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A B S T R A C T

Based on the k-mer model for protein sequence, a novel k-mer natural vector method is proposed to characterize
the features of k-mers in a protein sequence, in which the numbers and distributions of k-mers are considered. It
is proved that the relationship between a protein sequence and its k-mer natural vector is one-to-one.
Phylogenetic analysis of protein sequences therefore can be easily performed without requiring evolutionary
models or human intervention. In addition, there exists no a criterion to choose a suitable k, and k has a great
influence on obtaining results as well as computational complexity. In this paper, a compound k-mer natural
vector is utilized to quantify each protein sequence. The results gotten from phylogenetic analysis on three
protein datasets demonstrate that our new method can precisely describe the evolutionary relationships of
proteins, and greatly heighten the computing efficiency.

1. Introduction

Phylogenetic analysis is the study of evolutionary relationships
among molecules, phenotypes, and organisms [1]. In the context of
protein sequence data, phylogenetic analysis is the key cornerstone of
comparative sequence analysis and has many applications in the study
of protein evolution and functions, as well as genome annotation, gene
function prediction, identification and construction of gene families,
and gene discovery [2]. Therefore, using protein sequences to analyze
the phylogeny of species makes more sense than using DNA sequences
[3–5]. Proteins with high sequence identity tend to possess similarity in
function and evolutionary relationship, and results obtained from
phylogenetic analysis are represented by a phylogenetic tree, in which
sequences are grouped based on sequence similarities.

With the rapid increase of sequence data in the past decades, plenty
of approaches have been proposed for protein phylogenetic analysis
[6–12]. Most of them depend on multiple sequence alignment, which
commonly assumes some sort of evolutionary model, yielding dis-
agreement of interpretation. Although alignment-based methods
achieve satisfactory results in evolutionary relationships, they often
involve in high computational complexity. Notably, some of them break
down when fed whole genome data. Additionally, as in the case of viral
genomes, several fail to handle gene rearrangements issues. Hence,

alignment-free methods based on the numerical characterizations of
biological sequences were proposed to improve alignment-based
methods.

Many biological molecular studies using k-mer model methods have
already appeared [13–16]. The most significant advantage for k-mer
model methods is that a phylogenetic tree can be constructed much
faster. However, sequence relationships are more or less neglected. The
original natural vector approach was proposed to incorporate the nor-
malized central moments to account for the interrelationships between
different portions of genetic sequences, and produced one-to-one re-
lationship between genetic sequences and vectors in a finite dimen-
sional space [17,18]. But the obtaining results cannot accurately de-
scribe the phylogeny of species [19]. Recently, He et al. [5] proposed a
feature vector to describe the composition of amino acids in a protein
sequence.

In this paper, we propose a simple but efficient k-mer natural vector
method to numerically characterize a protein sequence, utilizing the
frequencies and positional information of k-mers in a protein sequence.
The obtaining results have shown that our new k-mer natural vector
method can offer a credible phylogeny depicting the evolutionary re-
lationship of species.
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2. Materials and methods

2.1. Dataset

Three sets of real protein sequence data are assembled and utilized
to explore the evolutionary relationship of proteins, in which both long
and short sequences are considered. Dataset S1 consists of 88 beta-
globin sequences from different species, and dataset S2 is composed of
116 human rhinoviruses belonging to the Enterovirus genus in the
Picornaviridae family. In addition, a much larger dataset S3 containing
1163 influenza A viruses isolated in China is also included.

2.2. K-mer model of protein sequence

The k-mer model for protein sequence mimics that for genetic se-
quence. There are 20 amino acids. Each has a name, a 3-letter short-
hand name, or a single letter symbol. Thus, α=A indicates that the
amino acid α is Alanine, whose 3-letter shorthand is Ala and α=W
indicates Tryptohan, whose 3-letter shorthand is Trp. A protein se-
quence consists of amino acids linearly arranged.

