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Abstract

Protein-protein interactions (PPIs) play key roles in life processes, such as signal transduc-

tion, transcription regulations, and immune response, etc. Identification of PPIs enables better

understanding of the functional networks within a cell. Common experimental methods for

identifying PPIs are time consuming and expensive. However, recent developments in

computational approaches for inferring PPIs from protein sequences based on coevolution

theory avoid these problems. In the coevolution theory model, interacted proteins may show

coevolutionary mutations and have similar phylogenetic trees. The existing coevolution meth-

ods depend on multiple sequence alignments (MSA); however, the MSA-based coevolution

methods often produce high false positive interactions. In this paper, we present a computa-

tional method using an alignment-free approach to accurately detect PPIs and reduce false

positives. In the method, protein sequences are numerically represented by biochemical

properties of amino acids, which reflect the structural and functional differences of proteins.

Fourier transform is applied to the numerical representation of protein sequences to capture

the dissimilarities of protein sequences in biophysical context. The method is assessed for

predicting PPIs in Ebola virus. The results indicate strong coevolution between the protein

pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30, VP24-VP40, and VP30-VP40). The

method is also validated for PPIs in influenza and E.coli genomes. Since our method can

reduce false positive and increase the specificity of PPI prediction, it offers an effective tool to

understand mechanisms of disease pathogens and find potential targets for drug design. The

Python programs in this study are available to public at URL (https://github.com/cyinbox/PPI).

1 Introduction

Proteins are essential molecules in all biological systems in a cell, with most proteins requiring

protein-protein interactions (PPIs) to function effectively. For example, transport proteins

interact with structural proteins and hormone peptides interact with receptors. Some proteins

form structural complexes, and the interactions among different protein complexes are neces-

sary for cell functions. Protein interactions are fundamentally characterized as stable or tran-

sient, and both types of interactions can be either strong or weak. If two protein interact via
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physical contact and the affinity is strong, the strong interaction can be detected using in-vitro

biochemical experiments such as pulling-down and co-immunoprecipitation assays. However,

biochemical experiments for PPIs are time-consuming and expensive, making it difficult to

study complete protein interaction networks within a genome [1].

Recently, computational methods for detecting PPIs based on coevolution analysis have dis-

tinguished themselves from biochemical experiments and other computational methods [2, 3].

Protein evolution is the result of natural selections of mutations that have functional advantages

over other random mutations. The interactions of proteins from coevolution can be main-

tained by either direct binding or functional association. If two proteins interact with each

other, when one protein undergoes a mutation, the other protein may have a compensatory

mutation, otherwise, the two proteins cannot maintain the stability or functions of the interac-

tion over the course of evolution. Evolutionary pressure thus creates coevolution pairs of pro-

teins in cells that maintain the PPI. Two phylogenetic trees constructed by two interacted

proteins through MSA are expected to be similar and the detection of significant correlations

of phylogenetic trees is used to infer probable coevolution and interactions [4, 5]. However,

due to the intrinsic nature of phylogenetic trees in related organisms, existing coevolution anal-

ysis methods that are based on sequence alignments usually have high false positive rates [6, 7].

To address the problems in MSA based coevolution method, several new feature encoding

and extraction methods in PPI predictions have been developed. Converse vectors encoding of

protein sequence pairs based on k-mer scheme can improve the accuracy of PPI prediction

[8]. The geometrical feature representation for the similarity measure of proteins are also

important to predict PPIs [9]. Sequence features from covariations at coevolving positions

may improve the performance of PPI prediction [10]. However, these feature representations

do not include the biochemical properties of amino acids in position context.

We present here a novel alignment-free method for coevolution analysis. The method is

based on biochemical properties of amino acids, instead of using sequence alignments. Com-

parison of sequence similarity adopts discrete Fourier transform (DFT) as an analysis method.

Using coevolution analysis, we apply this DFT method to investigate the interactions of all

seven proteins in Ebola virus.

Ebola virus is a filamentous, nonsegmented, negative-strand RNA virus. Ebola virus infects

both primates and humans and leads to severe hemorrhagic fever, with high mortality rates.

Understanding the PPIs of Ebola virus will advance the development of effective vaccines.

Ebola virus genome encodes seven proteins: glycoprotein (GP), nucleoprotein (NP), RNA

polymerase (L), VP24, VP30, VP35, and VP40 [11]. Glycoprotein (GP) is the major spike sur-

face protein and enables virus to attach and entry to host. VP40 is the most abundant virion

protein, and works as major matrix protein in assembly and budding of Ebola virus. VP24 is

minor matrix proteins of mature virions. Three proteins GP, VP40 and VP24 build up the

multi-layered virus envelope. Four proteins NP, VP35, VP30, and L form the ribonucleopro-

tein complex that mediates transcription and replication of the viral genome.

We perform a case study on the effectiveness of the DFT method on PPI predication. The

study on PPIs in Ebola virus and influenza virus using DFT based coevolution analysis indi-

cates that our method is accurate, effective and thus outperforms the coevolution methods that

are based on sequence alignments. Our approach significantly contributes to the PPI analysis

of proteins in various genomes.

