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Genome comparison is a vital research area of bioinformatics. For large-scale genome comparisons, the Multiple
Sequence Alignment (MSA) methods have been impractical to use due to its algorithmic complexity. In this
study, we propose a novel alignment-free method based on the one-to-one correspondence between a DNA se-
quence and its complete central moment vector of the cumulative Fourier power and phase spectra. In addition,
the covariance between the four nucleotides in the power and phase spectra is included. We use the cumulative
Fourier power and phase spectra to define a 28-dimensional vector for each DNA sequence. Euclidean distances
between the vectors canmeasure the dissimilarity between DNA sequences.We perform testingwith datasets of
different sizes and types including simulated DNA sequences, exon-intron and complete genomes. The results
show that our method is more accurate and efficient for performing hierarchical clustering than other
alignment-free methods and MSA methods.
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1. Introduction

The comparison of DNA sequences is an important approach for
establishing the phylogenetic relationships of DNA sequences in bio-
informatics research [1,2]. The Multiple Sequence Alignment (MSA)
method has been used for classifying DNA and protein sequences,
such as Clustal Omega [3], MAFFT [4] and MSAProbs [5]. While accu-
rate results for some species can be obtained using the MSA
methods, when the amount of biological sequence information in-
creases, the processing time and memory requirements become ex-
cessive. Thus, as a more effective approach to handle large data,
numerical alignment-free methods have gained increasing attention
in analyzing biological sequences [6–10]. These methods require the
transformation or mapping of biological sequences, usually repre-
sented as a string of characters (i.e., A, C, G, and T) to a numerical
representation (i.e., a signal) that can be processed using mathemat-
ical functions [11]. For example, Voss (1992) proposed the binary in-
dicators to convert a DNA sequence to four sequences of 0 and 1 that
represent A, C, G, and T [12]. This technique has been applied repeat-
edly in several recent studies [8,13]. Another approach is to use fea-
ture (or k-mer) frequency profiles (FFP) of whole genomes for
comparison. Upon choosing of appropriate value k, the optimum
FFP method is applicable for comparing whole genomes or large
. on behalf of Research Network of Co
c-nd/4.0/).
genomic regions even when there are no common genes with high
homology [14,15]. However, with the long k-mer lengths, the
k-mer type number increases exponentially, which exceeds the stor-
age capacity of the computer [16].

Discrete Fourier Transform (DFT), which is one of themost common
digital signal processing methods, has also been used in genome com-
parisons [17–20]. Based on DFT, cumulative Fourier power spectrum
(CFPS)methodwas proposed [21]. However, it has twomain shortcom-
ings. First, this method only used the power spectrum to calculate the
moment vectors, but it lacked the information of phase spectrum. As a
result, the mapping between moment vectors and genome sequences
is not one-to-one. So it cannot reflect all the biological properties of
the original genome sequences. And the relationship between nucleo-
tides is important, particularly which may be associated with the do-
main structure of genomes, such as intron and exon. However, the
definition of moment vector in CFPSmethod cannot measure the corre-
lation between different nucleotides.

The method presented here is a new alignment-free method
based on the cumulative Fourier power and phase spectra, which
overcomes these limitations mentioned above. We define a 28-
dimensional vector to characterize a DNA sequence, where the
dissimilarity of DNA sequences is taken as the Euclidean distances
between the vectors. As an improvement over previous work, the
power and phase spectra and their covariances are included as part
of the vector. So, we can measure the correlation between the four
nucleotides in the power and phase spectra by the vectors. We
mputational and Structural Biotechnology. This is an open access article under the CC BY-
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discover that the distribution of covariance in exons and introns is
not the same, so our method can be used to identify exons and in-
tron. Since we add the phase spectrum to the moment vectors, we
can prove that the mapping between DNA sequence and its complete
central moment vector of the cumulative Fourier power and phase
spectra is one-to-one. As a result, our method is more accurate
than CFPS method.

