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A B S T R A C T

Using numerical methods for genome comparison has always been of importance in bioinformatics. The Chaos
Game Representation (CGR) is an effective genome sequence mapping technology, which converts genome se-
quences to CGR images. To each CGR image, we associate a vector called an Extended Natural Vector (ENV). The
ENV is based on the distribution of intensity values. This mapping produces a one-to-one correspondence be-
tween CGR images and their ENVs. We define the distance between two DNA sequences as the distance between
their associated ENVs. We cluster and classify several datasets including Influenza A viruses, Bacillus genomes,
and Conoidea mitochondrial genomes to build their phylogenetic trees. Results show that our ENV combining
CGR method (CGR-ENV) compares favorably in classification accuracy and efficiency against the multiple se-
quence alignment (MSA) method and other alignment-free methods. The research provides significant insights
into the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes.

1. Introduction

Genome sequence analysis is considered an indispensable part of the
field of bioinformatics for understanding the evolution of species and
for describing and understanding the evolution of species. This area has
been developing rapidly in recent years (Ackermann and Kropinski,
2007; Moore et al., 2011; Vinga and Almeida, 2003), and has been
applied to molecular phylogeny, comparative genomics, gene predic-
tion and annotation. Many methods have been proposed to compare
genome sequences.

Most traditional methods are alignment-based methods. The com-
parison of more than two sequences is known as Multiple Sequence
Alignment (MSA). The most common multiple sequence alignment
methods are ClustalW (Higgins et al., 1994), MUSCLE (Edgar, 2004), T-
Coffee (Notredame et al., 2000) and MAFFT (Katoh and Kuma, 2002).
MSA methods involve computing similarity scores between DNA or
amino acid sequences. They have often been used to predict phyloge-
netic trees using a single gene or multiple conserved genes. Un-
fortunately, it is not uncommon for the phylogenetic tree obtained from
focusing on one gene or set of genes to differ from the tree obtained
from focusing on another gene or set of genes (Ludwig et al., 1998; Lang
et al., 2013). Because of this, selecting a set of genes appropriate for the
number and diversity of the taxa is very important (Wang and Wu,

2013). To improve the accuracy of phylogenetic trees, performing MSA
with longer sets of genome sequences is necessary (Brown et al., 2001).
But MSA methods are very time-consuming and quite expensive in
memory usage. With a sharp increase in the number of biological
genome sequences, these traditional sequence alignment methods be-
come unworkable. To be able to compare entire genome sequences,
alignment-free methods need to be used. In contrast to the traditional
MSA methods, alignment-free methods tend to be computationally ef-
ficient and can utilize all of the genomic information (Vinga and
Almeida, 2003). For example, in (Deng et al., 2011), the alignment-free
Natural Vector (NV) method is proposed. A natural vector describing
the distribution (i.e., the locations and number of occurrences) of each
nucleotide, is associated to each DNA sequence. The NV method is
unsupervised and does not require manual intervention. It results in a
one-to-one correspondence between a DNA sequence and its associated
natural vector, which reflects the biological properties of the original
genome sequences.

The Chaos Game Representation (CGR) is an iterative mapping
technique that divides genome sequences into certain units, and then
finds the correlation between their positions in the gene sequence
(Jeffrey, 1990). Specifically, this technique assigns each oligonucleo-
tide in a DNA sequence to a position in the plane. This mapping allows
the DNA sequence to be depicted as a CGR image. Image processing
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related methods can be used to find the patterns in the genome se-
quences (Almeida et al., 2001; Deschavanne et al., 1999). For example,
in (Ni et al., 2018), the mean structural similarity (MSSIM) coefficient
between pairs of CGR images is used to measure the degree of similarity
between the corresponding genomes. However, most of these methods
extract certain features from the CGR images, but these features do not
contain all the information in the images, which means it is not possible
to fully recover a CGR image from the set of features that are extracted.