2 Methods and algorithms

We present an effective computational method to identify PPIs based on the coevolution

model. The method employs chemical properties of proteins in phylogenetic analysis. The
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method uses the Euclidean distance of Fourier transform of proteins as dissimilarity measure

for pairwise protein interactions. To predict if two proteins A and B interact in a species by

coevolution analysis, we first collect the protein sequence mutations in a collection of spe-

cies. The two proteins may undergo different mutations in these genomes. We compute the

distance matrix of protein A using DFT distance measure. Similarly, we get the distance

matrix of protein B in the same set of genomes. We then compute the correlation of two dis-

tance matrices A and B. If two proteins A and B interact, the distance matrices A and B have

high correlation, otherwise, the correlation is low. Finally, we use multidimensional scaling

(MDS) to visualize the correlation between the matrices as a measure for the interaction

distance.

2.1 Representation of protein sequences by hydrophobicity properties of

amino acids

The existing methods in coevolution analysis for PPI are based on multiple sequence align-

ments by sequence characters. Yet character based similarity cannot provide insight into

the structural aspects of a protein. The biological function of a protein is the direct conse-

quence of its sequence and is determined by the chemical properties of the sequence. There

are hundreds of physico-chemical properties in 20 amino acids of proteins [12]. Examples

of important physico-chemical properties are the hydrophobicity, polarizability, Van der

Walls volume, ionization constant, accessible solvent surface area, etc. Among all of these

physico-chemical properties, hydrophobicity property is of importance for protein struc-

ture folding and thus determines protein-protein interaction. Hydrophobicity properties of

amino acids have been used as an efficient way to compare and analyze amino acid

sequences [7].

Comparison of protein sequences for PPI shall consider the contributions of physicochemi-

cal properties, but none of the physico-chemical properties has been employed in existing PPI

method by coevolution analysis. To understand the conservation of residues in protein

sequences during coevolution, it is important to qualitatively and quantitatively measure the

differences among residues using physico-chemical properties of amino acids. The functions

of a protein depend on how the protein folds into 3D structure which most importantly

depends on the hydrophobicity properties of the proteins. Therefore, effective PPI prediction

methods need to capture hydrophobicity properties of the proteins. In this study, we use the

hydrophobicity values to represent protein sequences (Table 1).

Table 1. Kyte-Doolittle hydrophobicity values for 20 amino acids [13].

amino acid hydrophobicity amino acid hydrophobicity

A 1.8 M 1.9

C 2.5 N -3.5

D -3.5 P -1.6

E -3.5 Q -3.5

F 2.8 R -4.5

G -0.4 S -0.8

H -3.2 T -0.7

I 4.5 V 4.2

K -3.9 W -0.9

L 3.8 Y -1.3

https://doi.org/10.1371/journal.pone.0174862.t001

Identifying protein-protein interactions by Fourier transform

PLOS ONE | https://doi.org/10.1371/journal.pone.0174862 April 21, 2017 3 / 19

https://doi.org/10.1371/journal.pone.0174862.t001
https://doi.org/10.1371/journal.pone.0174862


2.2 Constructing distance matrix of proteins by Fourier transform

Distance between protein sequences can be measured through Fourier transform of protein

hydrophobicity profiles. Discrete Fourier transform (DFT), a broadly used digital signal pro-

cessing approach, transforms data from time space to frequency space and reveals periodicities

that are hidden in time space. Fourier transform gives a unique representation of the original

underlying signal in frequency domain. The frequency domain vector contains all the informa-

tion about signal in time domain. To analyze the distribution of hydrophobicity along protein

sequence positions, a sliding window is used to extract different length protein sequence seg-

ment and then apply DFT on each windowed protein sequence. we performed Fourier trans-

form of the sequence of sesquiterpene synthases from Artemisiaannua, which contains α-helix

structures (Fig 1(a)). The protein sequence was first converted to numerical vector of Kyte-

Doolittle hydrophobicity values. The DFT analysis shows periodicity-3.6 of α-helix structures

in the protein sequence (Fig 1(b)). The periodicity-3.6 of hydrophobicity reflects the period of

3.6 polar and nonpolar residues of an α-helix structure [14]. The other example is Fourier anal-

ysis of the sequence of green fluorescent protein (PDB:1W7T), which contains β-sheet struc-

tures (Fig 1(c)). The DFT analysis shows periodicity-2.3 of β-sheet structures in the protein

sequence (Fig 1(d)). The periodicity-2.3 of hydrophobicity reflects the periodic arrangement

of 2.3 polar and nonpolar residues in a β-sheet structure [14]. These two examples show that

Fourier power spectrum of hydrophobicity vector may infer the structural features of protein

because hydrophobicity is the major driven force for protein folding. The DFT method has

been extensively used to study periodicities and repetitive elements in genomes and protein

structures [15, 16]. Moreover, we previously use DFT to predict protein coding regions [17,

18], and compare similarities of DNA sequences [19–21]. Thus we may reply on Fourier trans-

form to accurately compare protein sequences in coevolution analysis of PPIs. Let X(k) be the

Fig 1. Fourier transform analysis of two protein sequences. (a) Crystal structure of sesquiterpene

synthase (PDB:4GAX). (b) Fourier power spectrum of sesquiterpene synthases. (c) Crystal structure of green

fluorescent protein (PDB:1W7T). (d) Fourier power spectrum of green fluorescent protein.

https://doi.org/10.1371/journal.pone.0174862.g001

Identifying protein-protein interactions by Fourier transform

PLOS ONE | https://doi.org/10.1371/journal.pone.0174862 April 21, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0174862.g001
https://doi.org/10.1371/journal.pone.0174862


DFT of time series x(n) of length N, and X(k) is defined as [22]

XðkÞ ¼
XN� 1

n¼0

xðnÞe� i2p
N kn; k ¼ 0; 1; 2; � � � ;N � 1 ð1Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

.

