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A B S T R A C T

A novel method is proposed to detect the acceptor and donor splice sites using chaos game representation and
artificial neural network. In order to achieve high accuracy, inputs to the neural network, or feature vector, shall
reflect the true nature of the DNA segments. Therefore it is important to have one-to-one numerical re-
presentation, i.e. a feature vector should be able to represent the original data. Chaos game representation (CGR)
is an iterative mapping technique that assigns each nucleotide in a DNA sequence to a respective position on the
plane in a one-to-one manner. Using CGR, a DNA sequence can be mapped to a numerical sequence that reflects
the true nature of the original sequence. In this research, we propose to use CGR as feature input to a neural
network to detect splice sites on the NN269 dataset. Computational experiments indicate that this approach
gives good accuracy while being simpler than other methods in the literature, with only one neural network
component. The code and data for our method can be accessed from this link: https://github.com/thoang3/
portfolio/tree/SpliceSites_ANN_CGR.

1. Introduction

Determining DNA sequence is only a first step to learn how genetic
information works. Understanding the functionality, detecting the lo-
cations of genes, protein-coding regions, and regulatory sites are the
ultimate goals. Among these tasks, splice sites detection plays an im-
portant role, since identification of protein coding regions requires the
locations of all the exons and introns for each gene. In eukaryotes, a
gene comprises several exons and introns, where introns are the non-
coding segments which would be spliced out in the mRNA processing
[1]. The remaining segments of a gene are called exons, which encode
for proteins. The intron/exon boundaries are called splice sites, where
the intron to exon boundary is called acceptor splice site, and the exon
to intron boundary is called donor splice site.

Direct experimental analysis of biological sequences in the labora-
tories is expensive and time-consuming, given the complexity of the
data. Therefore, computational techniques like machine learning are
ideal solutions for the tasks like splice sites detection and protein-
coding regions detection. In the literature, Farber et al. [14] reported a
neural network for determining eukaryotic protein coding and non-
coding regions in a DNA sequence. Uberbacher and Mural [35] used a
multiple sensor-neural network approach to locate protein-coding re-
gions in human DNA sequences, where exons are identified by com-
bining information from numerous content statistics and these scores

are weighted using a neural network. Naito [28] used a hybrid neural
network consists of convolutional layers and bidirectional long short-
term memory layers for splice sites prediction in human. In many cases,
sequence's signals such as splice sites, start and stop codons are eval-
uated and weighted, and these features are used as input to feed in
neural networks.

An artificial neural network (ANN) is an interconnected group of
artificial neurons, which by imitating the way the brain works, can
represent complex input-output relationships [5]. ANNs can learn from
examples, and are especially helpful when an algorithmic solution
cannot be formulated, but plenty of training data is available. A mul-
tilayer neural network has the ability to capture and discover high-
order correlations of input data. As a result, neural networks have been
applied to various bioinformatics problems, such as sequence classifi-
cation, gene identification, and have gained more and more attention in
the last few decades.

Beside ANNs, several alternative methods have also been proposed.
Pashaei et al. [29] combined support vector machine (SVM) and
random forest (RF) in splice site detection of Human genome. Baten
et al. [4] proposed to combine a first order hidden Markov model
(HMM) and support vector machine for splice sites identification. As
generative models, HMMs make the Markovian assumption, in which
the current state depends only on a predefined number of previous
states, and transitions between these states are represented by a
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transition matrix. In the literature, high order HMMs are better in
capturing interactions among the nucleotides around splice sites [2,8].
Nevertheless, the transition matrix grows exponentially with respect to
the order of the HMMmodel. For a k-th order HMM, the total number of
parameters is 4k+1, where 4 is the size of the bases {A, C, G, T} [4].

Unlike HMMs, ANNs do not need to make the Markovian assump-
tion. Their rich internal state allows them to keep track of long-term
dependencies when modeling a sequence of symbols. In ANNs, hidden
states are distributed efficiently that enables them to store a lot of in-
formation about the past. Moreover, ANNs apply non-linearity activa-
tion functions to the outputs at every timestep, which allow them to
update the hidden states in more abstract ways [5].

