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Due to vast sequence divergence among different viral groups, sequence alignment is not directly appli-
cable to genome-wide comparative analysis of viruses. More and more attention has been paid to
alignment-free methods for whole genome comparison and phylogenetic tree reconstruction. Among
alignment-free methods, the recently proposed ‘‘Natural Vector (NV) representation” has successfully
been used to study the phylogeny of multi-segmented viruses based on a 12-dimensional genome space
derived from the nucleotide sequence structure. But the preference of proteomes over genomes for the
determination of viral phylogeny was not deeply investigated. As the translated products of genes, pro-
teins directly form the shape of viral structure and are vital for all metabolic pathways. In this study,
using the NV representation of a protein sequence along with the Hausdorff distance suitable to compare
point sets, we construct a 60-dimensional protein space to analyze the evolutionary relationships of 4021
viruses by whole-proteomes in the current NCBI Reference Sequence Database (RefSeq). We also take
advantage of the previously developed natural graphical representation to recover viral phylogeny. Our
results demonstrate that the proposed method is efficient and accurate for classifying viruses. The accu-
racy rates of our predictions such as for Baltimore II viruses are as high as 95.9% for family labels, 95.7%
for subfamily labels and 96.5% for genus labels. Finally, we discover that proteomes lead to better viral
classification when reliable protein sequences are abundant. In other cases, the accuracy rates using pro-
teomes are still comparable to that of genomes.

Published by Elsevier Inc.
1. Introduction

With fast development of sequencing technology, an increasing
number of viral sequences have been available. Phylogenetic and
taxonomic studies on viral sequences become increasingly impor-
tant for understanding diversities and origins of viruses (Holmes,
2010). Traditional approaches mostly are based on pairwise and
multiple sequence alignment. There is high rate of divergence
between different virus sequences due to gene mutation, horizon-
tal gene transfer, gene duplication, gene insertion and deletion
(Duffy et al., 2008). These features pose a challenge to phylogenetic
investigation of viruses. Furthermore, whole genome sequences
generally supply more comprehensive information for inferring
the phylogeny of viruses than a few orthologous genes (Wong
et al., 2008). Since genomes or proteomes include a lot of genes
or proteins, the existing methods relating to multiple sequence
comparison are computationally intensive (Vinga and Almeida,
2003). Thus they are not suitable for genome-wide phylogeny
analysis.

In the past ten years, there has been a growing interest in
genome based alignment-free methods for evolutionary studies.
Among them, the k-mer related methods are all based on word
frequencies, which ignore the position of nucleotides (Dai et al.,
2008; Wu et al., 2009). In comparison, the natural vector method
characterizes both the count and position information of nucleic
acids (Deng et al., 2011). The NV method has succeeded in clas-
sifying viruses and reconstructing phylogenetic trees (Yu et al.,
2013). The NV representation builds a one-to-one correspon-
dence between a DNA sequence and a 12-dimensional numerical
vector. Thus we establish a 12-dimensional genome space. Since
the Euclidean distance between points in this space can represent
their biological similarity to some extent, it allows comparing
viruses simultaneously at family level, subfamily and genus
levels. As some viral genomes are in the form of several seg-
ments, each segment corresponds to a point in R12 by the NV
method, and then each virus corresponds to a set of points
in R12. Recall the general definition of Euclidean distance:
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q
, where a ¼ ða1; . . . ; adÞ,

b ¼ ðb1; . . . ; bdÞ, d is the dimension of vectors a and b. So it is only
used to measure the distance between two points. To solve this,
the Hausdorff distance is used to measure the distance between
point sets, which results in the global comparison of multiple
segmented viruses, including single-segmented viruses as well
(Huang et al., 2014).

It is of importance to determine whether virus classification
using whole-proteomes is indeed better than classification using
whole genome. Although one gets nucleotide sequences first, it is
increasingly feasible to get corresponding protein sequences as
many of gene annotations have been done automatically or manu-
ally. Moreover, proteome sequences may be directly involved in
determining the variety of functions and the structure of viruses.
Mutation in a protein may directly affect its functions which likely
result in phenotype changes in evolution. However, changes to
nucleic acids may not lead to a protein mutation, because of degen-
eracy of genetic codons and presence of introns. Even though it
was suggested that using proteome sequences was better than
using whole genome DNA sequences for genome-based phylogeny
reconstruction (Xu and Hao, 2009; Yu et al., 2010a,b; Xie et al.,
2015), these studies were only based on a specific Baltimore class
or certain families of viruses in the National Center for Biotechnol-
ogy Information database (NCBI). Virus classification by proteomes
has not been systematically characterized. Therefore, we have
done a large scale test using almost all viruses in RefSeq database,
which is a reliable, non-redundant, and annotated reference subset
of NCBI. We compare the results obtained through whole proteome
sequences with those by whole DNA genomes.