We can infer the information content in protein sequences from the distribution of Fourier

coefficients because the original sequence can be recovered from the Fourier coefficients by

inverse Fourier transform. The relationship between original sequence and its Fourier trans-

form is one-to-one, therefore, the DFT method can be efficient and effective in comparing

similarities of protein sequence mutations in coevolution analysis. We define the distance

between two time series a and b by the corresponding Fourier transform coefficients A and B
as follows

distðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN� 1

i¼0

ðRðAðiÞÞ � RðBðiÞÞÞ2 þ
XN� 1

i¼0

ðIðAðiÞÞ � IðBðiÞÞÞ2
s

ð2Þ

where R(A(i)) and I(A(i)) are the real part and the imaginary part of complex number A(i),
respectively.

When two protein sequences x(t) and y(t) are of different lengths, the DFT of the two

sequences have different lengths, the Euclidean distance of DFT power spectrum or DFT coef-

ficients of protein sequences of unequal lengths cannot be directly computed. Some solutions

to this problem in the signal processing are to extend the shorter series yt, by padding zeros or

even scaling method to extend power spectra of short lengths to the longest one [20]. We use

padding zeros approach in this study. The example of Fourier transform analysis of VP24 pro-

tein of Ebola virus is provided in supplementary materials (S1 File).

After Fourier transform of numerical sequences of proteins from different species, we can

get pairwise distance matrix of different species based on a specific protein and construct the

phylogenetic tree of these species. Our algorithm for computing the pairwise distance of two

genomes from a protein is as follow.

Algorithm 1: Computing pairwise Euclidean distances of genomes by their specific protein

sequences in Fourier frequency domain.

Data:a set of genome,proteinX
Result:distanceof genomea and b Steps

1. ConvertproteinsequencesX in genomea and b into numericalseriesusing
hydrophobicityvaluesof aminoacids sequences.

2. For all the numericalsequences,pad zerosto extendnumericalsequences
the longestlengthin the genomeset.

3. ApplyDFT to numericalsequencesto frequencydomainand get Fourier
transformof the sequence.

4. Constructdistancematrixfrom the pairwiseEuclideandistances.

5. Constructphylogenetictree of the genomeset from the distancematrix.

Our algorithm for identifying interaction between proteins X and Y is as follows.

Algorithm 2: Identifying interaction between proteins X and Y.

Data:ProteinX and Y, a set of genomes
Result:Co-evolutiondistanceof proteinX and Y Steps

1. ConstructdistancematrixX of the genomesby proteinX (Algorithm1).

Identifying protein-protein interactions by Fourier transform
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2. ConstructdistancematrixY of the genomesby proteinY (Algorithm1).

3. Computecorrelationcoefficientsof distancematricesX and Y.

4. Visualizethe interactiondistanceof proteinX and Y from distancecorre-
lationsby multidimensionalscalinganalysis(MDS).

2.3 Correlation of two proteins in coevolution analysis

To detect if two proteins X and Y interact with each other, we first collect protein sequences X

and Y from the same set of genomes, we then use the proposed DFT method to construct the

distance matrices for protein X and Y, respectively. The correlation between two distance

matrices is used to indicate if two protein X and Y interact. The correlation of protein muta-

tions in an interaction pair is measured by the Pearson correlation cor of two distance matrices

as follows.

cor ¼

Xn

i¼1

ðXi � XÞðYi � YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðXi � XÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðYi � YÞ2
s ð3Þ

where n is the number of elements of the upper triangular of the distance matrices, �X and �Y
are means of X and Y, respectively. For a set of N proteins, these pairwise Pearson correlations

form a correlation matrix C 2 RN × N.

To increase the specificity of PPI method, the genomes with a pair of normal proteins are

excluded in the coevolution analysis. In details, if each of two proteins X and Y has no muta-

tion in genomes A and B, the DFT distance of protein sequence X (or Y) between two genomes

A and B is zero. These two genomes A and B are excluded in coefficient computation.

2.4 Co-evolution analysis by MirrorTree

One widely used computational method for inferring PPI is coevolution analysis of Mirror-

Tree from MSA [2, 23]. To detect if two proteins X and Y interact, the Mirrortree method first

retrieves the protein sequence X (or Y) from a set of genomes, then performs the multiple

sequence alignment of the protein sequences X (or Y). For the PPI analysis in Ebola virus by

the MirrorTree method, we first extract all protein sequences from 75 Ebola virus genomes.

The GenBank access numbers of the virus genomes are listed in supplementary materials (S2

File). We align each pair proteins among all these virus species by Cluster Omega (http://www.

ebi.ac.uk/Tools/msa/) [24], and the aligned sequence files are used as inputs for the MirrorTree

server to construct MirrorTree and compute coevolution correlation coefficients (http://csbg.

cnb.csic.es/mtserver/) [25].