Let φ={A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R,S,T,V,W,Y} be the set
of 20 amino aicds and let s= < α1, α2, ⋯, αL > be a protein
sequence sof length L, Lwhere Nl∈φ, l=1, 2,⋯, L. ANl∈ {A,C,G,T} k-
mer is a string of k consecutive single letter symbols and numbered left
to right. Given any positive integer k, there are 20k different possible
sequences, or rather 20k different possible k-mers. Thus L− k+1 k-
mer are determined by sliding a window of width k along the entire
sequence of length L. For k≥2, adjacent k-mers from such a sequence
are highly correlated, less so the farther apart they are.

2.3. K-mer natural vector for protein sequence

For any protein sequence s and a given k, the k-mer natural vector is
defined to be the concatenation of following three vectors, each of
which is of length 20k:

(1) The k-mer counting vector (ns[1],ns[2],⋯,ns[20k]), where ns[i] is the
number of k-mer s[i] occurring in sequence s.

(2) The k-mer mean distance vector (μs[1],μs[2],⋯,μs[20k]), where μs[i] is
the arithmetic mean of the distances of the k-mer s[i] to the first
base. If a specific k-mer s[i] does not exist, μs[i] is defined to be zero.

(3) The k-mer normalized central moment vector
(D2

s[1], D2
s[2], ⋯,D2

s[20k
]), the component of which (D2

s[i]) is the
variance for the distances of k-mer s[i] to the first base, which is
defined as follows:
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where ns[i]n[i] denotes the number of k-mer s[i] appearing in the
sequence s of length L, s[i][j] is the distance of jth k-mer s[i] from
the first base in s. This differs from the usual variance by the extra
factor of L− k+1 in the denominator and is closely related to the
moment vector whose components are ∑j=1

ns[i](s[i][j]− μs[i])2 with
no denominator factors. More generally, for m > 2 there are also

Fig. 1. NJ phylogenetic tree of beta-globin protein sequence of 88 species based
on the k-mer natural vector method. The 88 beta-globin sequences are correctly
clustered into 20 groups: Carnivora, Primates, Sirenia, Insectivora,
Perissodactyla, Hyracoidea, Proboscidea, Rodentia, Diprotodontia, Testudines,
Columbiformes, Passeriformes, Galliformes, Anseriformes, Crocodylia, Anura,
Perciformes, Gadiformes, Cypriniformes, and Salmoniformes. This resulting
phylogenetic tree agrees well with the results in standard biological taxonomy
and the evolutionary relationship of species.
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If the distributions of each k-mer are different, two protein se-
quences cannot be similar even though they contain the same set of k-
mers and the same measurements for the total distance. The numerical
parameters in each subset maybe not sufficient to annotate a protein
sequence, but the combination of numerical parameters is sufficient to
characterize each protein sequence. We mathematically prove that the
relationship between a protein sequence and its corresponding k-mer
natural vector is one-to-one for each given k in the Test S1.

K-mer natural vector is derived by concatenating the frequencies of
occurrences of each k-mer in the sequence and its mean distance to the
first base to the normalized central moments. Hence, k-mer natural
vector contains information on relationships of k-mer, which is com-
monly neglected by former k-mer model methods.

It has shown that the 3 ∗ 20k3×4k-dimensional vector
(ns[i],μs[i],D2

s[i]) n[i], μ[i], D2
[i]is enough to represent a protein sequence,

and there is no necessary to include normalized central moments higher
than second order, because the higher central moments hardly make
any contribution. Hence, the 3 ∗ 20k-dimensional natural vector map-
ping restricted on all the datasets is still one-to-one mapping.

2.4. A compound k-mer natural vector quantifying each protein sequence

The k-mer natural vector is proposed to describe the numbers and
distributions of k-mers in a protein sequence, and the dimension of
which is 3 ∗ 20k for each given k. In previous k-mer methods, there
exists no a criterion to tell us how to choose k used. Obviously the
parameter k has a great influence on obtaining results of evolutionary
relationship. Specially, when k enlarges, the computation load would
increase tremendously.