This study is structured into three parts. First, we describe the cumu-
lative Fourier transformalgorithmanddefine the28-dimensional vector
using the power and phase spectra. Next, we define a similarity metric
using the Euclidean distance and test whether the distances between
vectors canmeasure the DNA sequence similarity by simulated DNA se-
quences. Finally, we apply ourmethod to the identification of exons and
introns in S. cerevisiae and S. pombe, and the comparison of genome se-
quences from different species including viral genomes, bacterial ge-
nomes. We show that our method is highly accurate and effective for
the hierarchical clustering of a variety of DNA sequences and genomes
compared with the CFPS, FFP(k-mer), Clustal Omega, MAFFT and
MSAProbs.

2. Materials and Methods

2.1. Materials

The following three datasets were used to validate the method. The
first dataset consists of the segment 6 neuraminidase (NA) genes of 38
Influenza A viruses. The second dataset includes 341 viruses from [22],
which focuses on the classification of Human papilloma virus (HPV).
The third one includes 56 bacterial genomes which can be clustered
into 14 well-known families. All the accession numbers of sequences
are provided in the Appendices. We also simulated some mutations in
a DNA sequence and constructed phylogenetic trees of simulated DNA
sequences to test our method.

2.2. Methods

Our alignment-free method consists of three major steps. First, we
transform a DNA sequence into four binary sequences for A, C, G, and
T. Then we perform Discrete Fourier Transform on four binary se-
quences and acquire the cumulative Fourier power and phase spec-
tra. Next, we use the cumulative Fourier power and phase spectra
to calculate the central moments and the covariance of four nucleo-
tides. Finally, we can obtain a 28-dimensional vector for each ge-
nome sequence.

2.2.1. Indicator Function
For a DNA sequence s0s2…sN−1, we define four indicator functions

for A, C, G, and T:

uα nð Þ ¼ 1; sn ¼ α
0; sn≠α

�
n ¼ 0;…;N−1; α ¼ A;C;G; T : ð1Þ

For instance, for the sequence ACCGATTAG, four indicator functions
are as follows:

uA : 100010010;uC : 011000000;
uG : 000100001;uT : 000001100:

2.2.2. DFT and Cumulative Power and Phase Spectrum
Discrete Fourier transform (DFT) is a broadly used digital signal pro-

cessing approach, which transforms data from time space to frequency
space and reveals periodicities that are hidden in time space [20]. The
frequency domain vector contains all the information about the signal
in the time domain.
For a sequence of lengthN, the DFT of four indicator functions at fre-
quency k is:

Fα kð Þ ¼
XN−1

n¼0

uα nð Þe−i
2π
N

kn
; k ¼ 0;1;2;…;N−1 ð2Þ

The DFT power spectrum at frequency k is defined as:

PSα kð Þ ¼ Fα kð Þj j2 ð3Þ

Then the DFT phase spectrum at frequency k is defined as:

ASα kð Þ ¼ arg Fα kð Þð Þ ð4Þ

By definition, ASα(k) ∈ [0,2π]. Note that ASα(0) = 0, PSα(0) =
∣∑n=0

N−1uα(n)2∣, so we delete PSα(0), ASα(0) to calculate the cumulative
Fourier power and phase spectrum. Now, we get:

CPSα kð Þ ¼
Xk
n¼1

PSα nð Þ; k ¼ 1;2;…;N−1 ð5Þ

CASα kð Þ ¼
Xk
n¼1

ASα nð Þ; k ¼ 1;2;…;N−1 ð6Þ

Because all the ASα(k) and PSα(k) are non-negative, CPSα(k) and
CASα(k) are non-decreasing.

2.2.3. Central Moment Vector
Because of different lengths of DNA sequences, cumulative Fourier

power spectrum (CPS) and cumulative Fourier phase spectrum (CAS)
series have clear differences in number. Consequently, the Euclidean
distance between two DNA sequences with different lengths cannot
be defined. This means we do not use CPS and CAS directly. To solve
this issue, we use the central moment vector of CPS and CAS. Thus we
transform the CPS and CAS series of different sequences into the points
in the same dimensional space. We define the mean value of CPS and
CAS as follows:

Meanα CPSð Þ ¼ 1
N−1

XN−1

k¼1

CPSα kð Þ ð7Þ

Meanα CASð Þ ¼ 1
N−1

XN−1

k¼1

CASα kð Þ ð8Þ

To measure the distribution of Fourier power and phase spectra of
different genomes, we follow the statistical method to introduce the
central moments. To make sure that the first moment vector would
not be zero, we chose the absolute value:

CMα
j CPSð Þ ¼ ∑N−1

k¼1 CPSα kð Þ−Meanα CPSð Þj j j
Nα N−Nαð Þð Þ j−1Nj

ð9Þ

CMα
j CASð Þ ¼ ∑N−1

k¼1 CASα kð Þ−Meanα CASð Þj j j
Nα N−Nαð Þð Þ j−1Nj

ð10Þ

here j=1, 2,…,N− 1, α= A, C, G, T andNα is the number of the nucle-
otideα in the sequence and the scale factor 1/(Nα(N−Nα))j−1Nj is cho-
sen as CFPS method [21].



