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Abstract: Advances in sequencing technology have made large amounts of biological data available.
Evolutionary analysis of data such as DNA sequences is highly important in biological studies. As
alignment methods are ineffective for analyzing large-scale data due to their inherently high costs,
alignment-free methods have recently attracted attention in the field of bioinformatics. In this paper,
we introduce a new positional correlation natural vector (PCNV) method that involves converting
a DNA sequence into an 18-dimensional numerical feature vector. Using frequency and position
correlation to represent the nucleotide distribution, it is possible to obtain a PCNV for a DNA
sequence. This new numerical vector design uses six suitable features to characterize the correlation
among nucleotide positions in sequences. PCNV is also very easy to compute and can be used for
rapid genome comparison. To test our novel method, we performed phylogenetic analysis with
several viral and bacterial genome datasets with PCNV. For comparison, an alignment-based method,
Bayesian inference, and two alignment-free methods, feature frequency profile and natural vector,
were performed using the same datasets. We found that the PCNV technique is fast and accurate
when used for phylogenetic analysis and classification of viruses and bacteria.
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1. Introduction

Predicting the structures, functions, and evolutionary relationships of genes is a fundamental and
vital aspect of modern biological research. Therefore, the comparison of genetic sequences is a pivotal
step in many protocols and numerous approaches have been employed for this task. Most researchers
use conventional alignment-based techniques for sequence comparison; these techniques involve
sequence alignment based on selected scoring systems. The algorithms used are generally precise and
highlight correlations among sequences. Several sequence alignment methods have been implemented via
software packages, such as MrBayes [1]. However, alignment-based methods have disadvantages: they
are slow and require a large amount of memory. Furthermore, based on previous studies, multiple
sequence alignment (MSA)-based methods cannot be extended with using the huge datasets currently
available [2]. Therefore, alignment-free (AF) methods may be used to overcome these problems [3].
Additionally, AF sequence comparison is drawing great interest driven by data-rich applications [4].
A notable common feature of AF approaches is the analysis of special numerical properties of the sequences
being compared. High computational efficiency is observed when such techniques are applied to gene and
protein data. A series of AF methods for sequence comparison has been developed. AF approaches
include iterated-function systems [5], information theory [6], Fourier transformations [7], sequence
representations based on chaos theory [8], and moments of the positions of the nucleotides [9,10].
The most widely used AF method is the k-mer-based method and has been published in many
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excellent journals [11–19]. This method involves the analysis of the frequency of strings of specific
length k within sequences [20]. Several k-mer-based methods have been developed and applied for
the phylogenetic analysis of bacteria and viruses. A notable example is feature frequency profiles
(FFP) [21].

Although k-mer-based methods have been applied widely, they do not include positional correlations
of nucleotides. However, it is significant to investigate the location for gene sequence comparison. Therefore,
positional correlation is important for computational and analytical approaches. Recently, two methods
based on moments of the positions of the nucleotides, namely natural vector (NV) [9] and multiple
encoding vector (MEV) method [10], were proposed. They were successfully used for the classification
and phylogenetic analysis of sequences. The NV method uses frequency, average site, and variance of
site to compare sequences. Based on NV, the MEV method can add information about the chemical and
physical properties of a nucleotide. The distribution of four bases is considered independently in these
two methods. However, it has been reported that the four bases are correlated; in fact, the correlation
of nucleotides is based on the widely applied hidden Markov model (HMM) [22]. In the present study,
we propose a novel 18-dimensional numerical feature vector method to characterize DNA sequences.
The method is named positional correlation natural vector (PCNV) to characterize DNA sequences.
Our vector contains the frequency, average, and variance the locations of four bases. Furthermore,
we added the position correlation of each pair of the four bases as important features. We tested the
PCNV method using several datasets and compared it with the alignment-based Bayesian inference
approach, which can be applied using MrBayes software [1], as well as two AF methods, FFP and NV.

2. Results

To demonstrate that PCNV is effective, we applied it to different datasets: the genomes of hepatitis
C virus (HCV), hepatitis B virus (HBV), human papillomavirus (HPV), dengue virus (DENV), and
59 bacterial species. The length of the sequences studied ranged from thousands to millions of base
pairs. For each dataset, the PCNVs of the sequences were computed using MATLAB R2016a and
phylogenetic trees were reconstructed using MEGA 7. Finally, we evaluated the performance of our
methods based on sensitivity, specificity, and accuracy. Computations were performed on a PC with
Intel Core i7-6560U CPU @ 2.20 GHz and 8 GB RAM.