In this paper, we propose a compound k-mer natural vector (with
k=2 and 3) is jointly to uniquely quantify each protein sequence.
Therefore, each protein sequence can be numerically represented by a
2520=3 ∙ (202+ 203) dimensional feature vector. In the section of
Results and Discussion, it should be verified that both long and short
protein sequences can be accurately depicted with the compound k-mer
natural vector.

Once every protein sequence considered in the phylogenetic ana-
lysis is uniquely numerically characterized by a compound k-mer nat-
ural vector, the cosine distance metric can be utilized to calculate the
pairwise distance of protein sequences, which has been widely used in
k-mer model methods [20–23]. Then, the phylogenetic tree can be
drawn through the method of Neighbor Joining (NJ) using MEGA 6.06
[24].

3. Results and discussion

To fully demonstrate the validity of the new method in depicting the
evolutionary relationship of protein sequences, the k-mer natural vector
method is applied in the phylogenetic analysis on beta-globin sequence,
human rhinovirus, and influenza A virus, in which protein sequences of
different lengths are considered.

Fig. 2. NJ phylogenetic tree of beta-globin protein sequence of 88 species based
on ClustalW. The 88 beta-globin sequences are clustered into 20 groups:
Carnivora, Primates, Perissodactyla, Insectivora, Sirenia, Hyracoidea,
Proboscidea, Rodentia, Diprotodontia, Crocodylia, Testudines, Passeriformes,
Columbiformes, Galliformes, Anseriformes, Anura, Salmoniformes,
Cypriniformes, Gadiformes, and Perciformes.
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3.1. Phylogenetic analysis of 88 beta-globin sequences

We first analyze 88 beta-globin sequences from different species,
which is the most common haemoglobin in adult human and often
utilized to explore the evolutionary relationships of species [17,25].
This dataset has been investigated by a new cluster method [5], and the
variance in length is from 140 to 148. As a comparison, the NJ tree of
88 beta-globin sequences is shown in Fig. 1, using our novel k-mer
natural vector method.

Look at Fig. 1, 88 beta-globin sequences are correctly clustered into
20 groups: Carnivora, Primates, Sirenia, Insectivora, Perissodactyla,

Hyracoidea, Proboscidea, Rodentia, Diprotodontia, Testudines, Co-
lumbiformes, Passeriformes, Galliformes, Anseriformes, Crocodylia,
Anura, Perciformes, Gadiformes, Cypriniformes, and Salmoniformes,
which are the same to the results of [5]. Perciformes, Gadiformes, Cy-
priniformes, and Salmoniformes are all Teleosts, they group together,
which conforms to the conclusion in Cladistic analysis [26]. In addition,
Columbiformes, Passeriformes, Galliformes, and Anseriformes are be-
longing to the Galloanserae, the main group of modern birds [27]. Their
clusters are supported with the morphological data and DNA sequence
data [28,29]. Our resulting phylogenetic tree agrees well with those in
standard biological taxonomy, and evolutionary relationship of species.

Fig. 3. NJ phylogenetic tree of 114 HRV serotypes based on the k-mer natural vector method. All 113 HRVs are clustered into three groups: HRV-A, HRV-B, and HRV-
C, and 3 HEV-Cs form an outgroup, which are in according with clinical heterogeneity of HRV infections in humans and results gotten from published methods.
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However, these results cannot be gotten by a new cluster method of [5].
To further show the utility of our new method, we also perform

multiple sequence alignment on the same dataset, using MEGA 6.06 to
execute algorithms of ClustalW and MUSCLE that are current most
classic methods in the phylogenetic analysis. The phylogenetic trees of
88 beta-globin sequences drawn from ClustalW and MUSCLE are shown
in Fig. 2 and Fig. 2s by NJ method, respectively, where species are
coloured the same as in Fig. 1. Comparing Fig. 1 with Fig. 2, the evo-
lutionary relationships of 88 beta-globin sequences are consistent with
each other.