2.5 Multidimensional scaling analysis (MDS)

We employ MDS method to visualize the relative interaction distance of PPIs in two-dimen-

sions. Multidimensional scaling (MDS) projects a distance matrix into a set of coordinates

such that the Euclidean distances of these coordinates approximate the original distances [26].

Since the correlation of proteins from coevolution actually measures the similarity of corre-

sponding protein mutations, the Pearson correlation matrix C is first transformed to 1 − C as

dissimilarity distance matrix D, which represents relative interactions of proteins.

The MDS method is then applied to the dissimilarity distance matrix D. The MDS analysis

for visualization is as follows. From the distance matrix D of N protein samples, we construct
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the Gram matrix B as B ¼ � 1

2
ðHDHÞ, where H ¼ I � 1

N eeT , I 2 RN × N is the identity matrix

and e 2 RN × N is a vector of all ones. The matrix B has maximum r non-zeros eigenvalues and

B = VΛVT, if we take r largest eigenvalues, then X ¼ V
ffiffiffiffi
L
p

, X is an N × r matrix with the coor-

dinates xi as its rows. Thus the coordinates in an r-dimensional can be recovered from the dis-

tance matrix D. In coevolution analysis, the distance matrix D derived from the correlation

coefficients of pairwise proteins is projected onto two dimensions (r = 2) by MDS for visualiz-

ing the relative interactions of proteins.

3 Results

3.1 Phylogenetic analysis of Ebola virus by Fourier transform

To demonstrate the effectiveness of the DFT measure of protein sequences, we apply the phylo-

genetic analysis of Ebola virus using NP protein by the DFT method and multiple sequence

alignment (MSA). The result shows that the phylogenetic trees from the DFT method contain

rich hierarchical information about different virus species (Fig 2(a)). The DFT method can thus

identify small difference among closely related species (Fig 2(a)). However, the phylogenetic tree

from the MSA method cannot show the difference of closely related species (Fig 2(b)), thus

these species cannot be well separated using the MSA method. This result demonstrates that a

phylogenetic tree from MSA may not reflect the true physiochemical changes of amino acid in

protein mutations, and may cause high false positive rate in coevolution analysis. The similar

results are observed in the phylogenetic analysis of other 6 proteins in Ebola virus in supplemen-

tary materials (S3 File). These results suggest that our DFT method holds promises in differenti-

ating mutations and outperforms the sequence alignment methods in phylogenetic analysis.

3.2 Coevolution analysis of protein-protein interactions within Ebola virus

To assess our proposed DFT method in detecting PPIs, we use the DFT method to investigate

the interactions of all seven proteins in Ebola virus. The Pearson correlation of the distance

Fig 2. Phylogenetic analysis of Ebola virus. (a) Phylogenetic tree constructed by the DFT distance of NP

sequences of Ebola virus. (b) Phylogenetic tree constructed by MSA of NP sequences of Ebola virus.

https://doi.org/10.1371/journal.pone.0174862.g002
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matrices of seven proteins in coevolution analysis by the DFT method is listed in Table 2. High

correlation between the two proteins indicates an interaction between these two proteins. For

example, the correlation coefficient of VP24 and VP40 is 0.9745 (Table 2), indicating that

these two matrix proteins interact. This is in agreement with experimental studies [27].

After the correlation matrix for pair-wise proteins is obtained from the DFT method

(Table 1), relative distances of PPIs among of seven proteins in Ebola virus are illustrated

using MDS in Fig 2. From the coevolution analysis, we can see there are strong coevolution

relationship between the following protein pairs (NP-VP24, NP-VP30, NP-VP40, VP24-VP30,

VP24-VP40, and VP30-VP40). This result agrees with previous experimental studies that

showed NP, VP30, and L, form the nucleocapsid complex (NC) for genome transcription [11].

Furthermore, previous study indicated that without the viral transcription activator VP30,

three proteins NP, VP35, and L are sufficient to mediate viral replication in a reconstituted

replication and transcription system [28].

NP protein plays a central role in protein interaction network. The proteins NP, VP24,

VP30 and VP40 have a close relationship. Previous experimental study suggested that VP40

appears to physically interact with NP by detection of NP in VP40-containing VLPs [29]. The

coefficient of VP40 and NP protein is 0.9873. This result confirms the interaction between NP

and VP40 protein.

It shall be noted that from co-immunoprecipitation study, NP protein interacts with both

VP24 and VP35, the four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to

mediate assembly of an NC with structure [30], but our coevolution study indicates a weak

interaction between NP and VP35. This inconsistent observations need future more studies.

The VP24 protein of Ebola virus is a secondary matrix protein and minor component of

virions. VP24 is critical matrix protein in Ebola virus [31]. Previous experiments show that

protein VP24 inhibits transcription and replication of the EBOV genome, indicating VP24

plays a regulatory role in virus replication [31]. VP24 interacts with NP, VP30 and VP40 from

this coevolution study (Table 2 and Fig 3(a)). Our coevolution analysis shows there is strong

interaction between VP24 and NP, we infer that one possible molecular mechanism that VP24

protein reduces transcription is through interacting with NP in the nucleocapsid complex.

