
Computational and Structural Biotechnology Journal 18 (2020) 1904–1913
journal homepage: www.elsevier .com/locate /csbj
A novel numerical representation for proteins: Three-dimensional Chaos
Game Representation and its Extended Natural Vector
https://doi.org/10.1016/j.csbj.2020.07.004
2001-0370/� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: yau@uic.edu (S.S.-T. Yau).

1 These authors contributed equally to this work.
Zeju Sun a,1, Shaojun Pei a,1, Rong Lucy He b, Stephen S.-T. Yau a,⇑
aDepartment of Mathematical Sciences, Tsinghua University, Beijing, PR China
bDepartment of Biological Sciences, Chicago State University, Chicago, IL 60628, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 April 2020
Received in revised form 4 July 2020
Accepted 5 July 2020
Available online 15 July 2020

Keywords:
Chaos Game Representation
Three-dimensional CGR
Extended Natural Vector
Protein classification
Chaos Game Representation (CGR) was first proposed to be an image representation method of DNA and
have been extended to the case of other biological macromolecules. Compared with the CGR images of
DNA, where DNA sequences are converted into a series of points in the unit square, the existing CGR
images of protein are not so elegant in geometry and the implications of the distribution of points in
the CGR image are not so obvious. In this study, by naturally distributing the twenty amino acids on
the vertices of a regular dodecahedron, we introduce a novel three-dimensional image representation
of protein sequences with CGR method. We also associate each CGR image with a vector in high dimen-
sional Euclidean space, called the extended natural vector (ENV), in order to analyze the information con-
tained in the CGR images. Based on the results of protein classification and phylogenetic analysis, our
method could serve as a precise method to discover biological relationships between proteins.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of protein is always one of the core subjects in biol-
ogy, because of the central role that proteins play in almost all bio-
logical processes. Considering the great variety of proteins and the
huge expense of experimental study of molecular structure and
function, it is unrealistic to analyze the biological function of every
protein in the lab. Therefore, it is significant to obtain the similarity
of proteins in structure and function from protein sequence
analysis and predict functions based on the similarity [1]. As a
foundation of protein sequence analysis, a proper numerical repre-
sentation makes it more convenient to find and analyze the char-
acteristics of those sequences. In recent years, many numerical
representation methods have been proposed and then applied in
protein classification, protein function prediction and search for
target proteins with certain structures or biological functions
[2,3,4].

With the huge increase of biological sequence data in recent
years, numerical encoding methods are more demanding in com-
putational efficiency. Among the methods proposed recently, nat-
ural vector method, which is proposed in [5,6], is an efficient,
alignment-free numerical encoding method of molecular
sequences. With this method, every molecular sequence is associ-
ated with a vector in high dimensional space and the correspon-
dence has been proved to be strictly one-to-one.

Apart from representing molecular sequences into numerical
expression directly, many other numerical representations are
constructed by first giving the sequence a graphical representation
and then studying the image numerically [7]. Chaos game repre-
sentation (CGR) was originally applied to bioinformatics as an
image representation of DNA sequences by Jeffrey [8]. The four
nucleotides (A, T, G, C) were put on the 4 vertices of the unit
square, and every DNA sequence was mapped to a series of points
inside the unit square in 2-dimensional space. While DNAs are
composed of four kinds of nucleotides, proteins are made up of
twenty kinds of amino acids. Thus, it remains to decide the distri-
bution of the 20 amino acids when promoting CGR to the image
representation of proteins.

Fisher et al. [9] first distributed the 20 amino acids on the ver-
tices of a regular 20-sided polygon and then every protein was rep-
resented by a series of points inside the unit circle. Considering the
limitation that a 20-vertex CGR cannot be used to demonstrate the
similarity of homologous protein sequences with conservative sub-
stitutions, Basu et al. [10] proposed a 12-vertex CGR, with each ver-
tex of a regular 12-sided polygon representing an amino acid with
its conservative substitutions. The number of the vertices in CGR
was then reduced to four [11,12], with each vertex of a square
representing one of the four groups of amino acids, that is, the
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non-polar, uncharged polar, negative polar and positive polar
groups. The reduction in the vertices of CGR image can help repre-
sent the similarity in homologous protein sequences, however,
these kinds of CGR is not a strictly one-to-one representation of
protein sequence as in the case of DNA [8].