3.2. Phylogenetic analysis of 116 human rhinoviruses

Human rhinovirus (HRV), first discovered in the 1950s, is one of the
most important causes of respiratory infections and has been associated
mostly with the common cold [30]. The HRVs comprise the species of
RV-A, RV-B, and RV-C Enterovirus genus in the Picornaviridae family,
but the classification status is not always the case [31]. Meanwhile, the
phylogenetic analysis of whole genome HRV genomic sequences show
that the HRVs can be classified into three distinct groups, HRV-A, HRV-

Fig. 4. NJ phylogenetic tree of 114 HRV serotypes based on ClustalW. All 113 HRVs are clustered into three groups: HRV-A, HRV-B, and HRV-C, and 3 HEV-Cs form
an outgroup.
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B, and HRV-C, and HRV-A and HRV-C share a common ancestor, which
is a sister group of HRV-B [32].

To clarify the classification of HRVs, a dataset containing 113 HRV
and 3 HEV-C complete genomes is utilized to investigate the classifi-
cation of HPVs, the lengths of which are between 2142 and 2214 amino
acids. Comparing with results derived from genomic sequence, our re-
sult looks more credible, in that, protein sequences are more con-
servative in structure and function than nucleotide sequences [33]. As
shown in Fig. 3, all 113 HRVs are clustered into three groups: HRV-A,
HRV-B, and HRV-C, and 3 HEV-Cs form an outgroup, which are in ac-
cord with clinical heterogeneity of HRV infections in humans and re-
sults gotten by published methods [34–36].

The phylogenetic trees generated by ClustalW and MUSCLE are well
classified in Fig. 4and Fig. 4s, and their topologies look very similar to
that produced by our new method. Especially, the topological structure
of HPV-As in our NJ tree is better than the genome tree for all known
HRV serotypes based on the Maximum likelihood and Maximum par-
simony [37]. For example, the hrv-46 arose by recombination between
hrv-53 (major parent) and hrv-80 (minor parent), which are more ob-
vious in our NJ tree.

3.3. Phylogenetic analysis of 1163 influenza A viruses

Influenza A viruses cause influenza in birds and some mammals,
which are clinically significant in evoking several serious human illness
[38]. Influenza A viruses are highly variable, and are classified ac-
cording to the antigenic variation of surface glycoproteins: hemagglu-
tinin (HA) and neuraminidase (NA) [39]. Therefore, the subtypes of
influenza A viruses are named by an H number (for the type of he-
magglutinin) and an N number (for the type of neuraminidase). To date,
18 antigenic variants of HA (from H1 to H18) and 11 antigenic variants
of NA (from N1 to N11) have been recognized [40]. For example,
H1N1, H2N2, H5N1, H7N3 and H7N9 are the most lethal subtypes in
influenza A viruses [41].

A much larger dataset consisting of 1163 NA sequences that encode
influenza A viruses is utilized to evaluate prediction accuracy in the
classification of proteins [42,43], which are divided into 13 subtypes:
H5N6, H5N1, H7N9, H1N1, H6N2, H3N8, H3N2, H4N6, H5N5, H10N3
and H7N3. The phylogenetic tree of 1163 NA sequences is shown in
Fig. 5 by NJ method.

Looking at Fig. 5, all influenza A viruses are divided into two sub-
groups: one consisting the types of N2, N3, N6, and N9; and the other
one containing the types of N8, N5, and N1. The viruses in each sub-
group are independently adapted to different hosts, indicating that the
parallel evolution occurs within the two subgroups due to the similar
rates of genetic mutation and adaption to host environments. In addi-
tion, each of seven influenza A NA subtype forming a distinct cluster
denotes a monophyletic origin for each subtype. The phylogenetic of
N2-N3-N6-N9 and N8-N5-N1, which completely comply with the evo-
lutionary dynamics of influenza NAs [44] and the NJ trees drawn by
ClustalW and MUSCLE shown in Fig. 6 and Fig. 6s. Moreover, our NJ
tree looks a little better than that of ClustalW, which is found from the
cluster of EP1682990H1N1, EP1703429H1N1, and EP1239078 H5N1.