In order to achieve high accuracy, inputs to a neural network, or
feature vector, should be able to represent the original data. Chaos
game representation (CGR) is able to give both numerical and graphical
representations for genomic sequences in a one-to-one manner [21]. By
the unique properties of CGR, subsequences of a gene or genome exhibit
the main characteristics of the whole sequence, thus it is useful in the
detection of special genome features, especially when parts of the
genome have not been available yet [12]. In many cases, certain pat-
terns can be observed in the representation of a DNA sequence.
Therefore, it would be beneficial to discover the essential properties of
the sequence, which in turn may lead to a meaningful conclusion that
cannot be detected from the symbolic sequences.

In this research, we devise a method for detecting splice sites using
chaos game representation and artificial neural network. We employ
chaos game representations of DNA sequences, and use CGR as feature
vector input to an ANN to classify splice sites of the NN269 data set
[30].

2. Materials and methods

2.1. Search by signal

There are two main classes of computational approaches to de-
tecting genes and the corresponding protein-coding regions in DNA
sequences: search by content and search by signal. Search by content
locates genes and coding regions directly by exploiting the statistical
difference of general properties between coding and non-coding re-
gions. Some common content measures are codon usage, nucleotide
composition, GC content, base occurrence periodicity, and hexamer
frequency [10]. Meanwhile, search by signal recognizes genes and
coding regions indirectly by finding some special signals that are as-
sociated with gene expression. A signal is a localized region of DNA
sequence that performs a particular function, such as binding an en-
zyme. Some common signals are translation initiation sites (start co-
dons), translation termination sites (stop codons), transcription initia-
tion sites (promoters), transcription termination sites (terminators),
enhancers, splice-junction sites (acceptors/donors) [10].

Search by signal approaches can be considered as a classification
problem in machine learning: given a fixed-length window on a DNA
sequence, determine if the window contains the signal of interest based
on some associated features of the signal. This is a supervised learning
problem, where the classifier is trained on a set of given positive and
negative examples.

In this research, we classify splice sites (acceptors/donors) and non
splice sites using neural networks. Approximately 99% of all introns
have a GT base pair as donor site, and an AG base pair as acceptor site
[9]. We focus on classifying these canonical splice sites (Fig. 1).
Therefore, the input data to the neural network would be windows
containing GT or AG at a fixed location of the sequence, and the output
would be 1 for true splice sites, and 0 for false splice sites.

2.2. Chaos game representation

Chaos game representation (CGR) is able to give both numerical and

graphical representations for genomic sequences [21]. For a DNA se-
quence s1s2…sn…, the corresponding CGR sequence (Xn)= (xn, yn) is
given by:
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where W is coordinates of the corners of the unit square A= (0,0);
C= (0,1); G= (1,1); T= (1,0) if sn is a, c, g, t respectively.

Geometrically speaking, given the unit square in the Euclidean
plane, the binary CGR vertices are assigned to the four nucleotides as
A= (0,0); C= (0,1); G= (1,1); T= (1,0). Starting with the center of
the unit square, (1

2
, 1

2
), the CGR position of each nucleotide of the DNA

sequence is calculated by moving a pointer to half the distance between
the previous point and the corner square of the current nucleotide.
Fig. 2 illustrates the CGR of a short sequence “gaattc” [19].

By definition, there is a one-to-one correspondence between the
subsequences counted from the start of a DNA sequence and points of
the CGR [19]. With this unique property of CGR, the subsequences of a
gene or genome exhibit the main characteristics of the whole sequence,
thus it is useful in the detection of special genome features, especially
when parts of the genome have not been available yet [12]. Fig. 3
shows the CGR of Human beta globin region on Chromosome 11
(HUMHBB) as an example of 2-D fractal pattern of CGR of a DNA se-
quence.