2.1. Phylogeny of HCV

Using our PCNV method, 82 HCVs are correctly clustered into six clades, as shown in
Figure 1a [23]. Using the FFP method, the value of k for analysis of these viruses is 6. As shown in
Figure 1b, some Genotype 6 and 1 HCVs are clustered together incorrectly in the FFP phylogenetic
tree. Furthermore, a sequence in Genotype 4 is assigned to Genotype 6. PCNV produces better results for
this dataset than FFP. The Bayesian inference method was also utilized for the evolutionary analysis of
this dataset. Figure 1c shows that this method divides Genotype 3, shown in violet, into two groups.

2.2. Phylogeny of HBV

Using PCNV, 152 HBVs are correctly divided into eight lineages, as shown in Figure 2a.
The phylogenetic tree created using the FFP method is shown in Figure 2b. According to the HBV
database, “AJ627224” belongs to Genotype D. However, according to the FFP method, it is related
to Genotype B. The FFP method also cluster “FJ356715” and “FJ356716”, belonging to Genotype H,
to Genotypes F and G, respectively. Therefore, for this dataset, our PCNV method is superior to
FFP. The phylogenetic tree created using the traditional NV method is shown in Figure 2c. However,
in this tree, three Genotype C viruses are classified into other groups. The phylogenetic tree created
using Bayesian inference is shown in Figure 2d. It shows that “AB371164” belongs to Genotype H, as
separated from Genotype H. This is an indication that the positional correlation between nucleotides
can improve the accuracy of classification.
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(c)

Figure 1. (a) The Neighbor-Joining phylogenetic tree of 82 HCV genome sequences based on PCNV method.
(b) The Neighbor-Joining phylogenetic tree of 82 HCV genome sequences based on FFP method (k = 6).
(c) The phylogenetic tree of 82 HCV genome sequences based on Bayesian inference method.

(a)

Figure 2. Cont.
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(d)

Figure 2. (a) The Neighbor-Joining phylogenetic tree of 152 HBV genome sequences based on PCNV
method. (b) The Neighbor-Joining phylogenetic tree of 152 HBV genome sequences based on FFP
method (k = 5). (c) The Neighbor-Joining phylogenetic tree of 152 HBV genome sequences based on NV
method. (d) The phylogenetic tree of 152 HBV genome sequences based on Bayesian inference method.

2.3. Phylogeny of DENV

As shown in Figure 3a, the phylogenetic tree constructed using PCNV classifies all viruses into the
correct categories. However, as shown in Figure 3b, the NV method divides Genotype 1 into two clusters.
Therefore, once again, it is clear that positional correlation between nucleotides can effectively improve the
NV method.

2.4. Phylogeny of HPV

We found that PCNV categorizes the dataset into the correct biological groups in 0.78 s (Figure 4a;
Table 1); this is much faster than the FFP method, which takes 35 s (Table 1). The Bayesian inference
method divide Genotype 11 into two parts, as highlighted in cyan in Figure 4b.

Table 1. Running time for PCNV, Bayesian inference, FFP, AFKS, and Muscle methods. “∼”, unable to
compute on laptop.

Method HCV HBV Dengue HPV Bacteria
(82) (152) (330) (326) (59)

PCNV 0.33s 0.27s 0.66s 0.78s 53.71s
Bayesian 1097s 263s 217,353s 217,512s ∼
inference

FFP 11.11s 0.38s 49.40s 35.00s larger than
(k = 6) (k = 5) (k = 6) (k = 6) 1 day (k = 11)

AFKS 70.21s 29.62s 429.87s 413.79s larger than
(k = 5) (k = 4) (k = 5) (k = 5) 4 day (k = 9)

Muscle 753s 155s 3740s 4002s ∼
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Figure 3. (a) The Neighbor-Joining phylogenetic tree of 330 dengue viruses genome sequences based on
PCNV method. (b) The Neighbor-Joining phylogenetic tree of 330 dengue viruses genome sequences based
on NV method.