In this paper, we propose a novel method to compare the two-di-
mensional CGR image matrices. To each CGR image, we associate a
vector, called Extended Natural Vector (ENV), that describes the
numbers and distributions of intensity values in the CGR images. We
prove that the ENV defined in this context can distinguish image ma-
trices in a strict one-to-one fashion. A natural distance between two
genome sequences is the distance between the corresponding extended
natural vectors of their CGR images. Combining CGR with ENV (CGR-
ENV) method, we propose a new numerical vector approach to find the
similarities and differences between genome sequences. Tested on da-
tasets of Influenza A viruses, Bacillus genomes and Conoidea mitochon-
drial genomes, we find that this novel approach gives better results than
ClustalW, NV, MSSIM-combined CGR methods and Higher-Order
Markov model (Yang et al., 2016).

2. Materials and methods

2.1. Materials

We apply our method for phylogeny reconstruction three datasets,
each consisting of whole genome sequences. The GenBank IDs are
shown in Tables S1-S3.

Dataset 1 contains 27 Influenza A viruses. According to the reference
taxonomy in NCBI, these 27 Influenza A viruses are composed of 5
subtypes (including 8 H5N1, 6 H1N1, 2 H2N2, 5 H7N3 and 6 H7N9
respectively).

Dataset 2 contains 36 Bacillus genomes. According to the taxonomy
based on the classification of the NCBI, the population of 36 Bacillus
consists of 2 orders (Bacillales and Lactobacillales), 7 families
(Alicyclobacillaceae, Bacillaceae, Staphylococcaceae, Listeriaceae,
Leuconostocaceae, Lactobacillaceae, Streptococcaceae).

Dataset 3 contains 9 Conoidea mitochondrial genomes. The list of
Conoidea superfamily analyzed in this study is corresponding to families
Conidae, Borsoniidae, Mangeliidae, Clathurellidae, Clavatulidae, Turridae,
Terebridae.

2.2. Methods

In this study, a novel method which we call the CGR-ENV method is
applied to genome sequence data. In this method, each genome se-
quence is first converted into a CGR image using the method proposed
by Jeffrey (Jeffrey, 1990).

2.2.1. Chaos Game Represntation (CGR) images
The CGR method transforms DNA sequences to images in order to

reveal patterns in the sequences. CGR is defined iteratively by Eq. (1).
For a DNA sequence … …s s s, , n1 2 , the corresponding CGR position

=X x y( , )n n n is given by:

= ⎛
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2

( )n n0 1 (1)

where W is (0,0) if sn is A, (0,1) if sn is C, (1,1) if sn is G, or (1,0) if sn is
T.

Basically, each pixel in the CGR images is associated with the fre-
quency of a specific word (Fig. 1). Overlaying a CGR image with a grid
of appropriate size, the frequency of each word is equal to the number
of occurrences in its associated grid position. In order to obtain the
frequency matrix of n-string words, a ×2 2n n grid must be used

(Almeida et al., 2001). We let the gray value of the greatest frequency
grid be 255, and the lowest frequency grid be 0. Then we can obtain a
grayscale CGR image. Word frequencies are displayed by the intensity
of each pixel.

For example, Fig. 2a is the CGR image of ’A/mallard/Nova Scotia/
00088/2010(H1N1)’ with words length =n 3 and Fig. 2b is the dis-
tribution of its gray values. Qualitative and quantitative expressions of
the order, regularity, structure, and complexity of DNA sequences are
obtained from the CGR image, which simultaneously displays both local
and global patterns of the sequence (Deschavanne et al., 1999).

After the CGR images are produced, the ENVs corresponding to the
CGR images are constructed.

2.2.2. Construction of the ENV on a two-dimensional image pixel matrix
A grayscale CGR image having ×2 2n n pixels, with 256 possible

intensities at each pixel (i.e., with 8 bits there are =2 2568 possible
values) determines a ×2 2n n matrix Q with entries

∈ = …q i j K( , ) {0, 1, 2, 3, ,255}, where i j( , ) represents the locations of
gray values in matrix.