Fig. 1. Correlation between Euclidean distance and biological distance. The error bar is standard deviation for 10 random experiments. (A) Correlation between distances of 28-dim vector
and the number of substitutions of DNA sequence. (B) Correlation between distances of 28-dim vector and the length of deletions of DNA sequence.
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Now we get the complete central moment vector:

ðMeanA CPSð Þ;MeanC CPSð Þ;MeanG CPSð Þ;MeanT CPSð Þ;
MeanA CASð Þ;MeanC CASð Þ;MeanG CASð Þ;MeanT CASð Þ;
CMA

1 CPSð Þ;CMA
2 CPSð Þ;…;CMA

N−1 CPSð Þ;…;

CMT
1 CPSð Þ;CMT

2 CPSð Þ;…;CMT
N−1 CPSð Þ;

CMA
1 CASð Þ;CMA

2 CASð Þ;…;CMA
N−1 CASð Þ;…;

CMT
1 CASð Þ;CMT

2 CASð Þ;…;CMT
N−1 CASð ÞÞ:

ð11Þ

By this definition, we can prove that Fourier power and phase spec-
tra can be recovered by the complete central moment vector. This
means the vector and the spectra of Fourier transform is one-to-one
[23]. Then, we can use Inverse Discrete Fourier Transform (IDFT) to re-
cover the original DNA sequence. Thus, we keep all the information in
the original DNA sequence during the transformation from the DNA se-
quence to numerical sequence. We provide proof of this in the
appendices A.

When calculating the central moment vector, we find that the cen-
tral moment converges to zero as j increases. Compared with Mean
(CPS), Mean(CAS), CM1(CPS) and CM2(CPS), other central moments are
very small, which has no effect on the classification and phylogenetic
Table 1
DNA sequence mutations description in simulation tests.

A Generated from gene 574,406 (Gene ID)

A_substitution_2_1 2 random nucleotide substitutions in A
A_substitution_2_2 2 random nucleotide substitutions in A
A_substitution_5_1 5 random nucleotide substitutions in A
A_substitution_5_2 5 random nucleotide substitutions in A
A_substitution_10_1 10 random nucleotide substitutions in A
A_substitution_10_2 10 random nucleotide substitutions in A

B Generated from gene 574,406 (Gene ID)

B_substitution_2_1 2 random nucleotide substitutions in B
B_substitution_2_2 2 random nucleotide substitutions in B
B_insertion_5_1 5 bp insertion at position 51 in B
B_insertion_5_2 5 bp insertion at position 101 in B
B_deletion_5_1 5 bp deletion from position 51:55 in B
B_deletion_5_2 5 bp deletion from position 101:105 in B
B_transposition_10_1 10 bp transposition from position 1001 to 3001 in B
B_transposition_10_2 10 bp transposition from position 1251 to 2001 in B
results. Owing to this observation, we only consider Mean for the
power and phase spectra and the first two central moments for the
power spectrum to get a truncated central moment vector. The trun-
cated centralmoment vector can greatly save storage space and compu-
tational time. Then we give a 16-dimensional point in the Euclidean
space of every sequence:

ðMeanA CPSð Þ;MeanC CPSð Þ;MeanG CPSð Þ;MeanT CPSð Þ;
MeanA CASð Þ;MeanC CASð Þ;MeanG CASð Þ;MeanT CASð Þ;
CMA

1 CPSð Þ;CMC
1 CPSð Þ;CMG

1 CPSð Þ;CMT
1 CPSð Þ;

CMA
2 CPSð Þ;CMC

2 CPSð Þ;CMG
2 CPSð Þ;CMT

2 CPSð ÞÞ

ð12Þ

This 16-dimensional vector contains almost all the information of
central moments for the power and phase spectra.