2.3. Dataset

NN269 dataset has been extracted from 269 human genes as a
benchmark splice site dataset [30]. It consists of 1324 true donor splice
sites, 4922 false donor splice sites, 1324 true acceptor sites, and 5552
false acceptor sites. Each donor splice site has 15 nucleotides with GT at

Fig. 1. Acceptor and donor splice sites.

Fig. 2. CGR of s1s2s3s4s5s6= “gaattc”.
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8th and 9th positions. The donor dataset is partitioned into a training
set containing 5256 splice sites (1116 true and 4140 false), and a test
set containing 990 splice sites (208 true and 782 false). Similarly, each
acceptor splice site has 90 nucleotides with AG at 69th and 70th po-
sitions. The acceptor dataset is partitioned into a training set containing
5788 splice sites (1116 true and 4672 false), and a test set containing
1089 splice sites (208 true and 881 false).

2.4. Machine learning techniques

Machine learning is a set of methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict future
data, or to perform other kinds of decision making under uncertainty
[27]. In other words, machine learning is concerned with the devel-
opment and application of computer algorithms that can “learn” and
improve with experience [6]. Its major focus is to automatically extract
information from data by computational and statistical methods. Ma-
chine learning has many applications: natural language processing,
stock market analysis, spam detection, image detection, recommender
systems, robotics, game playing, and medical diagnosis.

There are two main categories for machine learning methods: un-
supervised learning and supervised learning. Unsupervised learning methods
discover structure in data without using labels, such as clustering al-
gorithm. This approach is very useful when a labeled training set is not
available.

Supervised learning methods like classification are trained on labeled
data and used to make predictions about new unlabeled data. First, an
algorithm is developed and provided with a large collection of data,
with positive and negative labels. The data is split into training data and
testing data. The algorithm is trained using training data to maximize
the ability to classify labels. It then is tested on the testing data. If the
learning process is successful, then ideally all or most of the predicted

labels on testing data will be correct. Among supervised learning
methods, the artificial neural network is one of the most common and
effective methods.

2.4.1. Artificial neural network
An artificial neural network consists of simple processing units called

neurons [6]. Neurons are arranged into layers, so that a neural network
has one input layer, one output layer, with zero or more hidden layers
in between. Neurons from one layer are connected to the ones in the
adjacent layer with associated weights. Each neuron in the current layer
computes the weighted sum of the input values from all or part of
neurons in the previous layer. The weighted sum is then fed in a re-
spective function of the current neuron, called activation function (or
transfer function), to get an output value. This output value can then be
used as input to neurons in the next layer and so on. Several activation
functions are used in designing neural networks, such as: hyperbolic
tangent sigmoid function (tansig(x) = −

+

−
−

e e
e e

x x
x x ), logistic sigmoid function

(logsig(x) =
+ −e

1
1 x ), linear function (purelin(x)= x). It is remarkable

that artificial neural networks try to mimic biological neural networks
to some extent.

A neural network with no hidden layer is called a perceptron [32].
This is the simplest form of a neural network, which is suitable for
simple tasks such as linearly separable classification [17]. The weights
of the perceptron are learned using an error-correction rule named
Perceptron Convergence Theorem [26].

Multilayer perceptron (MLP) is a neural network with one or more
hidden layers (Fig. 4, [6]). MLPs are more generalized in the sense that
it can approximate any function to any level of accuracy, given enough
training data and hidden neurons [36]. In general, neural network is
motivated by the neurons of the brain. It allows “features” to be con-
structed at hidden levels.