The phylogenetic tree is a useful tool for classifying and infer-
ring the origin of organisms. Traditionally, this tree has been con-
structed on the basis of a distance or dissimilarity matrix of
species. Many algorithms such as the neighbor-joining algorithm
(Saitou and Nei, 1987), have been designed to recover this tree
from this matrix. But there are some disadvantages to the resulting
phylogeny tree. For instance, the tree may not be unique if the dis-
similarity matrix doesn’t obey the triangle inequality (Buneman,
1974). To overcome these limitations, the natural graphical repre-
sentation was proposed (Yu et al., 2013). It has been shown to per-
form well and can be computed efficiently.

In this paper, we determine the classification of 4021 viruses in
seven Baltimore classes based on the NV representation of pro-
teomes and Hausdorff distance. Additionally we also apply the nat-
ural graphical representation to show the viral phylogeny. To
validate the advantages of proteomes in virus classification, we
further process the single-segmented viruses in Baltimore class
IV with k-mer method and NV approach based on genomes and
Euclidean distance as comparison.

2. Materials and methods

2.1. Overview of the viral data sets

Viruses exhibit more biological diversity than the rest of bacte-
rial, plant, and animal kingdoms. Genomes of viruses may be
single-stranded or double-stranded, linear or circular, and in a
single-segmented or multi-segmented configuration. In this work,
we first downloaded all the referenced protein sequences corre-
sponding to the 4021 viruses as well as their referenced genome
sequences from RefSeq database release 69 (January 7, 2015) from
NCBI. Traditionally, viruses are classified into seven Baltimore
classes. The information for each class in the proteome data set
is summarized in Table 1. The 4021 viruses consist of 91 families,
22 subfamilies and 523 genera in total. The viruses in Baltimore VII
class have no subfamily labels, thus we use zero to denote the
number of their subfamilies in this table. To be convenient, we
number the viruses by integers.
2.2. Natural vector and protein space

Let L be the set of 20 types of amino acids, i.e.,
L ¼ fA;R;N;D;C; E;Q ;G;H; I; L;K;M; F; P; S; T;W;Y ;Vg, and
S ¼ ðs1; s2; . . . ; snÞ be a protein sequence of length n, that is,
si 2 L, i ¼ 1;2; . . . ;n. For k 2 L, define wkð�Þ : L ! f0;1g such that
wkðsiÞ ¼ 1 if si ¼ k and 0 otherwise.

(1) Let nk ¼
Pn

i¼1wkðsiÞ denote the number of letter k in S.

(2) Let lk ¼
Pn

i¼1i � wkðsiÞ
nk

be the mean position of letter k.

(3) Let Dk
2 ¼ Pn

i¼1
ði�lkÞ2wkðsiÞ

nkn
be the normalized 2-nd central

moment of positions of letter k.

For ambiguous amino acids, 1-letter B represents N or D; Z for E
or Q; J for I or L; and X for all possible 20 types of amino acids. Thus
for k 2 L we define the weight wkðsiÞ as the expected count of let-
ter k in position i. For instance,

wNðsiÞ ¼

1; si ¼ N
0:5; si ¼ B

0:05; si ¼ X

0; otherwise:

8>>><
>>>:

The 60-dimensional NV of a protein sequence S is defined by
ðnA;nR; . . . ;nV ;lA; . . . ;lV ;D

A
2 ; . . . ;D

V
2 Þ. For nucleotide sequences,

we have similarly defined NV, see Yu et al. (2013).
2.3. Hausdorff distance

Once each protein sequence is mapped to a unique point in the
60-dimensional NV space, each virus then corresponds to a set of
points. But in our dataset, three viruses (#121, #297 and #700 in
Baltimore class II) share the same set of proteins with other
viruses. To ensure one-to-one correspondence between viruses
and set of NVs, these three viruses were excluded from the subse-
quent study. The Hausdorff distance is utilized to measure the pair-
wise distance between point sets (Huttenlocher et al., 1993). This
distance has been suitable to reconstruct the phylogenetic tree
for multi-segmented viral genomes from different families when
combined with Lempel–Ziv complexity or NV representation of
nucleotide sequences (Yu et al., 2014; Huang et al., 2014). The
extended version of it, Yau–Hausdorff distance, has achieved suc-
cess in matching graphical curves of DNA or protein sequences
(Tian et al., 2015).