2.2.4. Covariance
However, the 16-dimensional point can only reveal the distribution

of A, C, G, T respectively. Tomeasure the relationship of four nucleotides,
we add covariances to the point. We define the covariance as follows:

COVCPS α;βð Þ ¼ N−1
N2Nαþβ N−Nαþβ

� � cov CPSα ;CPSβ
� � ð13Þ

COVCAS α;βð Þ ¼ N−1

N2Nαþβ N−Nαþβ
� � cov CASα ;CASβ

� � ð14Þ

COV α;βð Þ ¼ COVCPS α;βð Þ;COVCAS α;βð Þð Þ ð15Þ

where

cov CPSα ;CPSβ
� �

¼ 1
N−1

XN−1

k¼1

j CPSα kð Þ−Meanα CPSð Þ‖CPSβ kð Þ−Meanβ CPSð Þ j ð16Þ

cov CASα ;CASβ
� �

¼ 1
N−1

XN−1

k¼1

j CASα kð Þ−Meanα CASð Þ‖CASβ kð Þ−Meanβ CASð Þ j ð17Þ



Fig. 2. Clustering analysis of different mutations by phylogenetic trees of simulated DNA sequences in Table 1. (A) our method, (B) the FFP (k-mer) method, (C) Clustal Omega.

Fig. 3. (A) distribution for exons in all chromosomes in S. cerevisiae. (B) distribution for introns in all chromosomes in S. cerevisiae.
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Fig. 4.Graph of C(j,75) SPBC1685.08 in chromosome 2 of S. pombe, using a slidingwindow
of 75 bp. The horizontal segments represent the actual location of the three exons. The red
curve is the smoothing curve of C(j,75).
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and

Nαþβ ¼ Nα þ Nβ

2
ð18Þ

From this definition, we can see COV(α,α)= (CM2
α(CPS),CM2

α(CAS)).
Then we add covariance to the 16-dimensional vector (12). Conse-

quently, a 28-dimensional point of the DNA sequence is constructed,
Fig. 5. UPGMA tree of 8 HIV sequences by 12-dimensinal vector and 16-dimensional
vector. (A) 16-dimensional vector (Mean (CPS), Mean (CAS), CM1(CPS), CM2(CPS)),
(B) 12-dimensional vector (Mean (CPS), CM1(CPS), CM2(CPS)).

Fig. 6. UPGMA tree of 16 HIV sequences by 16-dimensional vector and 28-dimensional vector
(B) 16dimensional vector (Mean (CPS), Mean (CAS), CM1(CPS), CM2(CPS)).
which is

ðMeanA CPSð Þ;MeanC CPSð Þ;MeanG CPSð Þ;MeanT CPSð Þ;
MeanA CASð Þ;MeanC CASð Þ;MeanG CASð Þ;MeanT CASð Þ;
CMA

1 CPSð Þ;CMC
1 CPSð Þ;CMG

1 CPSð Þ;CMT
1 CPSð Þ;

CMA
2 CPSð Þ;CMC

2 CPSð Þ;CMG
2 CPSð Þ;CMT

2 CPSð Þ;
COV A;Cð Þ;COV A;Gð Þ;COV A; Tð Þ;…;COV G; Tð ÞÞ

ð19Þ

3. Results

3.1. The Accuracy of Similarity Distance Metric

In ourmethod,we use the Euclidean distance tomeasure the biolog-
ical relationship between DNA sequences. A series of artificial deletion
and substitution mutations of a DNA sequence (Gene ID:574406) are
used to assess the accuracy of the similarity distances. Thenwe calculate
the Euclidean distances between 28-dimensional vectors of themutants
and the original sequence. Thus, we can obtain the correlation between
similarity distances and the mutation numbers. The results in Fig. 1
show a sound linear relationship between the distances and the number
of substitutions and length of deletions. These results demonstrate the
accuracy of the 28-dimensional vector distance metric for different
types of nucleotide mutations in the same DNA sequence, meaning
the distance of the 28-dimensional vector is linearly correlated to the
edit distance for DNA sequences.