The computing efficiency is an important factor for all the new
methods proposed for phylogenetic analysis of protein sequences that
should perform sequence analysis within a limited time, even for whole
genome data. To illustrate the efficiency of k-mer natural vector
method, the computing time of our new method on beta-globin

Fig. 5. NJ phylogenetic tree of 1163 influenza A viruses based on the k-mer
natural vector method. All 1163 influenza A viruses are divided into two sub-
groups: one consisting the types of N2, N3, N6, and N9; and the other one
containing the types of N8, N5, and N1, which completely conform to the
evolutionary dynamics of influenza NAs (Xu et al., 2012) and the NJ trees
drawn by ClustalW and MUSCLE.
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sequence, human rhinovirus, and influenza A virus are listed in Table 1,
as well as ClustalW and MUSCLE. As shown in Table 1, our new method
is more efficient than ClustalW and MUSCLE, which is easily found from
Human rhinovirus and Influenza A virus, although MUSCLE runs a little
faster on Beta-globin sequence.

In addition, for k-mer model method, the parameter k has a great
influence on obtaining results and computational complexity. There
exists no a criterion to choose a suitable k when different kinds of se-
quences are considered. Several methods have tried to find a suitable k.
Huang and Yu utilized the stability of the distance matrix to find the
optimal k [45]. Then, a k-string dictionary was proposed to use a lower
dimensional frequency vector to represent a protein sequence [46].
Furthermore, the cross-validation was used to decide value of k in the k-
nearest neighbor algorithm [47]. Since it is difficult to select a k that is
feasible to all kinds of sequences, a compound k-mer natural vector
with k=2 and 3 is jointed to quantify each protein sequence, by which
both long and short sequences can be accurately depicted.

4. Conclusions

Integrating the distributions of k-mers into k-mer model, a novel k-
mer natural vector method is developed to accurately depict the evo-
lutionary relationship of protein sequences, which contains the in-
formation on the relationships of k-mers to overcome the deficiency of
former k-mer model methods. With this new method, the features of k-
mers hidden in the sequence can be effectively extracted, and each
protein sequence is numerically characterized by a compound k-mer
natural vector. We mathematically prove that there exists a one-to-one
relationship between a protein sequence and its associated k-mer nat-
ural vector for each given k. Therefore, phylogenetic analysis of protein
sequences can be easily performed without requiring evolutionary
models or human intervention.

We illustrate the utilities of this new method in exploring the phy-
logeny of protein sequences on the real data, by which our obtaining
results are consistent with or better than the current most classic in
phylogenetic analysis and published papers. We have verified that the
k-mer natural vector method can not only improve the accuracies in
depicting evolutionary relationship of protein sequences, but also
strengthen the computing efficiency in dealing with more sequence
data. Moreover, both long and short protein sequences can be effec-
tively handled with our new method. However, our k-mer natural
vector method is still in the process of being improved, it needs to re-
medy some disadvantages and drawbacks.
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Table 1
The computing time of k-mer natural vector method, ClustalW, and MUSCLE
used on beta-globin sequence, human rhinovirus, and influenza A virus, re-
spectivelya.

Dataset K-mer natural vector method ClustalW MUSCLE

Beta-globin sequence 14.81 s 16.50 s 14.68 s
Human rhinovirus 32.78 s 38.40min 1.14min
Influenza A virus 4.01min 4.00 h 6.40min

a The configuration for our current laptop is Intel Core i5-2450 dual cores
2.50 GHZ with 8.00 Gb memory.
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