To be precise, suppose A and B are two finite point sets in Rn.
Their Hausdorff distance is defined by

hðA;BÞ ¼ max max
a2A

min
b2B

dða; bÞ;max
b2B

min
a2A

dða; bÞ
� �

;

where dða; bÞ is the Euclidean distance between two numeric vec-
tors a and b. Note that when both the set A and B have only one
member, the Hausdorff distance is reduced to the Euclidean dis-
tance. Additionally, unlike many similarity/distance measures in
genomics, the Hausdorff distance is a true distance in the sense of
mathematics, i.e. it is nonnegative, symmetric and satisfies triangle
inequality. When comparing two viruses, this distance is free from
the order of viral protein sequences in the form of NVs. The viral
classification and phylogenetic tree can be built efficiently using
the Hausdorff distance.



Table 1
Summary of seven Baltimore classes in our data set.

Baltimore class I II III IV V VI VII
Name dsDNA ssDNA dsRNA (+)ssRNA (�)ssRNA ssRNA-RT dsDNA-RT Total

#species 1877 708 95 970 250 52 69 4021
#family 30 7 8 34 9 1 2 91
#subfamily 10 3 2 3 2 2 0 22
#genus 270 40 24 139 41 7 9 523
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2.4. Prediction of viral label and the natural graphical representation

In order to predict the viral ranks in the taxonomic hierarchy,
we search the nearest neighbor for each virus in the 60-
dimensional protein space and infer that the viral has same rank
as its neighbor. Due to the sparsity of data, practically to predict
the family label, for each virus p in a Baltimore class, for example
class I, we find its nearest neighbor q restricted to Baltimore class
I which belongs to family Q. Then for each virus in Q, we compute
its nearest distance to other virus in Q and collect all the derived
distances to get their 95% quantile, denoted as L. Here 95% quantile
is the distance value which is exactly larger than the 95% of all dis-
tances considered. If the Hausdorff distance hðp; qÞ between p and q
is smaller than L, then we predict that virus p is in family Q, other-
wise we don’t predict its label. For the subfamily and genus predic-
tion, we perform the same process. It is important to note that the
genus prediction is made given the family rank because most of
viruses are not specified to the subfamily rank. Comparing to the
75% quantile used in the previous work (Yu et al., 2013), we choose
the 95% quantile in this investigation, which may produce a rela-
tively high accuracy rate and reduce the number of unpredicted
viruses. Here we use a to denote the number of predicted viruses,
b the number of correctly predicted viruses, we define the accuracy
rate as b=a. It should be noted that those viruses with missing
labels were excluded before accuracy rate predictions. To compare
the difference between genome and proteome sequences of
viruses, we also build the 12-dimensional genome space and make
the prediction in the way mentioned above. We employ the natural
graphical representation to display the phylogeny of viruses as
well.

We can also infer the labels of viruses that are not assigned to
any family or genus. For each virus without a label, we find its
nearest neighbor among viruses with known labels. If their dis-
tance is less than a certain cutoff from the taxon of its neighbor,
the unassigned virus can be considered part of the taxon. In fact,
our results show that the rate of unpredicted viruses is more than
20% for 0.75-cutoff and less than 10% for 0.95-cutoff. But the 0.75-
cutoff produces a slightly higher accuracy rates than the 0.95-
cutoff, so here we choose the 0.75-cutoff to get reliable predictions.

3. Results

The accuracy rates of prediction for the seven Baltimore classes
are shown in Table 2, in which the digits within angle brackets are
the accuracy rates using genomes and the other digits are accuracy
rates using proteomes.