3.2. Construction of Phylogenetic Trees on Different Simulated DNA
Mutations

To determine whether the Euclidean distances between 28-
dimensional vectors can be used to cluster DNA sequences, we gener-
ated different mutations in a DNA sequence (Gene ID: 574406,
5188 bp) and constructed phylogenetic trees by our method, the FFP
(k-mer) method and the MSA method. We generated two new se-
quences A and B from the original sequence bymaking 10% of substitu-
tions randomly. Then, we similarly transformed A and B into different
mutants by four different types of mutations (substitutions, deletions,
insertions, and transpositions). Table 1 is the description of the simu-
lated DNA sequences with different mutations. Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) phylogenetic trees of
the mutations were constructed from the distance metric using the
. (A) 28-dimensional vector (Mean (CPS), Mean (CAS), CM1(CPS), CM2(CPS), COV(CPS)),



Fig. 7. UPGMA tree of 38 influenza A viruses by our method. It is divided into 5 clusters: H1N1(red), H2N2(green), H7N9(black), H7N3(blue), H5N1(purple) correctly.
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proposed method, the alignment-free FFP (k-mer) method and Clustal
Omega, as shown in Fig. 2(A–C), respectively.

For the different substitution mutations of sequence A, Fig. 2 shows
that all the three methods can cluster different numbers of substitu-
tions. This result indicates that the similarity measure of 28-
dimensional vector, the FFP (k-mer) method and Clustal Omega have
the same capacity in identifying and measuring the distances between
substitutions. Fig. 2 shows the topological differences among the 28-
dimensional vector measure, the FFP (k-mer) method and Clustal
Omega for deletion, insertion and transposition mutations of sequence
B. Deletion and insertion are two types of mutation with phenotypic ef-
fects that often more pronounced than those of substitutions. Fig. 2
(A) and (C) show that the substitutions can be separated from deletion
or insertion mutations by the 28-dimensional vector method and
Clustal Omega; however, the FFP (k-mer) method cannot identify
these substitutions from deletion/insertion mutations and mix them
in the same branches (Fig. 2(B)). For transposition mutations, Fig. 2
(A) and (C) show that the 10-bp transpositions can be clearly separated
from both substitutions and insertion/deletion mutations by 28-
dimensional vector and Clustal Omega, but the FFP (k-mer) method
cannot separate transposition mutants from substitutions, classifying
them in the same branches as shown in Fig. 2(B). Our method contains
the nucleotide distribution at all the positions in DNA sequences and the
relationship of four nucleotides, so it can identify different types of mu-
tations. The FFP (k-mer) method is mainly based on the frequencies of
the k-mers in the sequence but does not contain the information
of position and relationship of four nucleotides, so similarity measure
from the FFP (k-mer) method is less reliable for sequence rearrange-
ments. This result shows that our similarity measure may have special
capacity to distinguish different mutations, while the FFP (k-mer)
method may not recognize these differences.

3.3. Distribution of Covariance Between Exons and Introns

We first use exon and intron sequences to test the performance of
our method in genome comparison. The covariances of Fourier trans-
form power and phase spectra can measure the relationship of the
four nucleotides. As a result, we calculated the covariances between
all experimental exons and introns in S. cerevisiae.

Using the covariances of Fourier power and phase spectra in Eq.
(15), for a sequence with length N, we calculate all C(j,L) for its sub-
pieces with window size L at position j from 1 to N − 1. P(L) is the
mean of the value of C(j,L):

COVCPS ¼ COVCPS A;Cð Þ;…;COVCPS G; Tð Þð Þ ð20Þ

COVCAS ¼ COVCAS A;Cð Þ;…;COVCAS G; Tð Þð Þ ð21Þ

C j; Lð Þ ¼ ðCOVCPS;COVCASÞk k2 ð22Þ



Fig. 8. UPGMA tree of 38 influenza A viruses by the FFP method (k = 5). It misplaces the virus ‘A turkey VA 505477-18 2007 H5N1’ into the H1N1 group, and a part of H1N1 viruses are
incorrectly grouped with H5N1 subtype.
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P Lð Þ ¼ ∑N−L
j¼1 C j; Lð Þ
N−L

ð23Þ

We chose L= 30 which is about the shortest length of all the exons
and introns of S. cerevisiae and calculate L(30) for all exons and introns.
Fig. 3(A) shows the histogram describing these distributions for all ex-
perimental exons in the 16 chromosomes of S. cerevisiae. As this figure
reveals, the covariance of exons is distributed around a central value
as a normal distribution. Fig. 3(B) shows the corresponding histogram
for intron regions in the 16 chromosomes. The distribution for intron re-
gions is close to uniform, which is different from the distribution that
was obtained for exon regions.