2.5. Phylogeny of Bacteria

The dataset consisted of 14 families, as shown in Figure 5a,b, of bacterial species with long genomes
that ranged from 0.8 to 5 million bp. Using the PCNV method, the phylogenetic tree of these organisms
was reconstructed. As shown in Figure 5a, the 59 bacterial species are divided into 14 families that are
separated from each other. The 11-mer FFP method mixed these families (Figure 5b). Additionally, the
run time for FFP is more than a day, which is far longer than the time required for PCNV. Bayesian
inference takes even longer, to the extent that it is not possible to complete the analysis using this
method in Muscle on a server equipped with an Intel Xeon E5-2667 v3 Processor and Linux Home
Premium with 384 GB RAM (Table 1).
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(a)

(b)

Figure 4. (a) The Neighbor-Joining phylogenetic tree of 326 HPV genome sequences based on PCNV
method. (b) The phylogenetic tree of 326 HPV genome sequences based on Bayesian inference method.
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(b)

Figure 5. (a) The Neighbor-Joining phylogenetic tree of 59 bacteria genome sequences based on PCNV
method. (b) The Neighbor-Joining phylogenetic tree of 59 bacteria genome sequences based on FFP
method (k = 11).

2.6. Classification

Besides evolutionary analysis, PCNV can also be used for classification. Both FFP and
Alignment-Free-Kmer-Statistics (AFKS) [16], based on the k-mer approach, can also be used for
classification. However, the question of how to choose the value of k is not easily answered. In the
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present paper, for the FFP method, we set the k value as the minimum integer of log4(N), i.e.,
k = f loor(log4(N)), where N is the maximum length of the sequences studied [21]. For the AFKS
method, we used k = f loor(log4(

1
n ∑i∈S len(i))), where n is the number of sequences in the set S [16].

In the PCNV method, after computing the distance matrix using each approach, the one-nearest
neighbor (1-NN) [24] method was used for predictions. The sensitivity, specificity, and accuracy of
the predictions made using each method are shown in Table 2. It is clear that PCNV is superior to the
other two algorithms in this study.

Table 2. Sensitivity (Sens), Specificity (Spec), and Accuracy (Acc) measures of classification are reported
for the four virus datasets. For each dataset, the Ave. line displays average values for each measure.

Nu- Sens Sens Sens Spec Spec Spec Acc Acc Acc
Type mber PCNV FFP AFKS PCNV FFP AFKS PCNV FFP AFKS

(%) (%) (%) (%) (%) (%) (%) (%) (%)

HCV

type1 16 100 62.5 50.0 100 87.9 86.4 100 62.5 50.0
type2 18 100 55.6 94.4 100 93.8 98.4 100 55.6 94.4

(82)

type3 20 100 80.0 90.0 100 93.5 96.8 100 80.0 90.0
type4 12 100 50.0 33.3 100 97.1 90.0 100 50.0 33.3
type5 4 100 50.0 75.0 100 96.2 97.4 100 50.0 75.0
type6 12 100 50.0 83.3 100 91.4 98.6 100 50.0 83.3
Ave. 100 58.0 71.0 100 93.3 94.6 100 58.0 71.0

HBV

A 20 100 100 100 100 100 99.2 100 100 100
B 15 100 100 40.0 100 100 96.4 100 100 40.0

(152)

C 20 100 100 70.0 100 100 96.2 100 100 70.0
D 13 100 100 76.9 100 100 97.1 100 100 76.9
E 30 100 100 90.0 100 100 97.5 100 100 90.0
F 22 100 100 72.7 100 100 93.8 100 100 72.7
G 17 100 100 94.1 100 100 99.3 100 100 94.1
H 15 100 100 80.0 100 100 97.1 100 100 80.0

Ave. 100 100 78.0 100 100 97.1 100 100 78.0

Dengue

type1 72 100 100 76.4 100 100 93.4 100 100 76.4
type2 75 100 100 73.3 100 100 93.3 100 100 73.3

(330)
type3 83 100 100 78.3 100 100 92.7 100 100 78.3
type4 100 100 100 87.0 100 100 93.0 100 100 87.0
Ave. 100 100 78.8 100 100 93.1 100 100 78.8

HPV

6 24 100 100 75.0 100 100 97.7 100 100 75.0
11 17 100 100 100 100 100 99.7 100 100 100

(326)