Denote the cardinality of −q k( )1 by nk, where −q 1 is the inverse
mapping of q. Thus for ∈ = …k K n{0, 1, 2, ,255}, k is the total number
of k-valued pixels in the gray-scale image. Then = × = ∑ =N n2 2n n

k k0
255

is the total number of pixels. Furthermore, let
= = …−q k i j s n( ) {( , )| 1, 2, , }s k s k k

1
, , be the set of all k-valued pixel posi-

tions. In the example matrix (Fig. 2b), −q (215)1 consists of four pixels.
The value =k 215 shows up as following

=
i j i j i j i j{( , ), ( , ), ( , ), ( , )}
{(1, 6), (2, 5), (2, 8), (6, 7)}.
1,215 1,215 2,215 2,215 3,215 3,215 4,215 4,215

Thereafter, the ENV can be determined by forming a vector from the
following group of quantities.

1. The first group of components in the ENV are the 256 counts
…n n n( , , , )0 1 255 . They’re all non-negative integers bounded by the

size of the matrix. Some of them may be zero. In our example above,
=n 4215 .

2. The second group of components in the ENV are mean pixel loca-
tions → =μ μ μ( , )k k k1, 2, for intensity values = …k 0, 1, ,255.
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where ∈ −i j q k( , ) ( )s k s k, ,
1 , for all = …s n1, 2, , k.

Fig. 1. (a) The ×2 2 CGR image of A/mallard/Nova Scotia/00088/
2010(H1N1) with words length =n 1. The frequencies of one letter are re-
presented by the gray scale. (b) The ×4 4 CGR image of A/mallard/Nova
Scotia/00088/2010(H1N1) with words length =n 2. The frequencies of two
letters are represented by the gray scale.
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Let us look at our example, where
→ = = =+ + + + + +μ μ μ( , ) ( , ) ( , )215 1,215 2,215

1 2 2 6
4

6 5 8 7
4

11
4

26
4 . Define

→ ≔μ (0, 0)k if =n 0k . For all other k’s, these vector components are
positive rational numbers and not necessarily integers. The ENV has
components from →μ0 through →μ255.

3. The third group of parameters that we include in the ENV are the
normalized higher order central moments. There is a set of D’s for
each ∈k K . Let ≔D 0k,0,0 for ∈k K . For any other exponent pair
r s( , ), we define
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where ∈k K r, is an arbitrary non-negative integer, and
= …s n0, 1, 2, , k.

Plugging =r 0 and =s 0 into the Eq. (4) yields only normalized
counts n N·k which are already captured. Dk,1,0 and Dk,0,1 turn out to
be zero, a property of the location means μ k1, and μ k2, . Thus central
moments of combined degree 0 and 1 can be omitted.

cwith D’s ordered lexicographically starting at =k 0 with degree
two.

< …n μ μ D D D, , , , , ,0 1,0 2,0 0,0,2 0,1,1 0,2,0 (5)

…
…

…>

n μ μ D D D

n μ μ D D D

, , , , , ,

, , , , , ,

1 1,1 2,1 1,0,2 1,1,1 1,2,0

255 1,255 2,255 255,0,2 255,1,1 255,2,0

Theorem 1. Suppose the entries of a two-dimensional ×m n matrix are
elements of the finite set = …K {0, 1, 2, ,255} then the corresponding
ENV determines all the matrix entries.

From Theorem 1, we can see that the information in the ENV is
enough to theoretically determine the entire grayscale image matrix.
The proof of Theorem 1 is given in Appendix A.

Obviously, higher central moments converge to zero for a random
generated distribution matrix since for any given k,
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where = ∑ =N nk k0
255 .

It is clear that ⩾n 1k , otherwise, there is no any k-th grayscale
distributed in the matrix.

From the viewpoint of probability, suppose that the expected value
of any grayscale value is =n N/256k (uniform distribution) for an
image with N values from the given distribution matrix.

