacterial genomes can be effectively classified.

2. Methods and algorithms

2.1. Numerical representations of DNA sequences

A DNA molecule consists of four linearly linked nucleotides,
adenine (A), thymine (T), cytosine (C), and guanine (G). To apply
digital signal processing approaches to a DNA sequence study, the
symbolic DNA sequence is mapped into one or more numerical
sequences. The commonly used numerical mapping method is Voss
4D binary indicator sequences (Voss, 1992). In the Voss 4D method, a
DNA sequence of length N, denoted as sð0Þ; sð1Þ;…; sðN�1Þ, can be
decomposed into four binary indicator sequences, uAðnÞ;uT ðnÞ;uCðnÞ,
and uG(n), which indicate the presence or absence of four nucleo-
tides, A, T, C, and G at the n-th position, respectively. The Voss 4D
binary indicator mapping of a DNA sequence is defined as follows:

uαðnÞ ¼
1; sðnÞ ¼ α
0 otherwise

�
ð1Þ

where αAfA; T ;C;Gg, n¼ 0;1;2;…;N�1. The four indicator
sequences correspond to the distributions of the four nucleotides at
each position of the DNA sequence.

To improve the performance of DNA similarity analysis method,
here, we propose following 2D numerical representation of a DNA
sequence, in which the dimension of the numerical sequences is
reduced from 4D to 2D. In 2D numerical representations, we
propose that one of the mapping functions β of the four nucleo-
tides A; T ;C;G of a DNA sequence can be defined as

βðAÞ ¼ 0; �1½ �0; βðTÞ ¼ �1;0½ �0; βðCÞ ¼ 1;0½ �0; βðGÞ ¼ 0;1½ �0:
ð2Þ

The 2D numerical representation of a DNA sequence,
sð0Þ; sð1Þ;…; sðN�1Þ, is defined by a 2D matrix v as follows:

vðnÞ ¼ v1ðnÞ; v2ðnÞ½ �0 ¼ βðαÞ if sðnÞ ¼ α ð3Þ
where αAA;C;G; T ;n¼ 0;1;2;…;N�1. Thus the computational time
of DFT in DNA analysis by the new 2D numerical representation can be
reduced to half compared with the Voss 4D representation. In this
study, we use the 2D binary representation of a DNA sequence for DFT
followed by even scaling in similarity analysis. Table 1 illustrates the
4D Voss representation as uA;uT ;uC ;uG and a 2D numerical repre-
sentation as matrix v of an example DNA sequence.
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2.2. Discrete Fourier transform

Discrete Fourier transform (DFT) is the transformation of
observation data in time domain to new values in frequency
domain. DFT spectral analysis of DNA sequences may detect latent
or hidden periodical signals in the original sequences. It may
discover approximate repeats that are difficult to detect by tandem
repeat search. Let X(k) be the DFT of time series x(n) of length N,
and X(k) is defined as

XðkÞ ¼
XN�1

n ¼ 0

xðnÞe� ið2π=NÞkn; k¼ 0;1;2;…;N�1 ð4Þ

where i¼
ffiffiffiffiffiffiffiffi
�1

p
. The DFT power spectrum of the signal x(n) at the

frequency k is defined as

PSXðkÞ ¼
X

XðkÞ
�� ��2; k¼ 0;1;2;…;N�1 ð5Þ

Let Vj denote DFT of row j of the binary matrix v in Eq. (3) for a
DNA sequence, we have the DFT power spectrum of v as

PSV ðkÞ ¼
X2
j ¼ 1

VjðkÞ
�� ��2; k¼ 0;1;2;…;N�1 ð6Þ

Theorem 2.1 (Parseval Theorem). The total energy contained in a
signal x(n) summed across all of time n is equal to the total energy of
the Fourier transform X(k) summed across all of its frequency
components k. For the discrete Fourier transform (DFT), the relation is

XN�1

n ¼ 0

xðnÞ
�� ��2 ¼ 1

N

XN�1

k ¼ 0

XðkÞ
�� ��2

where X½k� is the DFT of x½n�, both of length N.

The Parseval's theorem on Fourier transforms implies the
equivalence in the energy levels of signal in frequency domain
and time domain. The Fourier transform preserves the Euclidean
distance between two signals (Faloutsos et al., 1994; Agrawal et al.,
1993). Therefore, the Fourier transform gives a unique representa-
tion of the original underlying signal in frequency domain, in
which the numerical vector in the frequency domain contains all
the information about signal in the time domain. We can infer
information content in DNA sequences from the distribution of
Fourier power spectra of the sequences, and use the Euclidean
distances of the Fourier power spectra of DNA sequences as the
similarity measure.

One may question that there are 24 mappings between the four
nuleotides and the 2D numerical representations, the choice of
one over the other mapping for DNA sequences may produce
different DFT distances. We have the following theorem and
algorithm to address this question.