16 99 100 100 92.9 100 100 96.5 100 100 92.9
18 19 100 100 94.7 100 100 100 100 100 94.7
31 23 100 100 82.6 100 100 99.0 100 100 82.6
33 22 100 100 86.4 100 100 99.7 100 100 86.4
35 26 100 100 88.5 100 100 99.0 100 100 88.5
45 12 100 100 83.3 100 100 99.7 100 100 83.3
52 22 100 100 81.8 100 100 98.4 100 100 81.8
53 14 100 100 85.7 100 100 98.7 100 100 85.7
58 37 100 100 94.6 100 100 99.7 100 100 94.6
66 11 100 100 90.9 100 100 99.7 100 100 90.9

Ave. 100 100 88.0 100 100 99.0 100 100 88.0

3. Discussion

In the present paper, we propose a novel 18-dimensional vector method for genome comparison.
This PCNV method can be used to successfully define the distribution of nucleotides based on
information on the frequency and position of DNA sequences. The correlation of position between two
different bases is used in addition to the average position and variance of position of each base. As a result,
a high-dimensional DNA genome sequence is reduced to an 18-dimensional numerical vector. Correlations
in base distribution play a key role in sequence comparison. Usually, conventional alignment-based
methods produce reasonable phylogenetic trees and are therefore widely applied. However, when the
dataset volume is large or the sequences analyzed are very long, these methods become ineffective.
The phylogenetic analysis results on several distinct datasets show that PCNV can quickly and
accurately compare massive datasets of long DNA sequences. We also compared our method with
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three methods: the popular alignment-based Bayesian inference method, the alignment-free FFP, and
Natural Vector methods. The results show that our method can construct more accurate evolutionary
relationships among sequences.

To demonstrate the computational advantage of PCNV, we compared our running time
constructing phylogenetic trees with FFP, AFKS, Bayesian inference, and Muscle. Compared with the
two extensively applied alignment-free methods FFP and AFKS, the running time of PCNV is smallest
for all datasets and even takes less than 1 s, except on the bacteria dataset. For bacteria dataset, PCNV
is extremely fast and only takes about 53 s, while FFP and AFKS take more than one day. Compared
with the two alignment-based methods Bayesian inference and Muscle, PCNV takes much less time for
all datasets. For bacteria dataset, Bayesian inference and Muscle cannot obtain phylogeny tree within
several days.

With long DNA sequences, particularly bacterial genomes, the Bayesian inference method was
much slower than the PCNV approach, sometimes to the extent that it simply did not work, the main
reason being that Bayesian inference method is based on alignment method, such as Muscle (Table 1).
Even alignment-free methods such as FFP and AFKS were slow in comparison with PCNV, especially
when the analyzed sequences were longer, as shown in Table 1.

Furthermore, the MEV was used for comparison. Although both PCNV and MEDV studies aim
to solve the problem of genetic sequence comparison, they have significant differences in the features
extracted from the sequences. MEV method did not consider the position correlation feature which is
an important source of information for genetic sequences. The novelty of our new method is that it
designs six suitable features to characterize the correlation among nucleotide position in sequences.
The second difference is that our new method does not categorize four types of nucleotides into three
groups according to their chemical properties. The third difference is that our new method applies
the popular neighbor-joining algorithm to construct phylogenetic trees, while the old study used the
UPGMA algorithm which may produce misleading trees.

To show the advantages of our new method (PCNV), MEV and PCNV were compared using all
datasets studied used in for the present study. The Neighbor-Joining (NJ) algorithm is used in tree
construction of both methods. The NJ trees built by the MEV method are shown in Figures S1–S5. As
shown in Figure S1, there are six types of HCV dataset. Using the MEV method, the type 6 marked
in pink is divided into two parts. In the NJ tree of the HBV dataset shown in Figure S2, the virus
KX765843 belonging to clade C (marked in black) is incorrectly assigned to clade F (marked in red).
Similarly, as shown in Figure S3, types 1 (marked in blue) and 3 (marked in navy) of dengue are mixed
together. In Figure S4, two viruses from type 35 group (marked in gray) are categorized into other
groups.