In our case, for the given distribution matrix in ×2 2n n, we naturally
get the total entries of the matrix as ≔ ×N 2 2n n. Therefore,

= =
+ + − + + − +

+ −

+ −
N

n
N

N N
lim

( )
lim

( /256)
lim 256 .

r s k
r s r s r s r s

r s

r s1 1

1

2 (7)

Clearly, this limit tends to 0 as +r s approaches nk. Specifically, in our
example, = −D 0.00073215,1,2 , i.e., higher normalized central moments
starting from 3rd moment will converge to 0. So for each CGR image, we
used the 1536-dimensional ENV listed in (8) in our experiments.

< …n n n n, , , , ,0 1 2 255 (8)
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2

2

Algorithm 1 below shows the whole procedure.

Algorithm 1. CGR-ENV method

Input: a DNA sequence
Output: the Extended Natural Vector
1: Given the fixed word length n
2: Generate the grayscale Chaos Game Representation (CGR) image of the DNA se-

quence
3: Calculate the Extended Natural Vector (ENV) of grayscle CGR image based on the

quantities of (8)

2.2.3. Distance measure
For two different genome sequences S1 and S2, we can describe them

with the ENV = …V p p p( , , , )Q1 1 2 and = …V q q q( , , , )Q2 1 2 in Q-dimen-
sional space, where = × =Q p256 6 1536, i and qi are listed in (8). The
Euclidean distance between V1 and V2 is used as the evolutionary dis-
tance between two corresponding genome sequences in the present
approach.

To evaluate our method, we choose three alignment-free methods

Fig. 2. (a) The ×8 8 CGR image of A/mallard/Nova Scotia/00088/2010(H1N1) with words length =k 3. (b) The distribution of gray values is listed in the table.
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including the NV method, the MSSIM combined-CGR method and the
One-dimensional CGR-combined Higher-Order Markov Model as com-
parisons.

2.3. Other methods

2.3.1. Natural Vector (NV) method
Let = …S s s sn1 2 be a DNA sequence of length n and

∈ = …s A C G T i n, , , , 1, 2, ,i . For ∈K A C G T{ , , , }, we define
→w A C G T(·): { , , , } {0, 1}K such that =w s( ) 1K i if =s Ki , otherwise

=w s( ) 0K i .

1. Let = ∑ =n w s( )K i
n

K i1 denote the number of nucleotide K in the DNA
sequence S.

2. Let = ∑ =μK i
n i w s

n1
· ( )K i

K
be the mean position of nucleotide K.

3. Let = ∑ =
−D K

i
n i μ w s

nn2 1
( ) ( )K K i

K

2
be a scaled variance of positions of nu-

cleotide K.

The 12-dimensional NV of a DNA sequence S is defined by
n n n n μ μ μ μ D D D D( , , , , , , , , , , , )A C G T A C G T

A C G T
2 2 2 2 .

2.3.2. Mean structural similarity (MSSIM) combined-CGR method
For a gray-scale image x, we define the average gray level αx as:

∑=
=

α
N

x1
x

i

N

i
1 (9)

where xi is the gray value of image x N, is the size of image.
The standard deviation βx is defined as

∑= ⎛
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− ⎞
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And for two gray-scale images x y, , the MSSIM index is as follows:

=
+ +

MSSIM x y
α α β β

α α β β
( , )

4
( )( )

x y x y

x y x y
2 2 2 2

(11)

2.3.3. One-dimensional CGR-combined Higher-Order Markov Model
The One-dimensional CGR can map a DNA sequence S of length m to

a numeric sequence N according to the following equation:

= + =−N N P N( )/4, 0.5i i i1 0 (12)

where Pi is 0, 1, 2, 3 for A, C, G and T respectively. Each n-string word is
mapped into a sub-interval of width −4 n, which means the number of Ni
in each interval is equal to the number of each k-string word in the DNA
sequence.