This molecular mechanism is confirmed by previous experimental study [31]. In addition, an

immunoprecipitation study indicates there is no interaction between VP24 and VP35 [31],

our coevolution study also validates that there is no strong interaction between VP24 and

VP35.

The membrane-associated matrix protein VP40 of Ebola virus is the most abundant virion

protein and plays a key role in virus assembly and budding in the form of virus-like particles

(VLPs) [27]. Our coevolution analysis shows that VP40 protein interacts with NP, VP24, and

VP30. Previous study suggested that combinations of GP/VP24/NP expression can enhance

release of VP40 VLPs [29]. The GP and NP mediated enhancement of release VP40 VLPs may

Table 2. Pearson correlation coefficient of proteins in Ebola genomes by DFT method.

GP NP VP24 VP30 VP35 VP40 L

GP 1.0000 0.7745 0.7238 0.7843 0.7165 0.7967 0.7900

NP 1.0000 0.9883 0.9419 0.6698 0.9873 0.8064

VP24 1.0000 0.9289 0.5761 0.9745 0.7757

VP30 1.0000 0.5849 0.9449 0.7720

VP35 1.0000 0.6348 0.7584

VP40 1.0000 0.7892

L 1.0000

https://doi.org/10.1371/journal.pone.0174862.t002
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be due to interactions with VP40 [29]. However, there has been no report on interaction of

VP24 and VP40 in previous research. Our coevolution study indicates that VP24 also interacts

with VP40 to facilitate release of VP40 VLPs.

Ebola virus VP30 is an essential transcription activator, and RNA binding protein of viral

transcription. In viral particles, VP30 is closely associated with the nucleocapsid complex, but

how VP30 activates transcription is still unclear. Phosphorylation of VP30 regulates viral tran-

scription and replication by modulating interaction with the nucleocapsid proteins VP35 and

NP [32]. Our coevolution analysis confirms that VP30 interacts with NP inside the nucleocap-

sid complex. In addition, our coevolution study result indicates the interaction of VP30 with

two matrix proteins VP24 and VP40, which has not been reported before. This prediction

needs future experimental confirmation. Furthermore, previous studies show that both VP40

and VP24 inhibits transcription and replication of the EBOV Genome [31, 33, 34]. However,

no studies have been performed investigating the mechanism of transcription regulation by

the matrix proteins. From the coevolution analysis, we may infer that a possible mechanism of

the inhibition of VP24 and VP40 on transcription is to interact with transcription factor VP30.

Fig 3. Multidimensional scaling analysis of PPIs in Ebola virus by coevolution. (a) DFT method. (b)

MSA method in MirrorTree.

https://doi.org/10.1371/journal.pone.0174862.g003
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Our coevolution analysis indicates VP35 does not have strong interactions with other pro-

teins. VP35 acts as RNA polymerase cofactor in the transcription and replication complex and

plays an essential role in viral RNA synthesis and interacts with the viral nucleoprotein [35]. It

is also an inhibitor of the type I IFN response in Ebola virus-infected cells and may be an

important determinant of Ebola virus virulence [36]. Three proteins NP, VP35, and L, are suf-

ficient to mediate replication and transcription of virus [37], but transcription requires needs

VP30 as activation factor [28]. From our coevolution study, we can postulate that interaction

between NP and VP30 is important in the activation of replication and transcription because

there is little interaction between VP35/L and VP30.

It is noted that the Ebola RNA polymerase (L) does not have strong coevolution with other

proteins. It is reasonable because RNA polymerase works as making reliable copies of virus

genomes. Dramatic mutation in RNA polymerase may produce instable virus genomes.

Another possible reason for the loose coevolution between RNA polymerase and other 6 pro-

teins is that a virus with high mutation in RNA polymerase may not survive.

The glycoprotein (GP) is the only viral protein on the surface and is therefore responsible

for receptor binding and membrane fusion, mediating attachment and entry of the virus into

host cells [38]. The coevolution analysis indicates this protein has weak interaction with other

proteins, the reason is that this protein is on viral surface.

We compare our DFT method with the state-of-art MirrorTree method in PPI prediction

[2, 25]. The correlation of coevolution of the seven proteins in Ebola virus by the MirrorTree

is listed in Table 3. The results in Table 3 shows that the almost all correlations from the Mir-

rorTree method are larger than 0.95, indicating all these seven proteins highly interact. Thus

the result from MirrorTree might contain many false positives. The relative interaction of

these 7 proteins projected by MDS shows dispersed pattern (Fig 3(b), indicating the interac-

tions among the proteins are not clear. Comparison of the correlations from the DFT method

and the MirrorTree (Tables 2 and 3, Fig 3(a) and 3(b)) demonstrates that the DFT method has

lower false positive than the MirrorTree method. The DFT method can truly capture the physi-

ological impact of different amino acid mutations, but MSA based MirrorTree considers the

same impact of different amino acid mutations.

3.3 Coevolution analysis of protein-protein interactions in influenza A

virus

Influenza A viruses belong to the Orthomyxoviridae family of negative-sense, single-

stranded RNA viruses. The virus genome is composed of 8 segments, encoding for 11 pro-

teins: HA (hemagglutinin), NA (neuraminidase), NP (nucleoprotein), M1 (matrix protein),

M2, NS1 (Non-structural protein 1), NEP (nuclear export protein), PA (Polymerase acidic

protein), PA-X, PB1 (polymerase basic 1), and PB2 [39, 40]. HA and NA are the two envelope

Table 3. Pearson correlation of proteins in Ebola genomes by MirrorTree.