Most of the MLP models use supervised learning algorithms. In the

Fig. 3. CGR of Human beta globin region on Chromosome 11 (HUMHBB).
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training phase, first the weights of the MLP are given some initial, often
random, values. At each round of training, called epoch, training ex-
amples are fed into the input nodes so that the algorithm can “learn”.
The weights are adjusted in each epoch according to some learning
rules in order to minimize the difference between the actual output and
the desired output. One of the most prominent learning rules is the
backpropagation algorithm (BP) [5]. In the backpropagation method,
error signals are computed recursively for each neuron starting at the
output layer, and propagated backward layer by layer through the
network to derive the errors of the hidden neurons. Weights are then
adjusted accordingly to decrease the difference between the target
output and actual output [37]. If the accuracy of the method on testing
data satisfies the need of the classification task, the MLP model is saved
with all of its parameters, activation functions, and weights; and is
ready to be applied in a predictive model to future data. On the other
hand, if the accuracy of the method does not satisfy the requirement,
then factors like activation functions, feature extraction methods,
number of hidden layers, and number of neurons in each layer should
be adjusted so that the MLP could be retrained.

2.5. Neural network design

In the literature [7,14,18], it is common for DNA base symbol to be
encoded into a 4-bit string as follows:

→ → → →A 1000 T 0001 G 0010 C 0100

With this encoding, the number of input neurons would be 4 times
larger than the number of nucleotides in the DNA segment input.
Consequently, the number of weights that needed to be trained in the
neural network will increase. For example, if the DNA segment input
has length 50 nucleotides, then the number of input neurons would be
200. In this work, we employ the advantage of Chaos Game re-
presentation, where each nucleotide can be represented by a point in
the Euclidean plane, or a pair of real numbers. As a result, the number
of input neurons would be only 2 times larger than the number of nu-
cleotides in the DNA segment input.

Chaos game representation is used as features inputs for an artificial
neural network. Two separate ANNs are constructed, one is to distin-
guish donor sites from non-donor sites, and the other is to distinguish
acceptor sites from non-acceptor sites. The method is trained using
NN269 data. We design two 1-hidden layer neural networks M x L x 1 as
follows, where M represents the input layer, L represents the hidden
layer, and there is 1 neuron in the output layer:

Input: A set of n DNA segments of a fixed length (15 for donor, 90
for acceptor).

Output: Splice site classification, with 1 being True splice site, and 0
being False splice site.

Steps:

1. Convert DNA sequence into numeric sequence using CGR.
2. Use CGR coordinates as feature inputs.
3. Feed in the neural network, with M=15×2=30 for donor neural

network, and with M=90×2=180 for acceptor neural network.

The size of the hidden layer L is tested during the training process.
The networks are trained using backpropagation such that the output
neuron attains a value near 1 if the input contains a splice site in the
segment, and a value near 0 otherwise. The neural networks in this
research are implemented using MATLAB Neural Network Toolbox on a
PC with the configuration of Intel Core i7 CPU 2.40GHz and 8Gb RAM.

2.6. Evaluation methods

The prediction accuracy is measured in terms of area under the
Receiver Operator Characteristic Curve [25], or auROC, and area under
the Precision Recall Curve [11], or auPRC. The overall classification
accuracy is not a good measure in this case due to imbalanced class size
(the false, or negative, class is 4 times larger than the true, or positive,
class). Both ROC and PRC measures are based on TP (true positives), FP
(false positives), TN (true negatives), and FN (false negatives) (Fig. 5).
The ROC depicts the relative trade-offs between true positives and false
positives, which can compare the performance of the classifier across
the entire range of class distributions [15]. Specifically, the ROC plots
the true positive rate (TPR =

+
TP

TP FN
) as a function of the false positive

rate (FPR =
+
FP

FP TN
). If auROC is close to 0.5 then the performance is

close to random, else if auROC is close to 1 then the performance is
close to being perfect. However, if the data is too imbalanced, then
auPRC is a better measure, as auROC is independent of class size ratios
[34]. The PRC measures the fraction of negatives misclassified as po-
sitives, and so plots the precision (

+
TP

TP FP
) as a function of recall (TPR or

sensitivity). See Fig. 6 for an illustration of auROC and auPRC.