3.1. Prediction of dsDNA viruses (class I)

There are 1877 viral species in this class composed of 30 fami-
lies, 10 subfamilies, and 270 genera. The missing rates are 0.055 for
family, i.e. 5.5 percent of viruses have no family labels. The rates
are as high as 0.841, 0.599 for subfamily and genus respectively.
The accuracy rates at different levels for proteome-based method
and genome-based method are listed in Table 2. Using the pro-
teome data set with the 0.95-cutoff, the accuracy rates at different
levels are 0.884 for family labels, 0.961 for subfamily labels, 0.890
for genus labels, while for the genome data set, they are 0.819,
0.951 and 0.873 respectively for family, subfamily and genus
(Table 2). Thus the result obtained by proteomes is generally better
than that by genomes. We also predict the viruses with missing
labels. As a result, within 104 viruses unspecified to families and
1125 viruses unspecified to genera, 54 viruses are classified into
families and 292 are assigned to genera. For detail, one may refer
to Table S2 and S3 in the supporting files.

3.2. Prediction of ssDNA viruses (class II)

The single-stranded DNA (ssDNA) viruses in our study have 708
members composed of 7 families, 3 subfamilies and 40 genera. The
number of viruses remaining in each family are as follows:
Anelloviridae 45; Circoviridae 76; Geminiviridae 371; Inoviridae
39; Microviridae 19; Nanoviridae 8; Parvoviridae 85. In addition,
65 viruses remain unassigned to any family. Using the proteome
data set, the taxonomic accuracy rates for the 708 ssDNA viruses
at different levels are 0.988 for family labels, 0.966 for subfamily
labels, 0.960 for genus labels, while for the genome data set, they
are as high as 0.983, 0.972, and 0.971 for family, subfamily and
genus, respectively. The results of these two methods are compara-
ble to each other. For this class of viruses, here we take the families
Inoviridae, Nanoviridae and Microviridae as examples to recon-
struct the evolutionary relationship among the viruses within the
same families. For the viruses unassigned to any family or genus,
using the 0.75-cutoff method, 51 viruses are assigned to families
and 30 are assigned to genera. For detail, one may refer to
Table S4 and S5 in the supporting files.

The phylogeny of virus in the family Inoviridae is illustrated in
Fig. 1, which contains 28 viruses in Inovirus, 5 in Plectrovirus, and
6 without genus labels. In this graph, the genera are in different
colors except the unassigned viruses in gray. The two genera are
separated except the two viruses #10 (Acholeplasma phage MV-
L1) and #514 (Spiroplasma phage SVTS2) from genus Plectrovirus.
The viruses in Inoviridae are rod-shaped, non-enveloped, filamen-
tous, and circular in DNA configuration. They contain the ino-
viruses of gram-negative bacteria and the plectroviruses of
mollicutes, of which the SpV1 viruses, Spiroplasma phage 1-C74
(#511) and Spiroplasma phage 1-R8A2B (#512), are the represen-
tatives. For the genus Inovirus, we compute its 0.75-cutoff as
267.35, thus we make the reliable forecast that viruses #527,
#442, #698, and #441 belong to this genus. The Spiroplasma phage
SVTS2 (#514) is a SpV1-like virus infecting Spiroplasma melliferum,
a honeybee pathogen. From our graph, its closest neighbor (#693)
is in genus Inovirus with distance 262.37 which is less than the
cutoff of the genus Inovirus. The second closest neighbor of virus
#514 is virus #696 (distance 279.06) which is also in the same
genus. Previous work (Sha et al., 2000) demonstrated that this
virus shared nearly half of SpV1 genomes of other two representa-
tive spiroplasma plectroviruses and thus was tentatively paced in
the genus Plectrovirus. Our results show that virus #514 likely
belongs to genus Inovirus. For virus #10, its nearest neighbor is
#450 and next closest neighbor is #696 both of which are in the
genus Inovirus. Therefore it should be in the genus Inovirus. It is



Table 2
Comparison of accuracy rates of seven viral Baltimore classes between proteomes and genomes.