Horizontal (or lateral) gene transfer (HGT) is a common phenomenon in bacteria. Due to the problem
of HGT, Koski and Golding [25] even stated that genes appearing to be the most similar based on
BLAST hits are often not the closest relatives each other phylogenetically. It means when there are
HGT, if alignment is used, there may be mistakes. For example, given two distantly related bacteria
that have exchanged a gene, a phylogenetic tree including those species will show them to be closely
related because that gene is the same, even though most other genes are dissimilar. For bacteria, due
to the extensively existing HGT, the phylogenetic tree based on alignment may be misleading. To
get correct phylogenetic trees of bacteria, one main method is the 16s rRNA-based method, which
constructs trees according to the alignment of 16s ribosomal RNA, i.e., 16s rRNA. The 16s rRNA gene
tends to be conserved among bacteria with close phylogenetic distances, and thus is often not affected
by HGT, but has enough variable differences. However, the method of 16sRNA loses some information
in the whole genome. Our PCNV method uses the whole genome sequence and needs no sequence
alignment, thus has the potential to be not affected by the HGT and obtain the correct phylogenetic
relationship among bacteria.

To show that our method may be not affected by HGT, we used another dataset of eight Yersinia
genomes in a previous study [4]. The eight Yersinia genomes are too similar in sequence for classical
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phylogenetic inference, but share gene segments. The dataset includes two Yersinia pseudotuberculosis
and six Yersinia pestis complete genomes. Using PCNV, we get the neighbor-joining tree of the eight
bacteria shown in Figure 6. For the figure, we see that the two Yersinia pseudotuberculosis isolates form
sisters and are separate from the six Yersinia pestis genomes.

Genetic distance is a measure of the genetic divergence between species or between populations
within a species, whether the distance measures time from common ancestor or degree of differentiation.
Several genetic distances have been proposed based on different evolutionary models. The genetic
distance can only be applied to alignment results. A commonly used measure of genetic distance is the
fixation index, which varies between 0 and 1. Our PCNA is an alignment-free approach; we measure the
distance between species using Euclidean distance and we do not assume any evolutionary model.
This distance is positively correlated with their genetic distance, since it can successfully measure the
divergence between two species as well. In the neighbor-joining trees constructed by PCNV, sum of
the length of the branches traversed from one species to another is equal to their distance and thus
positively correlated with their genetic distance. Due to difference in mutation rates for species, for two
given datasets, the average internal genetic distance in each dataset may be different enough. In this
case, the average distance obtained with PCNV for two datasets may have a big difference, which
leads to very different scales in the two derived phylogenetic trees. For the same dataset, different
alignment-free method may produce different average distance and thus produce different scales of
phylogenetic trees.

Our new method has several limitations, for example we cannot work out the time of evolution. These
limitations will need to be studied in the future.

Figure 6. The Neighbor-Joining phylogenetic tree of eight Yersinia genomes based on PCNV method.
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4. Materials and Methods

4.1. Dataset

Five datasets were used to test and verify the new technique.

4.1.1. HCV

Hepatitis C is a liver infection caused by HCV. The World Health Organization (WHO) estimates
that HCV infects 3% of the world’s population [26]. Because this virus causes few symptoms, diagnosis
is difficult in many cases [27]. In the present study, we acquired 82 complete HCV genomes from the
Virus Pathogen Database and Analysis Resource (ViPR) [23]. This dataset has a genomic length of
8957–9666 nucleotides. The NCBI accession numbers are shown in Table S1.

4.1.2. HBV

HBV is a hepatotropic virus that can establish a persistent and chronic infection in humans
through immune anergy. It exhibits formidable morbidity and mortality in humans and currently
infects 3.5% of the global population [28,29]. HBV is genetically diverse and comprises 10 different
genotypes, designated A–J [29,30]. Additional subgenotypes exist within Genotypes A–D and F [31].
The HBV genotypes differ in their geographic distributions. Identifying HBV genotypes quickly and
accurately is very important for clinical diagnosis. In the present work, 152 complete HBV genomes
including eight genotypes (A–H), were downloaded from the Hepatitis B Virus Database (HBVdb) [30].
The NCBI accession numbers are shown in Table S2.

4.1.3. DENV

DENVs are mosquito-borne aviviruses that have plagued humans for centuries [32]. Statistics
show that DENVs infect up to 390 million people worldwide each year; 25% of these people suffer
from clinical disease. With four antigenically distinct but immunologically cross-reactive serotypes
(DENV-1–4), dengue has one of the most complex transmission processes of all infectious diseases
in human populations [33]. Therefore, it is important to distinguish which group particular DENVs
belong to. In the present study, 330 dengue viruses were used to demonstrate the effectiveness of the
method. The NCBI accession numbers are shown in Table S3.