Then the higher order Markov model is used to characterize the
DNA sequence S. A Markov model of order n represented in the form of
a +4n 1 vector is denoted by Mn. Each element is the conditional possi-
bility of …b b b bn1 2 :

… = …
∑ …∈

P b b b b n b b b b
n b b b a

( | ) ( )
( )n

n

a A C G T n
1 2

1 2

{ , , , } 1 2 (13)

where …n b b b a( )n1 2 is the number of the words …b b b an1 2 in the DNA
sequence.

The distance between two vectors = … +V p p( , , )1 1 4n 1 and
= … +V q q( , , )2 1 4n 1 is

= −
∑

∑ ∑
D V V

p q

p q
( , ) 1

2
(1

( ) ( )
)i i

i i

1 2
2 1

2 2 1
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2.4. The model of phylogenetic tree

The distance matrices of our CGR-ENV method, the NV method and

the MSSIM method are calculated by using Matlab 2016a. The source
code of the One-dimensional CGR-combined Higher-Order Markov
model can be downloaded from (Yang et al., 2016). Based on the dis-
tance matrices, we use FastME which provides distance algorithms to
infer phylogenies (Lefort et al., 2015). According to balanced minimum
evolution, which is the very principle of Neighbor-Joining (NJ), FastME
first constructs an initial tree based on NJ. Then topological moves,
such as Nearest Neighbor Interchanges (NNIs) and Subtree Pruning and
Regrafting (SPR) are performed to improve the structure of the tree. At
last, we can get the Minimum Evolution (ME) phylogenetic tree.

For the MSA methods, we choose the ClustalW method to align the
DNA sequences on the default parameters first (Higgins and Sharp,
1988). Then the Maximum Likelihood (ML) phylogenetic trees
(Felsenstein, 1981) are constructed by Mega 7 (Kumar et al., 2016)
using the GTR+G+I model of evolution and performing 100 bootstrap
replicates (BP).

In addition, we apply the online tool EvolView to visualize and
annotate phylogenetic trees (He et al., 2016). All the computation en-
vironment is an Intel(R) Core (TM) i7-7560U CPU @2.40 GHz Win-
dows10 PC with 16.00 GB RAM.

3. Results

3.1. Influenza A viruses

Influenza A viruses are negative-sense, single-stranded, segmented
RNA viruses which are a constant threat to both human and animal
health because of their high mutation rate (Pei et al., 2019). They are
classified based on the type of two surface glycoproteins: hemagglutinin
(HA) and neuraminidase (NA) (Webster et al., 1992). The dataset used
in this work consists of 27 viruses of the most lethal subtypes of Influ-
enza A viruses, such as H1N1, H2N2, H5N1, H7N9, and H7N3.

According to the principle proposed by Sims (Sims et al., 2009), for
n-string ( >n 1), the n with maximum information is empirically de-
termined but may be closely approximated by =n Llog4 , where L is the
average length of sequences. So we considered the words’ length =n 7,
and then obtained a 128 × 128 pixel CGR grayscale image. The ME
phylogenetic trees of four methods (CGR-ENV method, NV method,
MSSIM method, ClustalW method and High-Order Markov model) are
shown in Fig. 3 and Figure S1-S4 respectively. From Fig. 3, we can see
that our method can classify these Influenza viruses correctly into five
groups, which are consistent with the biological taxonomy. In contrast,
the NV method divides H7N3 into two different branches (Figure S1).

Fig. 3. Phylogenetic tree of 27 influenza A viruses 5 clusters: H1N1 (purple),
H2N2 (green), H7N9 (blue), H7N3 (brown), H5N1 (red) by CGR-ENV method.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

S. Pei, et al. Molecular Phylogenetics and Evolution 141 (2019) 106633

4



As shown in Fig. 4, the Robinson-Foulds (RF) distance between the
phylogenetic trees generated by our method and the MSA method is
smaller than the distance between those generated by the NV method.
Although the phylogenetic tree constructed by the MSSIM method is
closer to that by the ClustalW method, the ’A/turkey/VA/505477-18/
2007 (H5N1)’ misplaces in the branch of H1N1 in the phylogenetic tree
constructed as shown in Figure S2 and S3.