To study how the difference between exons and introns in terms of
argument distribution can be applied to gene prediction, we observed
the changes of covariance at different positions on a typical split gene
of S. pombe (gene SPBC1685.08 in chromosome 2). Table A.1 informa-
tion of exons on this gene is shown. We take L = 75, which is about
the shortest length of all the exons of S. pombe and calculate C(j,75).
Fig. 4 shows the curve of C(j,75). The horizontal lines represent the ac-
tual locations of the three exons. Note that C(j,75) for exon positions has
a higher value than for introns.
3.4. Construction of Phylogenetic Trees With/Without Phase Spectrum and
Covariance

In our previous paper,we proposed CFPSmethod using only the cen-
tral moments of power spectrum [21]. The novelty of the current
method is that we add the phase spectrum as well as the covariance
of the A, C, G and T power spectrum in our analysis. This two additional
information give us significant improvement in correctly annotating ge-
nome sequences than our previousmethod. To illustrate this, we evalu-
ate the performance of our new method with phase spectrum and
covariance in two steps. First, we use 8 human immunodeficiency
virus (HIV) whole genome sequences of A, B, C sub-types to construct
the phylogenetic tree by central moments of power spectrum with/
without central moments of phase spectrum. In order to balance the
magnitude of central moments and covariance, we first normalize all
the components of 28-dimensional vector. Then we use Mega7 to con-
struct the UPGMA phylogenetic tree of HIV sequences [24]. From Fig. 5
(A), we can see that the three sub-types of HIV genomes are completely
classified in the phylogenetic tree in the case of our method with 16-
dimensional vectors: (including central moments of power and phase
spectra). However, HIV genomes of C sub-types aren't gathered in one
branch by CFPS method which only contains central moments of
power spectrum (Fig. 5(B)). Second, we use 16 HIV whole genome



Fig. 9. UPGMA tree of 38 influenza A viruses by Clustal Omega. It misplaces the virus ‘A turkey VA 505477-18 2007 H5N1’ into the H1N1 group.
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sequences of D, F, G, H sub-types to construct the phylogenetic tree by
centralmoments of power and phase spectrawith/without their covari-
ances. From Fig. 6, our 28-dimensional vectors can distinguish the four
sub-types, while 16-dimensional vectors without covariance divide D1
and F sub-type into one branch. Thus, we can see that our method con-
tains more information and the performance is significantly improved
compared to the previous CFPS method.

3.5. Construction of Phylogenetic Trees

Here, we compare our method to FFP (k-mer) method, Clustal
Omega, MAFFT and MSAProbs, for computational efficiency and accu-
racy. MATLAB R2017b and MEGA 7 are used to draw the phylogenies
of genomes [24]. To verify our method, we apply it to various data sets
including viral genome sequence and bacterial genome sequences
(DNA GenBank information is shown in Table A.2–A.4) to construct a
UPGMA tree.