Baltimore class I II III IV V VI VII
Name dsDNA ssDNA dsRNA (+)ssRNA (�)ssRNA ssRNA-RT dsDNA-RT

Family
Without cutoff
Proteomes 0.859 0.942 0.953 0.942 0.943 1.00 1.00
Genomes <0.812> <0.949> <0.977> <0.919> <0.963> <1.00> <1.00>

With cutoff
0.884 0.988 0.975 0.965 0.965 1.00 1.00
<0.819> <0.983> <1.00> <0.944> <0.978> <1.00> <1.00>

Subfamily
Without cutoff

0.950 0.957 0.943 0.987 1.00 0.960
<0.950> <0.914> <0.943> <0.933> <1.00> <0.960>

With cutoff
0.961 0.966 0.980 1.00 1.00 0.979
<0.951> <0.972> <0.940> <0.943> <1.00> <0.979>

Genus
Without cutoff

0.855 0.960 0.841 0.902 0.885 0.771 0.949
<0.862> <0.957> <0.921> <0.872> <0.901> <0.813> <0.966>

With cutoff
0.890 0.973 0.920 0.928 0.963 0.860 0.944
<0.873> <0.971> <0.962> <0.897> <0.930> <0.864> <0.981>

Fig. 1. The natural graphical representation of 39 viruses of family Inoviridae.
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interesting to find that the distance from #447 to any other virus
except #448 is equal to that from #448 to the same virus. This
may be due to the high similarity of nucleotide sequences of the
two viruses.

We draw the natural graphical representation for 8 viruses in
family Nanoviridae in Fig. 2. They are divided into two mono-
phyletic groups, the genera Babuvirus and Nanovirus. The distance
between viruses #384 and #383 is small, so we infer that #384
also belongs to genus Nanovirus.

The natural graphical representation for 19 viruses in family
Microviridae is shown in Fig. 3. Note that the four genera
Microvirus, Chlamydiamicrovirus, Bdellomicrovirus, and
Spiromicrovirus clearly form four clades. The nearest neighbor of
#86 is #87 and the distance between them is only 126.77, which
is far smaller than the second nearest distance (330.70) from #86
to other viruses, but 330.70 is dramatically larger than the distance
of any two viruses among Microvirus genus. Therefore we con-
clude that the two viruses #87 and #86 form a new genus, which
is consistent with the result of Karin et al. (2013).

3.3. Prediction of dsRNA viruses (class III)

In RefSeq database, there are 202 viral species in the Baltimore
III class composed of 11 families, 2 subfamilies, and 33 genera.



Fig. 3. The natural graphical representation of 19 viruses of family Microviridae.

Fig. 2. The natural graphical representation of 8 viruses of family Nanoviridae.
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Among these viruses, 107 species consist of no more than two pro-
teins. The lack of referenced proteins may be caused by the limited
amount of investigation done on them and the complexity of gene
expression. To improve the forecast without loss of much informa-
tion, we only analyzed the 95 viruses that remained after eliminat-
ing the 107 viruses. These viruses consist of 8 families, 2
subfamilies, and 24 genera. The missing labels for family, subfam-
ily and genus are 0.074, 0.442, and 0.232 respectively. Using the
proteome data set with the 0.95-cutoff, the accuracy rates at differ-
ent levels are 0.975 for family labels, 0.980 for subfamily labels,
0.920 for genus labels, while for the genome data set, they are
1.00, 0.940 and 0.962 respectively. The results of these two meth-
ods are comparable to each other.

3.4. Prediction of (+)ssRNA viruses (class IV)

The Baltimore IV includes 970 viral species which form 34 fam-
ilies, 3 subfamilies, and 139 genera. The rates of viruses unassigned
to any family, subfamily, and genus are 0.066, 0.923, and 0.141
respectively. Using the proteome data set with the 0.95-cutoff,
the accuracy rates of classification at different levels are 0.965
for family labels, 1.00 for subfamily labels, 0.928 for genus labels,
while for the genome data set, they are 0.944, 0.943 and 0.897
respectively (Table 2). Thus the result obtained by proteomes is
uniformly better than that by genomes.

Within the 970 viral species, 104 viruses have no family labels
and 137 viruses have no genus labels. Using the 0.75-cutoff predic-
tion, 17 viruses are assigned to families and 59 are assigned to gen-
era. For detail, one may refer to Table S6 and S7 in the supporting
files.

The phylogeny of 45 viruses in family Alphaflexiviridae is illus-
trated in Fig. 4. Except the virus #1 and #10 which form a new
clade, the other viruses within genus Potexvirus cluster together.
For remaining genera, each forms its own clade regardless of the
number of member in the genus. The virus #6 is not assigned to
any genus, but it is next to the virus #14 at the distance 225.6.