Theorem 2.2. For the 24 mappings between the four nuleotides (A,T,
C,G) and the four 2D numerical representations, there are three
distinct power spectra, each of the unique spectrum corresponds to
eight 2D mappings. The three distinct 2D mappings, named as 2D-AT,

2D-AC, 2D-AG, are in Table 2. The corresponding eight 2D mappings
are in Tables A1, A2 and A3 in Supplementary Materials.

The proof of this theorem is straightforward. A mapping in one
of the three groups 2D-AT, 2D-AC, 2D-AG (Tables A1, A2 and A3 in
the Supplementary Materials) is either a rotation or a reflection of
the other in the same group, because DFT is linear and orthogonal
transform, Parseval's theorem on Fourier transform indicates the
equivalence of all the eight 2D mappings within one group.

It is now well-established that nucleotide composition is more
similar from closely related organisms than for distantly related ones.
The nucleotide composition has a bias on CþG contents, while A vs T,
or C vs G content is similar across different organisms. The genomic
percentage of GþC content is highly variable among prokaryotes and
other unicellular organisms (Hildebrand et al., 2010). Compositional
bias may affect both DNA-based and protein-based phylogenetic
reconstructions (Foster and Hickey, 1999; Mrázek, 2009). Therefore,
in the three unique 2D mappings of DNA sequences (Table 1), we
exclude the 2D-AT mapping for DNA sequence because 2D-AT
mapping distributes the AþT, or the CþG content, into the same
rows and thus makes 1/�1 and 0 uneven on the two rows. The
choice of 2D-AC or 2D-AG mappings depends on which content
(AþC or AþG) is close to 50% of base compositions in a DNA
sequence so that the 1/�1 and 0 can be evenly distributed on the
two rows of the 2D mapping. Thus, the correspondence between a
DNA sequence and its 2D mapping by the mapping algorithm is one-
to-one and no parameter is required in the corresponding DFT
distance measure. These considerations have been validated on real
genes and genomes of different organisms in this study. The detailed
method of the 2D mapping of a pair of DNA sequences based on
nucleotide compositions is described in Algorithm 1.

Algorithm 1. Getting the 2D mapping of a pair of DNA sequences
based on nucleotide compositions.

Input: DNA sequences: SEQ1(length N1), SEQ2(length N2)
Output: 2D numerical mapping for SEQ1 and SEQ2
Step:
1. Compute AþC, AþG of SEQ1 and SEQ2 together.
2. Compute values:

RAC ¼
AþC

N1þN2
�1
2

����
����; RAG ¼ AþG

N1þN2
�1
2

����
����

3. if RACoRAG then return 2D-AC
else return 2D-AG

Comparing the 4D binary and 2D numerical representations,
the advantage of the 4D binary indicator representation of a DNA
sequence is that it does not predefine any mathematical relation-
ship among the symbols and only indicates the frequencies of the
symbols. Thus it is widely utilized in detecting symbol distribu-
tions and periodicity features of a sequence. However, using the

Table 1
Example of the Voss 4D binary indicator and a 2D numerical mappings of a short
DNA sequence.

DNA T A G C C T G C T G A T

uA 0 1 0 0 0 0 0 0 0 0 1 0
uT 1 0 0 0 0 1 0 0 1 0 0 1
uC 0 0 0 1 1 0 0 1 0 0 0 0
uG 0 0 1 0 0 0 1 0 0 1 0 0

v1 �1 0 0 1 1 �1 0 1 �1 0 0 �1
v2 0 �1 1 0 0 0 1 0 0 1 �1 0

Table 2
Three unique 2D mappings of DNA sequences.

Base 2D-AT 2D-AC 2D-AG

A¼ 0 0 0
�1 �1 �1

T ¼ 0 �1 �1
1 0 0

C ¼ �1 0 1
0 1 0

G¼ 1 1 0
0 0 1
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4D indicator representation, two different DNA sequences by 4D
representation may have the same power spectra. For example, let
u1A;u1T ;u1C ; and u1G be the four indicator sequences of the DNA
sequence S1 ¼ ATCGAA, and let u2A;u2T ;u2C ; and u2G denote the
four indicator sequences of the DNA sequence S2 ¼ GCTAGG,
u1A ¼ u2G, u1T ¼ u2C , u1C ¼ u2T , and u1G ¼ u2A, the power spectra
of these two different DNA sequences are the same. The proposed
2D numerical representation addresses the problem of uncertain-
ness in the Fourier power spectra of DNA sequences.