GP NP VP24 VP30 VP35 VP40 L

GP 1.0000 0.974 0.939 0.965 0.979 0.914 0.980

NP 1.0000 0.975 0.987 0.696 0.963 0.988

VP24 1.0000 0.981 0.969 0.979 0.972

VP30 1.0000 0.983 0.968 0.983

VP35 1.0000 0.953 0.987

VP40 1.0000 0.954

L 1.0000

https://doi.org/10.1371/journal.pone.0174862.t003
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glycoproteins on the surface of influenza virions and play critical roles in influenza infection.

NS1 is a multifunctional protein and a virulence factor and NS2 involves in nuclear export of

viral ribonucleoprotein complexes [41]. An interaction between the cytoplasmic tail of M2

and M1 promotes the recruitment of the internal viral proteins and RNA to the plasma

membrane for efficient virus assembly [42]. NP encapsidates the RNA polymerase complex

(PB1, PB2 and PA) and the 8 segment to form the viral ribonucleoproteins (vRNPs) [43].

The viral particle contains eight vRNPs, the surface glycoproteins HA and NA, the matrix

proteins (M1 and M2) and the NEP protein. NS1 protein is not incorporated in the virus. It

interacts with a variety of cellular components in the cytoplasm and nucleus. NEP (formerly

known as NS2) protein mediates the export of vRNPs from the nucleus to the cytoplasm and

associates with the matrix M1 protein [44]. In addition, resulting from a frameshift [45], the

PA gene encodes a second small protein, called PA-X, which hijacks the host immune

response through host protein shutdown mechanisms, thereby modulating the antiviral

pathways [46, 47].

We assess the DFT coevolution method in identifying the protein-protein interactions

among these 11 proteins in influenza A virus. The coevolution analysis is performed on the 60

influenza virus genomes. The GenBank access numbers of the influenza virus genomes are

listed in supplementary materials (S2 File). The Pearson correlations of the protein-protein

interactions is shown in Table 4. The relative interaction distances derived from the Pearson

correlations are shown in Fig 4(a). From the coevolution analysis, we can see there are strong

correlations the following protein pairs and groups (HA-NA, HA-NS1, HA-PB2, M1-M2,

NS1-PB2, NS1-PA, NA-PA-X, PA-PB1-PB2, NA-vRNPs, HA-vRNPs, NS1-vRNPs, NEP-

vRNPs).

We verify these interactions by curating literatures of experimental studies. In virus, HA

attaches to sialic acid on host cell surface to initiate virus infection [48]; NA removes by

cleavage of sialic acid from cell receptor which HA binds to facilitate virus release from

infected cells by cleavage of sialic acids between the host cell and the HA protein [49, 50].

The interaction between HA and NA is well studied by genetic method [51] and protein

structures [52]. Both HA and PB2 are critical for virus virulence [53, 54]. HA mutations may

enhance replication and virulence [55]. These studies indicate HA and PB2 interact with

other. The matrix protein (M1) is the major structural protein, and underlies the viral enve-

lope and the M2 protein has a proton-selective ion channel activity. A direct interaction

between M1 and the M2 cytoplasmic tail has been identified by genetic mutations and bio-

chemical studies [42]. NS1 and NEP interaction is identified by yeast two-hybrid system

Table 4. Distance correlation of proteins in influenza A genomes by the DFT method.

HA M1 M2 NA NP NEP NS1 PA PA-X PB1 PB2

HA 1 0.1548 0.2653 0.8375 0.4276 0.7504 0.9454 0.7713 0.8056 0.6249 0.8651

M1 1 0.9507 0.1119 0.0998 0.0970 0.1119 0.0588 -0.0420 0.1540 0.1931

M2 1 0.1818 0.0777 0.1746 0.2451 0.1771 0.1174 0.2827 0.7660

NA 1 0.3783 0.6340 0.7911 0.6091 0.7865 0.5359 0.7693

NP 1 0.3187 0.3889 0.2689 0.6366 0.3142 0.3983

NEP 1 0.7647 0.7333 0.6690 0.8274 0.7307

NS1 1 0.8126 0.6295 0.6832 0.8434

PA 1 0.5457 0.6687 0.7132

PA-X 1 0.4023 0.5554

PB1 1 0.6892

PB2 1

https://doi.org/10.1371/journal.pone.0174862.t004
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[41]. NS1 protein interacts with the PB2 in vRNP by in vivo genetic study [56]. NS1 protein

also interacts with PA evidenced by immunoprecipitation experiments [56]. Since NEP is

nuclear export protein for transporting polymerase complex [57, 58], NEP has close interac-

tion with the polymerase complex (PB1, PB2 and PA) as shown in Fig 4(a). PA-X is a newly

found protein with a function to trigger host RNA degradation [46, 47]. The associated pro-

teins with PA-X have not been identified in previous studies. The coevolution analysis sug-

gests that PA-X is associated with NA or NP (Fig 4(a)). In summary, the protein interactions

from the coevolution DFT analysis have also been identified by experimental studies. We

compare the proposed coevolution DFT method with the MSA based MirrorTree method

for identifying PPIs in influenza A virus. The Pearson correlation of coevolution and relative

interactions of the 10 proteins in influenza virus by the MirrorTree are shown in Table 5,

and Fig 4(b), respectively. The result in Table 5 shows that the major correlations from the

MirrorTree method are large. The relative interactions of the proteins projected by MDS are

widely scattered (Fig 4(b)). It is difficult to identify positive interactions from these high

Fig 4. Multidimensional scaling analysis of PPIs in influenza A virus by coevolution. (a) DFT method.