3.2. Bacillus

Bacillus is a taxonomic class of bacteria that includes two orders,
Bacillales and Lactobacillales. It contains several well-known pathogens
such as Bacillus anthracis, which is the cause of anthrax. The data set in
this study consists of seven different families, i.e. Alicyclobacillaceae,
Bacillaceae, Staphylococcaceae, Listeriaceae, Leuconostocaceae,
Lactobacillaceae and Streptococcaceae, 36 complete genome sequences in
total. Fig. 5a shows the ME phylogenetic tree of these 36 Bacillus
genome sequences computed by the CGR-ENV method with =n 8. We
can see that these 36 Bacillus whole genome sequences are correctly
classified according to the different Genotypes, where each family is
marked with different colors. Meanwhile, the NV method, the MSSIM
method and the Higher-Order Markov model don’t perform well on this
data set, as shown in Fig. 5b, Fig. 5c and Figure S5, since the sequences

of Streptococcaceae are shuffled in the phylogenetic tree. The sequence
length of our data set is more than 2Mb, so based on the complexity of
the ClustalW method, it may take more than 100 h (Higgins et al.,
1994).

3.3. Conoidea mitochondrial genomes

Conoidea is a superfamily of marine mollusks and predatory sea
snails which contains about 340 genera and subgenera. One authority
considers that it includes approximately 4000 named living species
(Puillandre et al., 2008), such as the terebras, the turrids (also named as
auger shells or auger snails) and the cones. But the phylogeny of this
superfamily is poorly analyzed and several families are thought to be
polyphyletic. This dataset is used to aim to confirm the main deep
lineages reported within Conidea (Uribe et al., 2017) including three
genera within Conidae, three closely related families (Borsoniidae,
Mangeliidae, Clathurellidae) and three outgroups (Terebridae, Turridae
and Clavatulidae). As shown in Fig. 6, the result obtained by our method
is consistent with previous molecular phylogenies (Uribe et al., 2017),
in which the genera Profundiconus and Lilliconus is recovered as a sister
group to the remaining members of Conidae. Although the phylogenetic
tree obtained using the NV method is similar, three outgroups are not
divided into the outside branch (Fig. 6b). And the sequences of Conidae
family don’t cluster together in one branch (Fig. 6c-6d and Figure S6)
by the MSSIM method, the ClustalW method and the Higher-Order
Markov model.

3.4. Time statistics and algorithm complexity

Table 1 displays the times that the CGR-ENV method, the NV
method, the MSSIM method, the ClustalW method and the Higher-
Order Markov model to process the three datasets. We do all the cal-
culations on the same machine and empty the memory to avoid re-
dundancy and influence before each calculation.

From Table 1, we can conclude that the alignment-free methods are
much more time-efficient than the ClustalW method. If we denote L as
the length of genome sequence and k as the number of sequences, the
complexity of our proposed CGR-ENV method is O(kL2), while the
complexity of the ClustalW method is O(k L2 2). Because our method
consists of two steps: one is to convert the sequences to grayscale
images by CGR and the other is to identify the images by ENV, our

Fig. 4. The Robinson-Foulds distance of Influenza viruses and Conoidea species.

Fig. 5. The phylogenetic trees of 36 Bacillus genomes: Alicyclobacillaceae (gray), Bacillaceae (green), Staphylococcaceae (brown), Listeriaceae (purple),
Leuconostocaceae (yellow), Lactobacillaceae (blue) and Streptococcaceae (red). Red and purple stars represent bacteria which aren’t clustered with Streptococcaceae and
Listeriaceae respectively. (a) The CGR-ENV method. (b) The NV method. (c) The MSSIM-combined CGR method. The sequences of Streptococcaceae are not classified in
one branch of the phylogenetic tree by the NV method and the MSSIM method. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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method is slower than the NV method, whose complexity is O(kL). The
CGR image reflects the frequency of each n-string word, and the ENV
uses the distribution of gray values. In contrast, the NV method only

measures a single nucleotide’s number and position, and cannot capture
the information of n-string words >n( 1). The Higher-Order Markov
model needs to count the frequency of n-string words and (n-1)-string
words in each calculation, so it consumes more time.