2.3. Even scaling of Fourier power spectrum of different lengths

From the definition of Fourier power spectrum, DNA sequences
of different lengths have power spectra of different lengths and
thus the power spectra cannot be used as a direct comparison of
DNA sequences. In the literature, a solution is to use partial spectra
from a few beginning frequencies (Wu et al., 2000; Wang et al.,
2013; Rafiei and Mendelzon, 1998), but this approach loses
information for sequence comparison. To overcome the above
problem, we propose here the following even scaling method to
scale the DFT power spectra of different lengths into the same
length. We take one or two consecutive data elements in the
shorter data series to evenly stretch the short data series to a new
length. In detail, let Tn denote the original power spectrum of
length n and Tm denote the extended power spectrum of length m
from even scaling of Tn and m4n. The symbol ⋯b c denotes the
floor function on non-integers. The even scaling operation on the
original power spectrum Tn to Tm is defined as follows:

TmðkÞ ¼

TnðQ Þ if QAZþ

TnðRÞþðQ�RÞ TnðRþ1Þ�TnðRÞð Þ if Q =2Zþ

where Q ¼ kn
m

; R¼ kn
m

� �
8>>><
>>>:

ð7Þ

The even scaling method is assessed by statistical central moments
and complexity evaluation. The complexity estimate (CE) of a time
series Tn of length n is normalized from Batista et al. (2011) and is
defined as

CE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1
k ¼ 1 TnðkÞ�T–nðkþ1Þð Þ2Pn

k ¼ 1 TnðkÞð Þ2

vuut ð8Þ

It is worthy to note that the proposed even scaling algorithm can
scale up to any length. This property makes the even scaling
method flexible in different application perspectives. The even
scaling method is described in detail in Algorithm 2.

Algorithm 2. Even scaling a number series Tn.

2.4. Algorithm for pairwise Euclidean distances of DNA sequences in
Fourier frequency domain

The most common distance measure for time series is the
Euclidean distance, which is the optimal distance measure for
estimation if signals corrupted by additive Gaussian noise
(Agrawal et al., 1993). The Euclidean metric on Rn � Rn-R is
defined by the function d:

d x1;…; xnð Þ; y1;…; yn
� �� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k ¼ 1

ðxk�ykÞ2
vuut ð9Þ

A true distance metric for DNA sequences shall satisfy the triangle
inequality of metric space. It specifies that direct path between
two sequences cannot be longer than a less-direct path involving
other intermediate sequence. If a distance metric that does not
conform to this relation are nonmetric and is internally incon-
sistent (Wheeler, 1993). After even scaling the DFT spectra, we
measured the Euclidean distances of DNA sequences using the full
DFT power spectra of the DNA sequences. Since we embed all the
DNA sequence information via their full power spectrum into the
same Euclidean space, the induced distance metric we propose
here is true metric.

It is worth mentioning that the distance measure in Fourier
frequency domain in this study excludes the zero-th term in the
power spectrum. Because the zero-th power spectrum is just the
sum of data, its values usually are much larger than the rest of the
power spectrum. If the zero-th power spectrum value is included
in the Euclidean distance calculation, the accuracy of the similarity
measure of DNA sequences is reduced.

The detailed method to compute the Euclidean distances of
DNA sequences in Fourier frequency domain of two DNA
sequences is described in Algorithm 3.

Algorithm 3. Computing the Euclidean distances of DNA
sequences in Fourier frequency domain.

Input: DNA sequences SEQ1(length N1) and SEQ2(length
N2), common length M, and M 4 N1, M 4 N2

Output: Euclidean distance of SEQ1 and SEQ2
Step:
1. Get 2D mapping method for SEQ1 and SEQ2 based on

nucleotide composition (Algorithm 1).
2. Convert SEQ1 and SEQ2 to 2D numerical sequence

based on the 2D mapping method.
3. Compute the corresponding Fourier power spectrum

PS1 and PS2 from the converted 2D numerical vectors
(Eq. (6)).

4. Even scale PS1 from length N1 to length M, named
PSM1 (Algorithm 2).

5. Even scale PS2 from length N2 to length M, named
PSM2.

6. Compute the Euclidean distance d(P1M,P2M) in an
M-dimensional space (Eq. (9)).

DNA similarity analysis is performed using UPGMA (Unwei-
ghted Pair Group Method with Arithmetic Mean) hierarchical
clustering method from a pairwise distance matrix (Sourdis and
Krimbas, 1987). The UPGMA method builds the phylogenetic tree
bottom up from its leaves for the given set of DNA sequences. It
constructs each DNA sequence to form a cluster first, then groups
two smaller clusters of nodes recursively until there is only
one phylogenetic tree that contains all the DNA sequences. The
resulting UPGMA tree reflects the structure and relationship of the
sequences presented in the distance matrix.