3.5.1. Influenza a Viruses
InfluenzaA viruses are a constant threat to both human and animal

health because of their high mutation rate. They are negative-sense,
single-stranded, segmented RNA viruses that are classified by their sur-
face glycoproteins: hemagglutinin (HA) and neuraminidase (NA) [25].
The dataset used in this work consists of 38 of the most lethal subtypes
of Influenza A viruses, such as H1N1, H2N2, H5N1, H7N9, and H7N3. As
Fig. 7, the dataset is divided correctly into five groups, which are consis-
tent with the biological taxonomy, except ‘A turkey Minnesota 11,988
H5N1’. We find that the ‘A turkey Minnesota 1988 H7N9’ is earlier
than the rest H7N9 and H7N3 viruses, so it locates at the root
of H7N9, and H7N3. Regarding FFP (k-mer) method (Fig. 8), we choose
k = 5. It misplaces the virus ‘A turkey VA 505477-18 2007 H5N1’ into
the H1N1 group, and a part of H1N1 viruses are incorrectly grouped
with H5N1 subtype. The Clustal Omega may only classify ‘A 258 turkey
VA 505477-18 2007H5N1’with some uncertainness (Fig. 9). To investi-
gate the reason of this exception, using sequence alignment by MEGA,
we found that there is an 8 bases insertion mutation at position 13 in
‘A turkey VA 505477-18 2007 H5N1’ compared with other H5N1 se-
quences. Thus, the tree by our method can display clear levels of hierar-
chy and relationship among different viruses, but MSA and FFP (k-mer)
methods cannot have clear spatial separation of similar species in the
tree. Therefore, the results obtained using our method are better than
MSA and FFP (k-mer) methods.
3.5.2. Human Papilloma Virus (HPV)
Human papillomavirus (HPV) causes cervical cancer, which is the

fourth most common cancer in women, with an estimated 266,000
deaths and 528,000 new cases in 2012. Virtually all cervical cancer
cases (99%) are linked to genital infection with HPV and it is the most
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Fig. 10. UPGMA tree of 341 HPV sequences by three methods. (A) our method, (B) FFP method (k = 6), (C) Clustal Omega.
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Fig. 11. UPGMA tree of 56 bacteria by our method.
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common viral infection of the reproductive tract. HPV is a group ofmore
than 150 related viruses [22]. Each HPV virus in this large group is given
a number which is called its HPV type. Low risk HPV types such as 6 and
11 can cause genital warts or benign. High risk HPV types such as 16 and
18 account for about 70% of cervical cancer [9]. As a result, how to
quickly and accurately predict HPV risk types has become a hot span,
such as chaos game representation [22], support vector machines [26],
decision tree [27], and ensemble support vector machines with protein
secondary structures [28].

In this work, our method classifies the dataset of 341 HPV genomes
into 12 genotypes 6, 11, 16, 18, 31, 33, 35, 45, 52, 53, 58, and 66 correctly
in less than 20 s (Fig. 10(A)). However, FFP (k-mer)methodmisplaces a
part of 33 types into 31 types, obviously worse than results by our
method (Fig. 10(B)). Although Clustal Omega can classify the dataset
correctly, the time is longer than our methods. (Fig. 10(C)).
3.5.3. Bacteria
Bacteria are important in many stages of the nutrient cycle by

recyclingnutrients such as thefixation of nitrogen from theatmosphere.
Whilebacterial fossilsexist, suchasstromatolites, their lackofdistinctive
morphology prevents them from being used to examine the history of
bacterial evolution, or to date the time of origin of a bacterial species
[29]. Hence, it is vital to reconstruct the bacterial phylogeny byDNA se-
quences. Nevertheless, the length of bacterial whole genome sequence
is over 1million bp, thusMSAmethodswill consume a large amount of
time. The dataset of 56 bacteria is used to test ourmethod, including 14
families: Aeromonadaceae, Alcaligenaceae, Bacilleceae, Burkholderiaceae,
Caulobacteraceae, Clostridiaceae,Desulfovibrionaceae, Enterobacteriaceae,
Lactobacillaceae,Mycoplasmataceae, Rhodobacteriaceae, Spirochaetaceae,
Staphylococcaceae and Yersiniaceae. The length of genome sequence
ranges from 3 to 5 million bp. As illustrated by the phylogenetic



Fig. 12. UPGMA tree of 56 bacteria by FFP method (k = 6).
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tree (Fig. 11), it is well separated into 14 biological families in less
than 700 s. Though FFP method (k = 6) also classifies correctly, its
running time is about 30,000 s, which is significantly longer than
our method (Fig. 12).
Table 2
Time comparison of the six methods.