Fig. 4. The natural graphical representation of 45 viruses of family Alphaflexiviridae.
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Since the median value of all nearest distances of viruses in genus
Allexivirus is only 225.25, the virus #6 is thought to be in genus
Allexivirus.

3.5. Prediction of (�)ssRNA viruses (class V)

There are 250 viral species in this class consisting of 9 families,
2 subfamilies, and 41 genera. For the family, subfamily and genus
labels of viruses, the missing labels rates are 0.024, 0.772, and
0.168 respectively. Using proteome sequences, the accuracy rates
of prediction are 0.965, 1.00, and 0.963 for family, subfamily and
genus. For the genome data set, they are 0.978, 1.00 and 0.930 cor-
respondingly (Table 2). Thus the result obtained by proteomes is
comparable to that by genomes. For viruses without genus labels,
using the 0.75-cutoff prediction, 14 viruses are classified into cer-
tain genera. For detail, see Table S8 in the supporting files.

3.6. Prediction of ssRNA-RT viruses (class VI)

In current RefSeq database, there are 62 viral species in the Bal-
timore VI class composed of one family, two subfamilies, and seven
genera. In this small family, there exists ten viruses that comprise
no more than two proteins. To get a reliable prediction without los-
ing too much information, we only use the remaining 52 viruses for
analysis. The missing rates are 0, 0.038, 0.058 for family, subfamily
and genus labels. As the viral family labels are all known, the accu-
racy rate for family labels is 1. The accuracy rates of prediction are
0.979 and 0.860 for subfamily and genus labels. For the genome
data set, the accuracy rates are 0.979 and 0.864 for subfamily
and genus prediction. Thus the result obtained by proteomes is
comparable to that by genomes.

3.7. Prediction of dsDNA-RT viruses (class VII)

There are 69 viral species in this class composed of two families
and nine genera, but all these viruses have no subfamily labels. For
the family and genus labels of viruses the missing rates are 0, 0.101
respectively and the accuracy rates of prediction are 1.00 and
0.944. For the genome data set, the accuracy rates are 1.00 and
0.981 correspondingly (Table 2). Thus both of the methods classify
this class efficiently and comparatively.

In Fig. 5, the genus Caulimovirus (in yellow) forms a mono-
phyletic clade. The genus Badnavirus basically groups together
except two viruses #53 and #54. But the four viruses in genus Soy-
movirus are very divergent, among which the virus #12 and #45
form a clade, the other two viruses are phylogenetically distant.
The unclassified virus #34 is next to #24 with a very small distance
(37.53). Therefore this virus is considered in genus Badnavirus.

From Table 2, we observe that the accuracy rates of prediction
with proteomes are higher than those with genomes at the family,
subfamily level for the Baltimore class I. For Baltimore class IV, the
proteins are definitely preferable to nuclei acids. As for the Balti-
more class II, the proteins outperform nucleotides for family and
genus prediction in the case using 0.95-cutoff. For the rest of
classes, the accuracy rates based on proteomes are comparative
to those using genomes due to the insufficiency of enough reliable
proteins contained in these viruses. Generally speaking, the viral
genomes are correctly sequenced with minor error in the large
sequences. In our study, the 12-dimensional NV based on genomes
gets slightly low accuracy rates for at the genus level for Baltimore
I and VI, indicating that the genomes may not cover the informa-
tion needed for accurate classification when sequence divergence
is high.

In order to further assess the feasibility of our proteome based
method, we investigate the influenza A (H7N9) virus. The virus
consists of eight nucleic acid segments, but has a varied number
of referenced proteins. Traditionally, the virus appears in birds,
but now is found in humans, which poses a new public health
threat as its high contagion and fast evolution (Liu et al., 2013).
It is crucial to distinguish new H7N9 viruses rapidly and find their
relationships in the phylogenetic tree of the viruses. We use the
proteomes of 28 H7N9 strains analyzed by Huang (Huang et al.,



Fig. 5. The natural graphical representation of 56 viruses of family Caulimoviridae
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2014). Their names are listed in Table S1 of the supporting files.
Using the natural graphical representation with proteomes, their
phylogeny is shown in Fig. 6.