C. Yin, S.S.-T. Yau / Journal of Theoretical Biology 382 (2015) 99–110102



2.5. Implementations and data

For comparison purpose, we used the following similarity
measures of DNA sequences: (1) The proposed DFT method with
even scaling that is implemented in MATLAB R2011b. (2) MSA
method with the Jukes–Cantor genetic distance measure. The
Jukes–Cantor genetic distance is the maximum likelihood estimate
of the number of substitution that occurred per site over the
course of one sequence evolving from another. The pairwise
sequence alignment was performed using MATLAB R2011b bioin-
formatics toolbox. (3) Alignment-free k-mer method. The pairwise
distance of the k-mer frequency vectors of different DNA
sequences was measured by the Euclidean distance. The k-mer
method used in this study is from the MATLAB NACS toolbox v4.1
(Vinga and Almeida, 2003).

All sequence data were obtained from GenBank on the NCBI
and are listed in the Supplementary Materials. The methods and
algorithms in this study were implemented in MATLAB language
and are available from the following site: http://www.mathworks.
com/matlabcentral/fileexchange

3. Results and discussion

3.1. Even scaling of Fourier power spectra of DNA sequences

We evaluated the effectiveness of the even scaling method by
comparing the feature consistency of DFT power spectra of DNA
sequences before and after scaling. The even-scaling method was
applied to the DFT power spectra of DNA sequences to evenly extend
the spectra to different lengths. Fig. 1(a) and (b) is the DFT power
spectrum of an exon segment of Bubo bubo voucher NHMO-BC120
cytochrome oxidase subunit 1 gene (GenBank ID: GU571285, 360 bp),
and it is evenly scaled to 750 bp, respectively. Fig. 1 shows that the
scaled data preserve features from the original data, indicating feature
consistency among the original and its scaled data. Table 3 is the
statistical summary of the original power spectrum and its stretching
and shrinking values by even scaling. The means of original and scaled
sequences are close to identical and the variances of original and
scaled sequences are close. The 3rd central moment (skewness) and
4th central moment (kurtosis) of original are at similar level. The
proposed even scaling method overcomes the limitation which
requires the shortest length of a DNA more than one-half of the
maximum length of the DNA compared. In this even scaling method,
the DFT spectra of the short length DNA sequences can be evenly
scaled to any lengths.

3.2. Representation of DNA sequences by 2D numerical sequences

To reduce time in computing power spectra of DNA sequences,
we represent DNA sequences by 2D numerical vectors, instead of
4D binary indicator sequences. Because the most time spent in
computing the similarity distance is on Fourier transform of the
numerical vectors that DNA sequences are mapped, the dimension
reduction in DNA representation can reduce the computational
time to half. The effectiveness of the proposed DFT distance
measurement in 2D was tested on single gene. The test gene is
the NADH dehydrogenase subunit 4 genes of 12 species of four
different groups of primates. The data source consists of four
species of old-world monkeys (Macaca fascicular, Macaca fuscata,
Macaca sylvanus, and Macaca mulatta), one species of new-world
monkeys (Saimiri scirueus), two species of prosimians (Lemur catta
and Tarsisus syrichta), and five hominoid species (Human, Chim-
panzee, Gorilla, Orangutan and Hylobates) (Qi et al., 2011). Fig. 2
(a) and (b) is phylogenetic trees of 12 primate species by DFT with
2D numerical mapping and MSA, respectively. Based on nucleotide
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Fig. 1. (a) Fourier power spectrum of Bubo bubo voucher NHMO-BC120 cyto-
chrome oxidase subunit 1 (COI) (360 bp), and even scaled Fourier power spectrum
to (b) 540 bp, (c) 720 bp. Because Fourier power spectra of real number series are
symmetric, the plots only show the first half of the spectra.
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composition the 2D mapping is 2D-AG for the NADH dehydrogen-
ase subunit 4 genes of all the 12 species. The result shows that the
DFT distance with the 2D mapping generates a phylogenetic tree
that is very similar to the tree from MSA. The only difference
between the two phylogenetic trees from Fig. 2(a) and (b) is the
position of Orangutan due to the fact that there is a deletion
mutation in Orangutan (Yin et al., 2014). This deletion cannot be
identified by MSA method, and is in agreement with our previous
study (Yin et al., 2014). We also compared the accuracy of
phylogenetic trees from the DFT distances by the 2D numerical
(Fig. 2(a)) and 4D binary mapping (Fig. 2(c)). The phylogenetic tree
from 4D mapping has some degree of difference compared with
the one from MSA, but the phylogenetic tree structures of these
two representations are almost identical. These results suggest
that the 2D binary sequence representation proposed in this study
can achieve the same accuracy as MSA, while the 4D binary
indicator sequences show similar but different tree structures
compared with MSA. Furthermore, the 2D representation only
uses half computational time compared with the 4D representa-
tion. The 2D representation significantly improves the computa-
tional performance and is useful, especially, in phylogenetic
analysis for full large bacterial genomes.