Datasets Average length
(bp)

Number of
species

Our method
(seconds)

CFP
(se

Influenza A 1497 38 0.38 0.2
HPV 7915 341 15.28 13
Bacteria 3,610,982 56 659.77 64
3.6. Time Statistics and Algorithm Complexity

We performed all the calculations on the same machine and clear
the memory each time to avoid redundancy and influence on the
S
conds)

FFP
(seconds)

Clustal Omega
(seconds)

MAFFT
(seconds)

MSAProbs
(seconds)

9 8.68 13.45 0.87 32.24
.06 99.30 4170.70 22.52 –
1.83 32,394.79 – – –



Fig. 13. (A) The plot of CPU time versus the average length of input sequences. The number of sequences is 30. (B) The plot of CPU time versus the number of input sequences. The average
length of sequences is 500.
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next-step calculation. The computation environment is CentOS 7 Linux
Server running on Dell PowerEdge R730 with Dual Intel Xeon E5–
2670 v3 12C/24 T CPU @2.30GHz and 384 GB RAM. We recorded the
time and memory of our method, CFPS, FFP, Clustal Omega, MAFFT
and MSAProbs methods. When measuring running times, each execu-
tion was repeated three times and averaged.

From Table 2, we can conclude that alignment-free methods are
much more time-efficient than MSA methods. Because our method
need calculate the covariance of power and phase spectra, it is a
bit slower than CFPS method. In order to evaluate the complexity
of the present methods, we analyze the relationship between CPU
time and the length and number of sequences. Fig. 13(A) shows
the dependence of CPU time on the sequence length (L) and the
number of sequences is 30. And Fig. 13(B) shows the dependence
of CPU time on the number (N) of sequences, and the average length
of sequences is 500. We can conclude the time consumption of
MSAProbs is O(N2L3) [5]. Clustal Omega consumes O(NlogNL2) CPU
time [3]. Other methods require approximately O(NL) CPU times
[4,16].

The memory requirements are shown in Table 3 and the unit is the
memory requirement as a percentage of the total memory of the
Linux server. We can see that alignment-free methods require more
memory than alignment methods on the dataset of Influenza A, while
alignment-free methods require less memory than alignment methods
on larger datasets. The memory of FFP (k-mer) method depends on the
value of k and becomes unacceptable when k becomes too large, espe-
cially when the whole genomes are input for analysis [16]. For a
computer with 16G of memory, theoretically it can only calculate up
to k= 16. Therefore, our method is more efficient than other methods,
especially when the dataset is large.
Table 3
Memory comparison of the six methods.

Datasets Average
length
(bp)

Number
of
species

Our
method
(%)

CFPS
(%)

FFP
(%)

Clustal
Omega
(%)

MAFFT
(%)

MSAProbs
(%)

Influenza A 1497 38 0.2 0.2 0.2 0.1 0.1 0.2
HPV 7915 341 0.2 0.2 0.2 0.8 0.1 –
Bacteria 3,610,982 56 0.6 0.6 0.8 – 1.4 –
4. Conclusions

In this work, we establish a novel method for genome comparison
based on the cumulative Fourier power and phase spectra. In this
method, we use power and phase spectra to create a 28-dimensional
vector to represent a DNA sequence and define the Euclidean distances
between the vectors as the similarity metric.

Our method has three main advantages. First, it contains all the in-
formation of the Fourier transform. Second, the mapping between
DNA sequence and its complete central moment vector of the cumula-
tive Fourier power and phase spectra is one-to-one. Although we only
use truncated central moment vector in this study, the mapping be-
tween DNA sequence and its truncated central moment vector of the
cumulative Fourier power and phase spectra is also one-to-one in
our tested dataset. What's more, the covariance between spectra can
measure the relationship of four nucleotides, with the distribution of
this covariance differing between exons and introns. The results
showed that our method is highly accurate and computationally effec-
tive at identifying different mutations (substitutions, insertions/dele-
tions, and transpositions), exon-intron and for large-scale genome
comparisons.

In addition, we found that the covariances of the power and
phase spectra of the cumulative Fourier transform in exons is ap-
proximately normal, whereas in introns, the distribution is close to
uniform in S. cerevisiae. Next, we used a sliding window to calculate
the covariance at different positions for genes in S. pombe. We ob-
served that there is generally a peak in exons. Therefore, this study
also provides a new concept for predicting coding regions for future
research.

The comparison of multiple-segmented genomes is also the focus of
our future work. For multiple-segmented genomes, each segment is
corresponds to a 28-dimensional vector by our method. So, the
vectors of different segments can form a set. Then, we may use
Hausdorff distance to calculate the distance between two sets as the
similarity metric [30,31]. In further improvements, we will test the per-
formance of our method on multiple-segmented genomes datasets.
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