(b) MSA method in MirrorTree.

https://doi.org/10.1371/journal.pone.0174862.g004
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correlations by the MirrorTree method. However, the correlations in DFT method are in

reasonable ranges, and can distinguish the positive interactions from the weak or non-inter-

acted protein pairs. This comparison demonstrates that the proposed DFT method outper-

forms the MirrorTree method for PPIs prediction.

3.4 Coevolution analysis of protein-protein interactions in E.coli

To test proposed DFT method on coevolution analysis in large scale, we evaluate the relation-

ship of Pearson correlation by the DFT method and the genetic interaction score (GI) of pro-

tein pairs in E.coli. Examining the phenotypes resulting from pairs of mutations may offer a

way to understand how these genes intersects [59]. Genetic interactions are classified as either

positive or negative. When a loss of function mutation of two given genes results in exceeding

the fitness that is from individual effects of deleterious mutations, then GI score is positive;

when it decreases the fitness, the GI score is negative.

Genetic interactions of two genes may reflect the protein-protein interactions. It is expected

that there is a correlation between GI and PPI [60]. For a pair of proteins, if the GI score is pos-

itive, the PPI is expected since the interacted proteins may occur within a pathway. If the GI

score is zero or negative, the PPI is not expected or weak since the two proteins could be in dif-

ferent pathways. Here we examine this perspective relationship between PPIs and GIs using

protein pairs of genetic interaction in E.coli [61]. The GenBank access numbers of the E.coli
genomes are listed in supplementary materials (S2 File). The GI data set with GI scores from E.
coli is from [61]. The result of 185 PPI pairs shows that there is correlated relationship between

PPI and GI scores for the tested protein pairs (Fig 5). If the threshold value of correlation coef-

ficient of PPIs is set as 0.2, the DFT method may identify 88.10% positive GI protein pairs. The

accuracy for the true GI positives in predicated PPIs is 63.24%. Considering that relationship

of PPIs and GIs is nonlinear, this result may indicate that the proposed coevolution DFT

method may identify PPIs that are correlated to GIs.

It is noted that experimental studies on protein-protein interactions may pose many chal-

lenges, especially the PPIs from experiments may contain high false positives and false nega-

tives. There are several large-scale studies on protein-protein interaction network in E.coli [59,

61–67], however, due to the complexity of PPIs, the PPIs identified in E.coli are incomplete

and sometimes inconsistent. Coevolution analysis for PPIs provides complementary Informa-

tion for reducing the false positives and negatives and ensures comprehensive coverage of an

interactome.

Table 5. Distance correlation of proteins in influenza A genomes by the MirrorTree method.

HA M1 M2 NA NP NEP NS1 PA PA-X PB1 PB2

HA 1.000 0.650 0.650 0.996 0.808 0.841 0.878 0.788 0.987 0.819 0.756

M1 1.000 0.903 0.635 0.855 0.847 0.872 0.866 0.763 0.902 0.902

M2 1.000 0.631 0.845 0.849 0.848 0.830 0.293 0.884 0.832

NA 1.000 0.796 0.828 0.866 0.783 0.988 0.807 0.807

NP 1.000 0.960 0.971 0.965 0.968 0.985 0.931

NEP 1.000 0.970 0.951 0.968 0.969 0.916

NS1 1.000 0.957 0.974 0.982 0.933

PA 1.000 0.944 0.972 0.965

PA-X 1.000 0.968 0.968

PB1 1.000 0.956

PB2 1.000

https://doi.org/10.1371/journal.pone.0174862.t005
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4 Discussions

The rational of the algorithm is based on the fact that hydrophobical properties of amino acids

are the primary force in determining protein structures. Most protein molecules have a hydro-

phobic core, which is not accessible to solvent and a polar surface in contact with the environ-

ment although membrane proteins follow a different pattern. While hydrophobic amino acid

residues build up the core, polar and charged amino acids preferentially cover the surface of

the molecule and are in contact with solvent due to their ability to form hydrogen bonds. Very

often they also interact with each other: positively and negatively charged amino acids form so

called salt bridges, while polar amino acid side chains may form side chain-side chain or side

chains-main chain hydrogen bonds. It has been observed that all polar groups capable of form-

ing hydrogen bonds in proteins do form such bonds. Since these interactions are often crucial

for the stabilization of the protein three-dimensional structure, they are normally conserved.

Although the DFT coevolution method computes the interaction score of two proteins

based on the similarity of their phylogenetic trees, the method does not require the construc-

tion of phylogenetic trees but analyzes the underlying distance matrices, which makes this

approach independent of tree construction methods.