3.3. Simulation of construction of phylogenetic trees on different
DNA mutations

A similarity measurement between two DNA sequences shall
account for differences in sequences due to insertions, deletions
and substitutions of bases in the sequences. These differences are
quantified as edit distance. We evaluated the accuracy of the
proposed DFT similarity measure using a series of deletion muta-
tions of an intron sequence from 3’ end. The deletion size is from
1 bp to 100 bp. We measured DFT similarity distance between the
deletion mutants and the original sequence. Fig. 3(a) is the
correlation between the deletion lengths and the DFT similarity
distances between the corresponding deletion mutants and origi-
nal sequence. The result in Fig. 3(a) shows a sound linear relation-
ship of the DFT distances and the deletion lengths, demonstrating
a robust and reliable behavior of the DFT distance metric in
measuring the different lengths of sequences.

The accuracy of the similarity distance metric was also assessed
using a series of point mutations (substitutions) in DNA sequences.
An intron sequence introduced many different point mutations
randomly and the derived mutated sequences were used in the
test. We measured the sequence distance between the mutants
and the original sequence by the proposed DFT method. Fig. 3(b) is
the correlation between the amount of point mutations and the
distance between the corresponding point mutants and original
sequence. The result in Fig. 3(b) shows sound linear relationship of
DFT distances and the amount of point mutations. This result
demonstrates the accuracy of the DFT distance metric on the
difference of nucleotide mutations on the same length DNA
sequences. The above results indicate an equivalency in DFT
distance and edit distance in DNA sequences.

One may argue that if we represent four nucleotides, A, T, C, and
G, by one dimensional numbers, for example, A¼1, T¼2, C¼3, and
G¼4, or A¼1þ i, T¼1� i, C¼�1þ i, and G¼�1� i, the

computational time for similarity comparison can be better than 2-
D representations. But this is not the case because one dimensional
representations apply arbitrary mathematical operations or weights
on the four nucleotides. For example, that A¼1 and T¼2 means A is

Table 3
Statistical summary of even scaling method.

Length Mean Variance 3rd moment 4th moment CE

360 357.7437 9:2136� 104 1:3089� 108 3:4761� 1011 0.8924

540 357.7632 6:4106� 104 7:5916� 107 1:7310� 1011 0.5298

750 357.7694 6:2300� 104 6:6071� 107 1:3588� 1011 0.3961
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Fig. 2. Phylogenetic tree of 12 primate species on NADH dehydrogenase subunit
4 gene. (a) By the DFT distances of DNA sequences with the 2D numerical mapping,
(b) by MSA, (c) by the DFT distances of DNA sequences with the 4D binary indicator
mapping.
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smaller than T, but in DNA sequences, A and T shall have equal
weights for similarity analysis. For different one dimensional repre-
sentations, we also tested the correlations between the edit distances
and the DFT distances of different deletion or site mutations, but the
results do not show linear correlations (data not shown). This study
confirms that 2D representation is more accurate than one dimen-
sional representations for similarity analysis of DNA sequences.

To verify if the similarity distance can be used for hierarchical
clustering DNA sequences, we generated different mutations in
DNA sequences and constructed phylogenetic trees from the pair-
wise DFT distances of these mutants. We used an intron sequence
as base sequence (GeneBank ID: AAG00896, 350 bp) and generated
two new sequences A and B from the intron sequence using point
mutations. 10% of mutations were introduced into A and B. We then
similarly evolved A and B into different mutants by four different
mutations (substitutions, deletion, insertion, and transposition).
Table 4 is the description on the simulated DNA sequences with
different mutations. UPGMA phylogenetic trees of the mutations are
built from the distance matrices using the proposed DFT similarity
method, alignment-free k-mer words method, and pairwise
sequence alignment, as shown in Fig. 4(a), (b) and (c), respectively.
For the different substitution mutations of the sequence A, Fig. 4(a)–
(c) shows that the three methods can correctly classify and cluster
them with correct tree topology. All the three methods create the
same tree topology corresponding to the numbers of substitution
mutations in the DNA sequences. This result indicates that the
proposed DFT measure, the k-mer and MSA methods have the same
discrimination power for measuring substitution mutations. For
deletion and insertion mutations of the sequence B, Fig. 4(a)–
(c) shows the topological differences in DFT based measure and k-
mer method and MSA method. Deletion and insertion are two
serious mutations and most deletion and insertion mutations may
impact significant changes on phenotypes. Fig. 4(a) shows that DFT
method can clearly separate the 5NT substitutions from 5 bp
deletion or insertion mutations, but k-mer and MSA method cannot
distinguish these deletion/insertion mutations from substitutions,
mixing them in same branches (Fig. 4(b) and (c)). For transposition
mutations, Fig. 4(a)–(c) also shows the topological differences in
DFT based measure and k-mer method and MSA method. Transpo-
sition and insertion/deletion are different from substitutions
because they cause serious phenotype changes and may be
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Fig. 3. (a) Correlation of the DFT distance and the lengths of deletion mutants of
DNA sequences. (b) Correlation between DFT distance and the number of point
mutations of DNA sequences.