With the chaos game representation method, the study of
molecular sequences is converted into the study of their CGR
images. Since the frequency of points in a certain area in a CGR
image represents the frequency of a certain string in the molecular
sequence, Basu et al. [10] employed the grid-counting algorithm to
compare different protein families. In order to study the frequency
of points in a CGR image more intuitively, Almeida et al. [13] pro-
posed the frequency matrices extracted from the CGR image of
DNA, called the FCGR. The characteristic of a CGR image is then
illustrated by a gray-scale image and has been studied by means
of deep-learning in recent years [14]. Moreover, Pei et al. [16] asso-
ciated each gray-scale image with a vector in high-dimensional
Euclidean space, called the extended natural vector (ENV). The
method combining FCGR and ENV performs well in entire genome
comparison.

In this study, considering that the regular dodecahedron is one
of the five known regular polyhedrons in three-dimensional Eucli-
dean space and there are exactly 20 vertices on a regular dodeca-
hedron. we choose to distribute the 20 amino acids on the
vertices of a regular dodecahedron and obtain a novel three-
dimensional CGR image for proteins, in which every protein
sequence is mapped to a series of points in the regular dodecahe-
dron in three-dimensional space. We have proved that each CGR
image can only represent at most one protein sequence, which
improved the limitation of previous CGR methods.

In the meanwhile, inspired by Pei et al.’s work [16], we con-
struct a 160-dimensional vector, also called ENV, for each three-
dimensional CGR image as well. With the help of ENV, the similar-
ity of homologous protein sequences can also be illustrated by
arranging the amino acids with similar properties next to each
other on the vertices of the regular dodecahedron. In this way,
homologous proteins will have similar CGR images in the sense
that the ENVs of homologous proteins are closed to each other in
the vector space.

Our method is first tested on several big families of proteins in
the human proteome. The property that ENVs of proteins with sim-
ilar amino acid sequences will cluster together in the vector space
is confirmed by the fact that convex hulls of ENVs of different pro-
tein families do not intersect with each other. Then the Euclidean
distance between ENVs is used to measure the biological distance
between protein sequences. The distance between ENVs not only
performs well on phylogenetic analysis, but is also positively cor-
related with the root mean square deviation (RMSD) of protein
Fig. 1. Vertices with identical letters will coincide when folding into a regular dodecahe
dimensional view). (b) Distribution of amino acids on the vertices of a regular dodecahe
structures. The results show that our representation method is a
more precise method to discover biological relationships between
proteins than other methods on sequence comparison.
2. Methods

2.1. Three-dimensional Chaos Game Representation image

In mathematics, it was beautifully shown that there are only 5
regular polygons in R3. They are the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron, the so-called the Platonic solids.
The naturally given dodecahedron has exactly 20 vertices which
coincide the number of amino acids for forming protein sequences.
So it is natural to investigate the 3-dimensional representation of
protein sequences by means of a dodecahedron. The first step to
obtaining the three-dimensional CGR images of proteins is to
decide the distribution of the 20 amino acids on the vertices of a
dodecahedron. In this paper, we will use the abbreviation for the
amino acids, that is, X ¼ A;R;K;H;Y ; T; S;G;Q ;C;N; E;D;V ;W; P;ð
F;M; L; IÞ, to represent both the amino acids and the corresponding
vertices. We tried to put amino acids with similar properties
together, so that ENVs of homologous proteins constructed later
will cluster together in the vector space. The 20 amino acids can
be naturally divided into 4 groups according to [12], (non-polar,
positive polar, uncharged polar and negative polar). We put amino
acids of non-polar (A; I; L;M; F; P;W;V). and uncharged polar group
(N;C;Q ;G; S; T;Y) on two adjacent faces respectively and amino
acids from the other two groups, positive polar group (R;H;K)
and negative polar group (D; E) are also distributed next to each
other. Fig. 1 (a) shows the 3-dimensional images of the regular
dodecahedron and the coordinates of each vertex are summarized
in Table 1. Fig. 1 (b) shows the expanded image of a regular dodec-
ahedron and the distribution of amino acids on the vertices is also
marked on it.

The three-dimensional CGR image of a protein is a series of
points inside the regular dodecahedron inscribed to ball B, which
is centered at 1;1;1ð Þ with radius r ¼ 1, where the points are iter-
atively generated by:

X0 ¼ 1;1;1ð Þ; Xn ¼ 1� uð Þ �xn þ u � Xn�1; n P 1 ð1Þ

where u is a parameter to be determined, (although u ¼ 1
2 in the

original two-dimensional CGR image for DNA), and
xn 2 X; n P 1ð Þ is the nth amino acid in the protein sequence.
Fig. 2 shows the process.