With the advancement of next generation sequencing methodologies, a large collection of

gene and protein sequences across different species are available. These sequences contain rich

coevolution information and enable us to identify PPIs using computational approaches. We

can better understand the protein functional network and make substantial advances in func-

tional genomics [68, 69]. Furthermore, the computational method can increase confidence lev-

els for PPI identification by experimental studies. In addition, protein interaction analysis is

increasingly important in rapidly characterizing pathogens of infectious disease such as Ebola

virus and MERS virus. Identifying and understanding PPIs in virus genomes may shed lights

on the virus replication and infection. The results of PPIs in virus genomes may find drug tar-

gets and is useful in developing antivirus vaccines.

Our study on the PPIs in Ebola virus and influenza virus clearly demonstrates the effective-

ness of our method in identification of PPIs. The core component of our method in coevolu-

tion analysis for detecting PPIs is the precise measurement for protein sequence mutations.

The precise measurement method may also have significant applications in precise medicine.

In precise medicine, substitution mutations in protein sequences are caused by SNPs (single

Fig 5. Relationship between PPIs by the coevolution DFT method and GIs of protein pairs in E.coli.

The PPI scores are represented by the Pearson correlation and scaled by 10.

https://doi.org/10.1371/journal.pone.0174862.g005
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nucleotide polymorphism), which are genetic contributions to complex diseases, such as can-

cer [15]. Most of the SNP analysis methods only consider the type of SNPs and positions, but

our method can compare and characterize SNPs in context of full sequences and chemical

properties of amino acids. Thus our method for comparing protein sequences can reveal and

predict true impacts of SNPs on important diseases such as cancer and Parkinson disease. In

general purpose, the our method is useful in not only theoretical perspective, but also in direct-

ing pharmaceutical development, and precise medicine.

5 Conclusions

In this study, we develop and extend a quantitative method that identifies interacting proteins

by coevolution analysis. Our method employs DFT analysis of chemical properties of amino

acids in position context of protein-protein interactions. The method offers evidences of

coevolution for protein interactions in Ebola and influenza viruses. Most of the interactions

identified by this coevolution study are in agreement with previous studies. We also find that

there is strong coevolution between two matrix proteins VP24 and VP40, between matrix pro-

teins VP24/VP40 and transcription factor VP30.
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57. Bullido R, Gómez-Puertas P, Saiz MJ, Portela A. Influenza A virus NEP (NS2 protein) downregulates

RNA synthesis of model template RNAs. Journal of virology. 2001; 75(10):4912–4917. https://doi.org/

10.1128/JVI.75.10.4912-4917.2001 PMID: 11312364

58. Wang H, Huang H, Ding C, Nie F. Predicting protein–protein interactions from multimodal biological

data sources via nonnegative matrix tri-factorization. Journal of Computational Biology. 2013; 20

(4):344–358. https://doi.org/10.1089/cmb.2012.0273 PMID: 23509857

59. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, et al. High-throughput, quantitative anal-

yses of genetic interactions in E. coli. Nature methods. 2008; 5(9):781–787. https://doi.org/10.1038/

nmeth.1240 PMID: 19160513

60. Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks. Nature bio-

technology. 2005; 23(5):561–566. https://doi.org/10.1038/nbt1096 PMID: 15877074

61. Babu M, Arnold R, Bundalovic-Torma C, Gagarinova A, Wong KS, Kumar A, et al. Quantitative

genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in

Escherichia coli. PLoS Genet. 2014; 10(2):e1004120. https://doi.org/10.1371/journal.pgen.1004120

PMID: 24586182

62. Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, et al. Large-scale identification of pro-

tein–protein interaction of Escherichia coli K-12. Genome research. 2006; 16(5):686–691. https://doi.

org/10.1101/gr.4527806 PMID: 16606699

63. Rajagopala SV, Goll J, Gowda ND, Sunil KC, Titz B, Mukherjee A, et al. MPI-LIT: a literature-curated

dataset of microbial binary protein–protein interactions. Bioinformatics. 2008; 24(22):2622–2627.

https://doi.org/10.1093/bioinformatics/btn481 PMID: 18786976

64. Su C, Peregrin-Alvarez JM, Butland G, Phanse S, Fong V, Emili A, et al. Bacteriome. org?an integrated

protein interaction database for E. coli. Nucleic acids research. 2008; 36(suppl 1):D632–D636. https://

doi.org/10.1093/nar/gkm807 PMID: 17942431

65. Lin CC, Juan HF, Hsiang JT, Hwang YC, Mori H, Huang HC. Essential core of protein- protein interac-

tion network in Escherichia coli. Journal of proteome research. 2009; 8(4):1925–1931. https://doi.org/

10.1021/pr8008786 PMID: 19231892

66. Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, et al. The binary protein-protein

interaction landscape of Escherichia coli. Nature biotechnology. 2014; 32(3):285–290. https://doi.org/

10.1038/nbt.2831 PMID: 24561554

67. Wuchty S, Uetz P. Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar. Scientific

reports. 2014; 4:7187. https://doi.org/10.1038/srep07187 PMID: 25431098

68. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW. Transforming clinical microbiology with bacterial

genome sequencing. Nature Reviews Genetics. 2012; 13(9):601–612. https://doi.org/10.1038/nrg3226

PMID: 22868263
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