Table 4
DNA sequence mutation description in simulation tests.

Sequence name Description

A/original Generated from AAG00896 (GeneBank ID, 350 bp)
A/substitution/2 NTs/1 2 random nucleotide substitutions in A
A/substitution/2 NTs/2 2 random nucleotide substitutions in A
A/substitution/5 NTs/1 5 random nucleotide substitutions in A
A/substitution/5 NTs/2 5 random nucleotide substitutions in A
A/substitution/10 NTs/1 10 random nucleotide substitutions in A
A/substitution/10 NTs/2 10 random nucleotide substitutions in A
B/original Generated from AAG00896 (GeneBank ID, 350 bp)
B/substitution/2 NTs/1 2 random nucleotide substitutions in B
B/substitution/2 NTs/2 2 random nucleotide substitutions in B
B/substitution/5 NTs/1 5 random nucleotide substitutions in B
B/substitution/5 NTs/2 5 random nucleotide substitutions in B
B/substitution/10 NTs/1 10 random nucleotide substitutions in B
B/substitution/10 NTs/2 10 random substitution mutations in B
B/deletion/5 bp/51:55 5 bp deletion from positions 51:55 in B
B/deletion/5 bp/101:105 5 bp deletion from positions 101:105 in B
B/insertion/5 bp/51:55 5 bp insertion at position 51 in B
B/insertion/5 bp/101:105 5 bp insertion at position 101 in B
B/transposition/5 bp/50–4150 5 bp transposition from position 50 to 150 in B
B/transposition/5 bp/50–4250 5 bp transposition from position 50 to 250 in B
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detrimental mutations in hosts. Fig. 4(a) shows DFT method can
clearly separate the 5 bp transposition from both substitutions and
insertion/deletion mutations, but k-mer and MSA method cannot
separate transposition mutant from substitutions, mixing them in

same branches as shown in Fig. 4(b) and (c). The phylogenetic trees
using the proposed DFT distance showed the highest congruences
with conventional taxonomic groupings, leading to reliable results
in hierarchical clustering of DNA sequences. In some cases, the DFT
based phylogenetic trees demonstrate a better identification of
different mutations in hierarchical tree and improves computa-
tional speed over the k-mer method and MSA. The results from 2D
representation with new even scaling are in agreement with what
we had before using 4D representation (Yin et al., 2014). These
results show that the proposed DFT similarity measure can achieve
same accuracy and reduce computational time to half compared
with our previous method.

3.4. Phylogenetic analysis on individual genes

The utility of the proposed DFT distance measurement was
tested on Influenza A viruses individual gene level. Influenza A
viruses cause influenza in birds and domestic poultry and can be
occasionally transmitted to human and give rise to human
influenza pandemics such as pandemic H1N1/2009 (Vijaykrishna
et al., 2010). Influenza A viruses are negative-sense, single-
stranded, segmented RNA viruses, and can be classified in different
subtypes by an H number for the type of hemagglutinin and an N
number for the type of neuraminidase. There are 18 different H
antigens (H1–H18) and 11 different N antigens (N1–N11). For
example, the H5N1 virus designates an Influenza A subtype that
has a type 5 hemagglutinin (H) protein and a type 1 neuraminidase
(N) protein. Using Influenza A virus neuraminidase (NA) gene, we
constructed phylogenetic tree based on pairwise DFT distance of
the segment 6 neuraminidase (NA) gene of different Influenza A
strains. Figs. 5 and 6 are the phylogenetic trees of Influenza A virus
constructed by the proposed DFT method and MSA, respectively.
The 2D mapping based on nucleotide composition of the virus
neuraminidase (NA) genes is 2D-AC. The results in Figs. 5 and 6
indicate that both MSA and DFT trees show correct grouping of
different virus subtypes H1N1, H5N1, H3N8, H3N2, H7N3, H11N9,
and H7N9. But the phylogenetic tree from DFT distance shows
clear branch difference than the phylogenetic tree from the Jukes–
Cartor distance in MSA. For example, the virus of highly homo-
logous sequences such as A/Illinois H1N1 viruses and Alaska H7N3
viruses cannot be separated by sequence alignment measured by
Jukes–Cartor distance, but they are clearly separated with correct
hierarchical relationship in the tree of DFT method. Another
example in Fig. 5 is that the H7N9 virus mutants in China 2013
can only be clearly separated in the tree of DFT method. The
hierarchical relationship among the H7N9 virus mutants in China
is in agreement with the geographic distribution of the virus and
the epidemiological investigation from previous findings (Xiong
et al., 2013). These results demonstrate the superiority of the
proposed DFT method on existing sequence alignment methods
due to the fact that the DFT distance calculation is based on all the
sequence information and does not lose sequence information
after Fourier transform. From disease perspective, the phyloge-
netic tree using the proposed DFT distance may accurately and
rapidly classify and trace the viruses, providing an effective tool for
virus surveillance.