4.1.4. HPV

HPV is a circular double-stranded DNA virus that causes a variety of proliferative epithelial lesions
at specific anatomical sites. It is also the most common sexually transmitted virus. There are many
different types of HPV, several of which cause health problems such as genital warts and cancer [34].
For example, the low-risk HPV Types 6 and 11 can cause genital warts or benign cell changes, while
the high-risk HPV Types 16 and 18 cause about 70% of cervical cancers [35]. Therefore, identification
of HPV genotypes in infected patients is particularly important. In the present work, 326 complete
genomes of 12 HPV strands (6, 11, 16, 18, 31,33, 35, 45, 52, 53, 58, and 66) were studied. All viral
genomes in this HPV dataset are publicly available at GenBank or NCBI databases. The NCBI accession
numbers are shown in Table S4.

4.1.5. Bacteria

There is a biomass of bacteria, the main representatives of the prokaryotes, on Earth. Researchers
usually investigate evolutionary relationships among bacteria by building phylogenetic trees. Owing to the
large genome size (>1 million bp) of bacteria, it is impossible to reconstruct a bacterial phylogenetic
tree in a reasonable amount of time using traditional multiple sequence alignment methods with
current computational technology. We used 59 bacterial species to test our method (Table 3). The NCBI
accession numbers are shown in Table S5.
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Table 3. Summary of the datasets HCV, HBV, Dengue, HPV, and Bacteria. The length distribution of each
dataset validates that PCNV can work with long sequences.

Dataset Number Min Median Mean Max
(bp) (bp) (bp) (bp)

HCV 82 8957 9442 9427 9666
HBV 152 10161 10669 10606 10780

Dengue 330 10,161 10,669 10,606 10,780
HPV 326 7814 7,905 7895 8051

Bacteria 59 846,214 4,016,947 3,610,938 5,966,919

4.2. Positional Distribution

Let S = s1, s2, ..., sN be a DNA sequence of length N. Denote nα as the number of nucleotides
α in the sequence, where α ∈ {A, C, G, T} . Here, pαj is the position of the nucleotide α at the jth
appearance,j = 1, 2, · · · , nα, and pα0 = 0. Obviously, pαj < pαj+1(0 ≤ j < nα). For example, given
the sequence “ACTGGCAAT”, nA = 3, pA1 = 1, pA2 = 7, pA3 = 8. We first define the positional
distribution of α (Uα(i), i = 1, 2, · · · , N) as follows:

Uα(i) =


pαj

pαj+1−pαj
; pαj ≤ i < pαj+1 ; j = 0, 1, · · · , nα − 1.

pαnα
N−(pαnα−1) ; pαnα

≤ i ≤ N.
(1)

The positional distribution of α(α ∈ A, C, G, T) is

0, 0, · · · , 0︸ ︷︷ ︸
pα1−1

,
pα1

pα2 − pα1

,
pα1

pα2 − pα1

, · · · ,
pα1

pα2 − pα1︸ ︷︷ ︸
pα2−pα1

, · · · ,

pαnα−1

pαnα
− pαnα−1

,
pαnα−1

pαnα
− pαnα−1

, · · · ,
pαnα−1

pαnα
− pαnα−1︸ ︷︷ ︸

pαnα−pαnα−1

,

pαnα

N − (pαnα
− 1)

,
pαnα

N − (pαnα
− 1)

, · · · ,
pαnα

N − (pαnα
− 1)︸ ︷︷ ︸

N−(pαnα−1)

(2)

Example: Given the sequence “ACTGGCAAT”, the positional distribution is as shown in Table 4.
Here, we take α = C as an example to show the details of the calculation process. According to the above
definition: N = 9, nC = 2; PC0 = 0, PC1 = 2, PC2 = 6.

(1) When pC0 ≤ i < pC1 , namely, i = 1, so UC(1) =
pC0

pC1
−pC0

= 0.

(2) When pC1 ≤ i < pC2 , namely, i ∈ {2, 3, 4, 5}, thus UC(2) = UC(3) = UC(4) = UC(5) =
pC1

pC2−pC1
=

2
6−2 = 2

4 .
(3) When pC2 ≤ i ≤ N, namely, i ∈ {6, 7, 8, 9}, UC(6) = UC(7) = UC(8) = UC(9) =

pC2
N−(pC2−1) =

6
9−(6−1) =

6
4 .

Similarly, we can get UA, UG, UT .
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Table 4. The positional distribution of “ACTGGCAAT”.