The new H7N9 virus isolated from human was found in China
and it then infected a Taiwan traveler who visited the region close
to Zhejiang province in China mainland. The recent studies show
that the six internal genes of this new virus are mutated from
the old H9N2 virus. But the origin of other two segments, HA
and NA, are unclear. According to our natural graph of the phyloge-
netic relationship, it is noted that Taiwan 2 has equal distance to
Nanjing 1, Nanjing 2 and Taiwan 1, which indicates the Taiwan 2
virus may equally evolve from the three strains. Moreover the
Taiwan 1 is also equally close to four viruses, which is very
Fig. 6. The natural graphical representation of 2
interesting and very reasonable as the host traveled around the
Zhejiang. Since the Mongolia virus and Delaware virus are far away
from the Nanjing 2 virus and Taiwan 1 virus respectively in the
graph, it indicates that they are two phylogenetically unrelated
clades. So are the South Korea 2, Minnesota 2. For USA Alaska, its
first three neighbors are Guatemala 2, Mississippi, and Delaware
Bay, with the corresponding distances 109.66, 109.97, 110.46,
which are much bigger than the distances among countries or
states in the gray box. It is illustrated that the Shanghai 2, Hang-
zhou, and Zhejiang 2 viruses are clustered together and they are
closer to the avian strains in South Korea than the rest of those
in mainland China. Therefore it is possible that some new viruses
in China may be from South Korea by the migration of wild birds.
8 strains of H7N9 based on the proteomes.



Table 4
Accuracy rates of k-mer, genome-based NV and proteome-based NV methods for 351
viruses.

Methods 6-
mer

9-
mer

11-
mer

Genome-based
NV

Proteome-based
NV

Family
Without

cutoff
0.712 0.148 0.142 0.954 0.977

With cutoff 1 1 1 0.966 0.991

Genus
Without

cutoff
0.883 0.769 0.672 0.858 0.912

With cutoff 0.899 0.794 0.704 0.883 0.940
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3.8. Comparison with other methods

The k-mer method has been extensively applied to analyze gen-
omes of organisms including viruses. But the important parameter
k is usually selected subjectively and dependent on typical data
sets (Vinga and Almeida, 2003; Yu et al., 2010a; Wu et al., 2009).
For another alignment-free method, the NV representation based
on genomes and Euclidean distance proves to be efficient for clas-
sifying single-segmented viruses (Yu et al., 2013). In this work, we
compare our method with these two approaches. The 970 viruses
in Baltimore IV class (positive-sense ssRNA) are used as a test data-
set. Since some RNA viruses have multiple segments in their gen-
omes and each segment often codes for only one protein, to
implement our comparison, we first removed the multiple-
segmented viruses. Then for those single-segmented viruses, we
excluded those with no family or genus labels and the genera with
only one species. The resulting dataset contained 638 viruses,
which is quite large to analyze. This dataset also included some
viruses without enough reliable proteins. In particular, there were
84 with one protein, 21 with two proteins and 59 with three pro-
teins. According to Sims et al. (2009), we chose the optimal resolu-
tion k as the minimum integer that is greater than or equal to
log4ðnminÞ, where nmin is the minimal length of DNA sequences
studied. For this dataset, virus ‘Ophiostoma novo-ulmi mitovirus
6-Ld’ has a minimal genome size of 2343 base pairs, thus the opti-
mum k is 6. The results of three methods are shown in Table 3. We
notice that the 6-mer, 9-mer and 11-mer methods perform very
differently when predicting the family label. The prediction rate
for the family level is almost 100%. The rates of unpredicted viruses
for the 6-mer, 9-mer and 11-mer methods are 35%, 91% and 92%
respectively, while the rate for each NV-based method is about
6%. These results demonstrate that the proteome-based NV
method outperforms the other two approaches even when about
26% viruses lack proteins.

To investigate the stability of our method when there are miss-
ing proteins, we further remove the viruses with less than five pro-
teins among the 638 viruses and the families and genera with only
one species to obtain a dataset containing 351 viruses. For the k-
mer method, we use the same method to choose the optimal k.
Beet black scorch virus has a minimal genome size of 3644 base
pairs, thus the optimum k is 6. The results of the three methods
are recorded in Table 4. Although the 6-mer, 9-mer and 11-mer
methods perform well for the family level, respectively they leaves
more than 30%, 86% and 86% of the 351 viruses unpredicted, while
the rate of unpredicted viruses for the other two methods is about
6%. These results also imply that the proteome-based NV method
outperforms other two approaches. In addition, compared with
Table 3, the three methods basically provide improvement and
our proposed method achieves very high accuracy rates, even
almost 100% for family label prediction. This provides more
Table 3
Accuracy rates of k-mer, genome-based NV and proteome-based NV methods for 638
viruses.