3.5. Construction of phylogenetic trees on whole genomes

The comparison of whole genomes has become a very powerful
mean for inferring evolutionary relationships because sometimes
there is no signature gene available for new genomes. We
evaluated and applied the proposed DFT similarity measure on
hierarchical clustering genomes, which contain different genes
and non-coding regions. Phylogenetic analysis on mitochondrial
genes has played an increasingly important role in confirming
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Fig. 4. Clustering analysis of different mutations by phylogenetic trees of simulated
DNA sequences in Table 4. (a) The DFT distance, (b) the k-mer words, (c) pairwise
sequence alignment.
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existing or establishing sometimes radically different mammalian
groupings and taxonomy (Boore, 1999). For example, previously
Tobe et al. (2010) used cytochrome b and cytochrome oxidase
subunit I (COI) mitochondrial genes to reconstruct mammalian
phylogenies and accurately reconstructs their phylogeny. We
constructed phylogenetic tree of 70 mammalian whole mitochon-
drial genomes using the DFT distance. The 2D mapping based on
nucleotide composition of the COI genes is 2D-AG. Fig. 7 shows the
taxon relationships inferred from the phylogenetic tree are in
agreement with morphological analyses at order, family and
generic levels. This result confirms the effectiveness of the
proposed DFT similarity measure on DNA similarity analysis.

We assessed the efficiency of the DFT distance in phylogenetic
analysis of long whole genomes, which are difficult to compute by
genome-wide alignments. We used a total of 40 bacterial organ-
isms with genome sizes from 910k to 5.5M bp. Fig. 8 shows that
the use of the DFT distance methods by 2D mapping leads to a
reliable phylogenetic tree. All the bacterium including Bacillus,
Borrelia, Clostridium, Desulfovibrio, Escherichia, Rhodobacter, Salmo-
nella, Shigell, Staphylococcus, Sulfolobus, Thermoplasma, and Yersi-
nia are clearly classified. It shall be noted that Escherichia are very
divergent strains. Such large differences in genome size can be
mitigated by the proposed even scaling method. Because the
nucleotide compositions of these bacterial genomes vary signifi-
cantly, the 2D mapping based on nucleotide composition of the
genomes can be both 2D-AC and 2D-AG, and mitigate the impact
of the nucleotide composition bias on distance measure of the

whole genomes. Fig. 8 shows that Escherichia coli O15:H7 patho-
gen is divergent from non-pathogen strains K-12 and is close to
Staphylococcus from the phylogenetic analysis, suggesting hori-
zontal gene transfer between Staphylococcus and Escherichia coli
O157H7, and the horizontal gene transfer was also revealed in
previous literatures (Brisson-Noel et al., 1988; Mazodier and
Davies, 1991). We compared the 2D mapping and 4D indicator
mapping in phylogenetic analysis of the same bacterial genomes.
Phylogenetic tree from 4D mapping is shown in Fig. 9. Comparison
of Figs. 8 and 9, the 4D representation does not show clear
hierarchy relationship from Yersina to Escherichia, but 2D mapping
can show the relationship of this group of bacteria. This result
shows that 2D mapping is better than 4D indicator mapping. The
reason that 2D mapping can differ from close related bacterial
genomes is that the 2D mapping employ nucleotide composition
of the genomes. In addition, as evidenced in this study, accurate
phylogenetic analysis of Escherichia coli O15:H7 provides critical
insights into this pathogen's evolutionary patterns such as hor-
izontal gene transfers.

Although our method shows promising results for phylogenetic
analysis of whole bacterial genomes, due to the high divergences
of bacterial genomes, the results on whole genome analysis from
our model are not perfect. For example, we found that in the
phylogenetic tree, Escherichia/K-12MC4100 is close to Clostridium
perfringens ATCC 13124, and Thermoplasma volcanium GSS1 is close
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Fig. 5. Phylogenetic tree of Influenza A viruses by the DFT distances of DNA
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Fig. 6. Phylogenetic tree of Influenza A viruses using MSA by Jukes–Cartor distance.
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to Sulfolobus tokodaii str. 7 and Rhodobacter sphaeroides ATCC
17029. We could not achieve an explanation for these two outliers.