3.5. Accuracy analysis and phylogenetic trees distance

Moreover, in order to evaluate the accuracy of our alignment-free
approach, we calculate the Robinson-Foulds (RF) distances between the
phylogenetic trees constructed by our CGR-ENV method, the NV
method, the MSSIM method and the Higher-Order Markov model and
the phylogenetic trees obtained by using the ClustalW method on
Influenza and Conoidea sequences datasets, respectively. The RF dis-
tance between two trees is the number of bipartitions that differ be-
tween the trees (Robinson and Foulds, 1981). The result is shown in
Fig. 4. For Influenza A virus dataset, the results show that the distance
between phylogenetic trees obtained using our CGR-ENV method and
those generated by the ClustalW method is smaller than the distances
between those generated by the NV method and the Higher-Order
Markov model. Although the phylogenetic tree of Influenza A viruses by
the MSSIM method is closer to that by the ClustalW method, there is a
sequence of H5N1 misplaced in H1N1 cluster, which is shown in Figure
S2 and S3. However, our method can divide the 29 Influenza A virus
sequences into 5 clusters correctly, which is more accurate than the
ClustalW method. So our method performs better than the NV method.
For the Conoidea dataset, the RF distance for our method is smaller than
for the NV method or the MSSIM method. The RF distance for the
Higher-Order Markov model is the smallest, but the sequences of Con-
idae family don’t cluster together in one branch. So our method is more
accurate than the other methods.

4. Discussion

This article proposes a new alignment-free method for genome
comparison based on image analysis. We first transform DNA sequences
to grayscale images by CGR. Next, we calculate the ENVs of the
grayscale images. In the Method section, we prove that ENV makes it
possible to recover the grayscale images of the DNA sequences, which
preserve more information from the raw data. The performance results
we obtain on the three datasets prove that the new proposed CGR-ENV
method can be applied to large genomes in order to produce accurate
results with high time-efficiency. It provides a new quantitative way of
analyzing evolutionary relationships among species in molecular bio-
logical study.

The MSA method is time consuming and requires a lot of memory. It
relies on a given score matrix, which is the penalty function of mis-
match and gap. The results are directly influenced by this score matrix
(Dong et al., 2018), so it is artificial. In order to speed up genome
comparison, computational and statistical methods to cluster the DNA
have been successfully applied in clustering DNA, such as NV method.
The NV method only measures a single nucleotide’s number and posi-
tion, but it cannot capture the information of n-string word >n( 1). The
Higher-Order Markov model only reflects the frequency of an n-string
word. But according to (Almeida et al., 2001), CGR images can reflect
the frequency of each n-string word, and the ENV also contains position
information. So from this perspective, our method performs better than
the NV method and the Higher-Order Markov model.

Because the ENVs are in one-to-one correspondence with the CGR
images, the ENV method is more reliable than other methods based on
CGR images. So our method reflects the similarity between sequences
better than the MSSIM method. Meanwhile, the ENV can be used not
only in sequence alignment but also in fields related to grayscale image
comparison.

Fig. 6. Phylogenetic trees of Conoidea superfamily. (a) The CGR-ENV method.
(b) The NV method. (c) The MSSIM method combined CGR. (d) The ClustalW
method. The sequences of Conidae family don’t cluster together in one branch
by the NV method, the MSSIM method and the ClustalW method.

Table 1
Time comparison of the three methods.

Influenza (seconds) Bacillus (seconds) Conoidea (seconds)

CGR-ENV method 0.63 165.72 0.92
NV method 0.02 10.00 0.07

MSSIM method 2.6 526.37 3.2
ClustalW method 70.91 – 892.74
Higher-Oreder
Markov model 60.06 2479.44 21.51
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