3. Results

The proposed method is tested on hidden layer size from 5 to 60.
Larger layer size does not give better results on performance accuracy.
Different activation functions have been tried for both activation
functions from the input layer to the hidden layer, and from the hidden
layer to the output layer. The functions that provide the best results are
logsig and tansig (Section 2.4.1).

On donor splice site neural network, the best performance is 97.82
for auROC, and 91.57 for auPRC. This result is achieved for activation
functions tansig and tansig, with 30 being the size of the hidden layer.
On acceptor splice site neural network, the best performance is 97.12
for auROC, and 89.47 for auPRC. This result is achieved for activation
functions logsig and tansig, with 20 being the size of the hidden layer.

Fig. 4. Multilayer perceptron.

Fig. 5. Confusion matrix. True Positive Rate (or Recall) TPR =
+
TP

TP FN
. False

Positive Rate (or Fall-out) FPR =
+
FP

FP TN
. Positive Predictive Value (or

Precision) PPV =
+

TP
TP FP

.
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The result is comparable to other research on NN269 benchmark da-
taset [4,22,23,24,34].

4. Discussion

Several computational methods have been proposed for the pre-
diction of splice sites and proteins-coding regions, most of them are
either probabilistic approach or machine learning based approach, or a
combination of both [24]. In Huang et al. [20], the difference in the di-
nucleotide frequencies between true and false splice sites are used as
features for the prediction of splice sites using SVM with RBF kernel.
Baten et al. [4] generated features based on first order Markov model.
These features are then used as input in SVM for splice site prediction
using a polynomial kernel. Positional, compositional and dependency
features were extracted for the true and false splice sites and were used
as input in SVM classifiers [23]. EFFECT uses a two-stage process,
where a set of candidate sequence-based features are constructed in the
first stage and then the most effective subset is selected for the classi-
fication in the second stage [22]. Both stages make heavy use of evo-
lutionary algorithms to efficiently guide the search towards informative
features capable of discriminating true and false splice site sequences
[22]. Snyder and Stormo [33] uses dynamic programming and neural
networks for protein coding regions identification. Their program
scores all subintervals in a sequence for content statistics indicative of
introns and exons, and for sites that identify their boundaries. This
information is weighted by a neural network combined with dynamic
programming to get the optimal solution. In general, signal sensors are
not sufficient to determine gene structure, thus it is necessary to com-
bine them with content sensors to obtain satisfactory gene and protein-
coding region prediction [31].

5. Conclusion

With the advancement of DNA sequencing, determining the exact
sequence of bases in a DNA molecule is no longer a big challenge. As a
result, databases of DNA and other biological sequences have been
expanding exponentially, leading to the booming of the inter-
disciplinary field of bioinformatics [3,13,16].

Identification of protein coding regions and other regulatory regions
in eukaryotic genomic sequences plays an important role in gene

prediction and genome annotation. Even though being reliable, pre-
dicting protein coding regions via experimental methods is quite diffi-
cult to do on a large scale. Given the enormous amount of available
training data, machine learning techniques have become essential in
gene prediction and protein coding regions.

To understand the genome of an organism, it is also necessary to
understand the mechanisms that regulate the expression of its genes. A
major problem in gene prediction and genome annotation is to identify
protein coding regions and splice sites in genes. The complex nature of
genes makes it impractical to manually design algorithms to detect
coding regions, as well as splice sites. Machine learning methods like
neural networks provide a promising approach to this issue.

Feature generation and selection play an essential role in machine
learning method's classification performance. The proposed method
uses chaos game representation of DNA sequence as feature vector
input to neural network. The novelty of the method is that, with the use
of the one-to-one chaos game representation, feature inputs to the
neural network indeed reflect the true nature of the original DNA
segments. As a result, our method gives comparable predictive power to
other methods in literature while using only one neural network com-
ponent. It therefore can be used as a complementary method to the
existing ones for the prediction of splice sites. Another search by con-
tent component for locating protein coding regions will be integrated
into the neural network component in order to improve the method's
accuracy. The method described may also be used for predicting other
genomic elements in future research.
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