Comparative and phylogenetic analyses of mammalian gen-
omes facilitate our understanding of the underlying basis of
disease-related and healthy phenotypes (Murphy et al., 2001; Li
et al., 2013). Due to very large and complex genome structures, the
alignment of whole chromosomal regions from more than a few
species is not yet possible. Digital signal processing techniques,
such as Fourier transform, provide novel approaches for compara-
tive analysis of complex mammalian genomes. One possible
solution is that we may divide the entire genomes into small
segments, on which Fourier transform analysis can be applied. The
distributions of Fourier power spectra on these segments can be
used for genome analysis. In addition, mammalian genomes
contain complex structural elements including tandem repeats,
reverse repeats, transposable elements (TEs), exon, introns, and
long non-coding RNA (Lnc RNA) genes (Jurka et al., 2007). These
special elements often display periodic features, for example, exon
sequences have distinct 3-periodicity and tandem and reverse
repeats are periodic sequences. Because the Fourier transform can
capture periodic signals in genomes, we will investigate in detail

the applications of Fourier based algorithm on comparative
analysis of large genomes, especially to address the impacts of
these periodic genomic elements on phylogeny of genomes.

Determining the functional implications of gene or proteins
sequences is one of the key tasks of the post-genome era. From
similarity comparison and hierarchical clustering, we can infer
functions and classify a new sequence or genome. This requires
accurate and efficient similarity measure for DNA sequences. Most
alignment-free methods such as the k-mer method and feature
based methods may lose information after extracting sequence or
feature information. The Fourier power spectrum makes a rever-
sible comprehensive map and characterization of a DNA sequence
and thus retains all the sequence information for comparison.

In this improved model on the similarity analysis of DNA
sequences, the 2D mapping algorithm reduces the nucleotide
composition bias in phylogenetic analysis. The even scaling
method overcomes the limitation which requires the shortest
length of a DNA more than one-half of the maximum length of
the DNA compared and thus the DFT spectra of the short length
DNA sequences can be evenly scaled to any length. The imple-
mentation of the new even scaling and reduction of dimensions
representation in DNA sequence significantly reduces the compu-
tational complexity demands. Therefore, the improved DFT
method is fast, accurate and low-complexity for comparing DNA
sequences. Because of high efficiency and accuracy of the proposed
DFT method, it can be used in whole genome phylogenetic
analysis, which circumvents the ambiguity of choosing the genes
for reconstruction and also avoids the necessity of aligning
sequences of essentially different length and gene content. In
addition, unlike other alignment-free methods, our DFT method
does not need user defined parameters such as mer length in k-
mer method, this feature makes DFT method be effective for
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Fig. 7. Phylogenetic tree of SARS viruses by the DFT distances of DNA sequences
with 2D mapping.
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Fig. 8. Phylogenetic tree of 70 mammalian mitochondrial genomes by the DFT
distances of DNA sequences with the 2D numerical mapping.
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analyzing new genomes when no taxon information is available.
The numerical experiments on different DNA sequences and
genomes with different sizes demonstrate the efficiency of the
proposed method. Thus the improvement of the DFT method over
our previous one is substantial.

High throughput sequencing is now fast and cost-effective,
thus whole-genome sequencing will be available as a routine tool
for clinical microbiology in the near future (Loman et al., 2012).
Phylogenetic analysis of whole bacterial genomes is a critical tool
for analyzing bacterial pathogenicity. When our algorithm for
whole bacterial genome analysis is applied directly to clinical
microbiology samples, it can significantly increase diagnostic
accuracy and reduce processing time, thereby improve disease
control and treatment. Moreover, from the public health perspec-
tive, our algorithm can be used in identifying the emergence of
new threats and monitoring the spread of bacterial pathogens, and
thus has great potentials in epidemiological investigations.

4. Conclusion

In this work, we establish an improved similarity measure
based on Fourier transformation and even scaling for different
length sequence data. The method has been assessed for accuracy
by computer simulations and construction of phylogenetic trees of
different virus genomes and genes. In this method, we first
convert symbolic DNA sequences to 2D numerical sequences using

nucleotide composition of the sequences, then we apply DFT on
the 2D numerical sequences, and even scale the corresponding
Fourier spectra to the longest sequences. The Euclidean distance
was used to calculate the similarity of the scaled power spectrum
in the same dimensional space. We created different DNA
sequence mutants and assessed the accuracy of the new DFT
metric on the mutants. The similarity metrics have been evaluated
by constructing phylogenetic trees using different types of DNA
sequences. The results show that the DFT based alignment-free
DFT similarity measure provides highly accurate and computa-
tionally efficient identification of differences caused by a variety of
mutants (point mutations, insertions/deletions and transposition)
in DNA sequences. The DFT similarity measure method is a new
effective tool in DNA sequence analysis at both gene and whole
genome level.
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