Sequence A C T G G C A A T
Position 1 2 3 4 5 6 7 8 9

UA(i) 1
6

1
6

1
6

1
6

1
6

1
6

7
1

8
2

8
2

UC(i) 0 2
4

2
4

2
4

2
4

6
4

6
4

6
4

6
4

UT(i) 0 0 3
6

3
6

3
6

3
6

3
6

3
6

9
1

UG(i) 0 0 0 4
1

5
5

5
5

5
5

5
5

5
5

4.3. Position Correlation Vector

4.3.1. Average Positional Distribution

The average positional distribution κα is defined as (α, β ∈ {A, C, G, T}):

κα =
∑N

i=1 Uα(i)
nα

, α ∈ {A, C, G, T}. (3)

Therefore,

κα = ∑N
i=1 Uα(i)

nα
=

∑nα−1
j=0

pαi
pαj+1−pαj

×(pαj+1−pαj )

nα

+
pnα

N−(pnα−1)×[N−(pnα−1)]

nα
=

∑nα
j=0 pαj

nα
.

(4)

For the example sequence “ACTGGCAAT” above, κA = ∑N
i=1 UA(i)

nA
=

1
6×6+ 7

1+
8
2×2

3 =

∑
nA
j=0 pAj

nA
3 =

1+7+8
3 = 16

3 , and likewise for C, G, and T.

4.3.2. Positional Covariance

The positional covariance of nucleotide α and β (cov(α, β)) are defined as follows:

cov(α, β) =
N

∑
i=1

(Uα(i)− Ūα)(Uβ(i)− Ūβ)

nα · nβ
. (5)

where

Ūα =
1
N

N

∑
i=1

Uα(i) =
1
N

nα

∑
j=0

pαj . (6)

For the sequence “ACTGGCAAT”, the positional distributions of A and C are
( 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 7, 8

2 , 8
2 ) and (0, 2

4 , 2
4 , 2

4 , 2
4 , 6

4 , 6
4 , 6

4 , 6
4 ), respectively.

ŪA = 1
N ∑N

i=1 UA(i) =
∑

nA
j=0 pA

N =
1
6×6+ 7

1+
8
2×2

9 = 16
9 .

ŪC = 1
N ∑N

i=1 UC(i) =
∑

nC
j=0 pC

N =
0+ 2

4×4+ 6
4×4

9 = 8
9 .

cov(A, C) = ∑N
i=1

(UA(i)−ŪA)(UC(i)−ŪC)
nA ·nC

= 1
3∗2 [(

1
6 −

16
9 )(0− 8

9 ) + ( 1
6 −

16
9 )( 2

4 −
8
9 )× 4 + ( 1

6 −
16
9 )( 6

4 −
8
9 ) + ( 7

1 −
16
9 )( 6

4 −
8
9 ) + ( 8

2 −
16
9 )( 6

4 −
8
9 )× 2] = 1.4769.

The same method is used to compute cov (A;G); cov (A; T); cov (C;G); cov (C; T); and cov (G; T).
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4.3.3. Positional variance

The positional variance Dα is described as:

Dα
2 = cov(α, α) =

N

∑
i=1

(Uα(i)− Ūα)(Uα(i)− Ūα)

nα · nα
. (7)

Consequently, an 18-dimensional PCNV of a DNA sequence was constructed as follows:

(nA, nC, nG, nT , κA, κC, κG, κT , DA
2 , DC

2 , DG
2 , DT

2 , cov(A, C), cov(A, G), cov(A, T), cov(C, G),

cov(C, T), cov(G, T)).
Then, we used the Euclidean distance to compute the pairwise distance among the 18-dimensional

vectors of the genome sequences. A phylogenetic tree can be built using the NJ algorithm in MEGA 7.0
software [36].

Additionally, the PCNV method can be used to classify organisms. Naturally, sensitivity, specificity,
and accuracy were used to evaluate classification performance. The definitions of these measures are as
follows:

Sensitivity = TP/(TP + FN). (8)

and
Speci f icity = TN/(FP + TN). (9)

where TP, TN, FP, and FN are the number of true positive, true negative, false positive, and false negative
predictions, respectively. The MATLAB source code in this paper is freely available to the public upon
request.

Supplementary Materials: The information for all five datasets is shown in the Supplementary_File. The following
are available at http://www.mdpi.com/1422-0067/21/11/3859/s1.
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