Methods 6-
mer

9-
mer

11-
mer

Genome-based
NV

Proteome-based
NV

Family
Without

cutoff
0.668 0.096 0.085 0.934 0.961

With cutoff 0.998 1 1 0.953 0.980

Genus
Without

cutoff
0.865 0.605 0.544 0.875 0.903

With cutoff 0.924 0.615 0.556 0.901 0.929
evidence that our method will perform better than the genome-
based NV method when enough reliable proteins are accessible.
4. Discussion and conclusion

In this article, we focus on the classification of 4021 viruses
with their proteome sequences. This dataset is significantly larger
than that in previous work which only contains 2418 virions (Yu
et al., 2013; Huang et al., 2014). Based on the natural vector repre-
sentation, we built a 60-dimensional protein space in which each
vector corresponds to a protein sequence. Therefore each virus is
mapped to a set of natural vectors (NVs) and the hausdorff distance
is applied to measure the dissimilarity among NVs. The classifica-
tion of viruses is achieved after the dissimilarity matrix is com-
puted. To explore phylogenetic relationships, we used the natural
graphic representation based on the Hausdorff distance, which
has been proven to infer the phylogeny successfully. To further
show the advantages of our natural graphical representation, we
also supply the phylogenetic tree of 45 viruses of family Alphaflex-
iviridae (Fig. 7). The viruses of Potexvirus genus form one main
clade in our natural graphical representation (Fig. 4). However, in
Fig. 7, these viruses are scattered into three main clades, which is
inconsistent with the classification of these viruses in NCBI. More-
over the Allexivirus of genus assigned by NCBI also clearly con-
verges into one branch in Fig. 4, whereas it incorrectly diverges
into two distant clades in Fig. 7.

Although the proteomes of many viruses are incomplete, the
method by proteomes is comparable to that using genomes. For
the Baltimore I, II and IV, the former is better than the latter. For
the remaining four classes, their results are comparable to each
other. But what is most important is that each of the classes I, II
and IV is almost three times larger than the largest classes of class
III, V, VI and VII. Moreover, the former three classes together con-
tain 3555 of the total 4021 viruses, which provides sufficient justi-
fication for the superiority of our method. Thus the proteome of a
virus includes more information than its genome for phylogenetic
analysis. In practice, if the studied viruses have complete proteome
sequences, we suggest the usage of them instead of the corre-
sponding genomes. A noticeable advantage of our method is that
it efficiently classifies seven obviously different classes of viruses
simultaneously at the family, genus and species levels. The result
of our method is of interest that the availability of only a part of
the proteomes seems to be enough to reproduce the evolutionary
relationships. Our approach is also convenient to build the data-
bases of species, as once natural vectors are computed, it is unnec-
essary to compute them again. Besides, unlike many model-based
methods with a large number of parameters to be estimated, our
approach is model-free and natural.

Although our new method has these advantages, it may have
some limitations. Even if several international projects have accu-
mulated reliable protein sequences, the complexity of viral gene



Fig. 7. The phylogenetic tree of 45 viruses of family Alphaflexiviridae.
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expression such as open reading frame shift, the occurrence of cod-
ing genes in introns poses great difficulty in finding enough pro-
teins. In addition, the viruses are highly varied and widespread in
the world, resulting in the lack of detailed gene annotations. Since
the RefSeq database only collects reliable proteins of viruses, many
of the viruses analyzed contain less than 4 proteins which may
reduce the efficiency of our method. Moreover, the 0.95-cutoff
aims to quantify how divergent a group of viruses is. Thus it
requires a number of members in this group, otherwise the cutoff
is probably insufficient to represent the nearest distances among
viruses. For instance, in the Baltimore I class, both the proteome-
based and genome-based NV methods have low efficiency for pre-
diction of family and genus labels. The main reason is that 18 out of
30 families and 255 out of 270 genera only incorporate less than 10
species, i.e. the majority of genera have a few species, which sug-
gests that the dsDNA viruses are too divergent to generate effective
cutoff.
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