Based on the iterative formula (1), the CGR image of a protein is
determined by its amino acid sequence. In the meanwhile, with the
parameter u chosen properly, the nth amino acid in a protein can
dron. (a) Distribution of amino acids on the vertices of a regular dodecahedron (3-
dron (extended image).



Table 1
Coordinates of the 20 amino acids on the vertices of a
regular dodecahedron.

Amino acid Coordinates

G (1.3568, 1.9342, 1.0000)
Q (0.6432, 1.9342, 1.0000)
P (1.3568, 0.0658, 1.0000)
R (0.6432, 0.0658, 1.0000)
I (1.9342, 1.0000, 1.3568)
H (0.0658, 1.0000, 1.3568)
W (1.9342, 1.0000, 0.6432)
T (0.0658, 1.0000, 0.6432)
F (1.0000, 1.3568, 1.9342)
M (1.0000, 0.6432, 1.9342)
S (1.0000, 1.3568, 0.0658)
D (1.0000, 0.6432, 0.0658)
A (1.5774, 1.5774, 1.5774)
L (1.5774, 0.4226, 1.5774)
C (1.5774, 1.5774, 0.4226)
Y (0.4226, 1.5774, 1.5774)
K (0.4226, 0.4226, 1.5774)
N (0.4226, 1.5774, 0.4226)
E (0.4226, 0.4226, 0.4226)
V (1.5774, 0.4226, 0.4226)
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also be deduced from the location of the nth point in a CGR image.
In fact, if the parameter u is chosen so that with different nth
amino acids, the areas that the nth point can be located in are sep-
arated from each other, then the nth point also determines the nth
amino acid in a protein. This property of CGR image and its gener-
alization are summarized and expressed mathematically in Theo-
rem 1 below. For ease of theorem statement, we first introduce
the following concept to denote the area that each point in CGR
can be located in.

Definition 1. For each x 2 X, one of the vertices of the regular
dodecahedron, the ball centered at Xx ¼ u � 1;1;1ð Þ þ 1� uð Þ � x
with radius u is called the ball controlled by amino acid x, and is
denoted by Bx.

We can prove that the nth point in the CGR image Xn will be
located inside the ball controlled by xn and in the meanwhile,
through rigorous mathematical calculation, with the parameter u

chosen to be u ¼
ffiffi
5

p
�1ffiffi

5
p

þ2
ffiffi
3

p
�1
, the balls controlled by different amino
Fig. 2. (a) Three dimensional Chaos Game Representation (CGR) of the first five amin
Representation (CGR) of KNG1_HUMAN (P01042).
acids do not intersect with each other. More precisely, with u cho-
sen above, the balls controlled by different amino acids are tangent
to each other. (This property is also asserted in Theorem 1. (5) and
the mathematical deduction is shown in supplementary files.) As a
generalization of the above definition, we can also define the balls
controlled by dipeptides which enjoy similar properties. The radius
of ball is changed into u2 in order to guarantee the non-intersection
of balls controlled by different dipeptides.

Definition 2. For each dipeptide x1x2;x1;x2 2 X, the ball cen-
tered at Xx1x2 ¼ u � 1� uð Þ � x1 � X0ð Þ þ Xx2with radius u2 is
called the ball controlled by dipeptide x1x2, and is denoted by
Bx1x2 .

Fig. 3 shows an example of the above definition. The small balls
in Fig. 3 (a) are the balls controlled by the 20 amino acids, and
Fig. 3 (b) is an enlargement of ball BL. The small balls in Fig. 3 (b)
are balls controlled by dipeptides ‘xL’.

With the two definitions above, we have the following theorem
and the proof is shown in the supplementary files.

Theorem 1. For an amino acid sequence of length N, with
Xn : 0 6 n 6 Nf g and u defined above, CGR images have the following
properties:

(1) Bx is inscribed to the ball B at x;8x 2 X;
(2) Bx1x2 is inscribed to Bx2 ;8x1;x2 2 X;
(3) Xn 2 Bxn ;81 6 n 6 N;
(4) Xn 2 Bxn�1xn ;82 6 n 6 N;
(5) Bx1 \ Bx2 ¼ £, if x1 –x2. More precisely, if x1 and x2 are
adjacent vertices, then Bx1 and Bx2 are tangent to each other.
(6) For a certain amino acid x, the number of x in a protein is
equal to the number of points in Bx. Besides, for a certain dipeptide
x1x2, the number of x1x2 in a protein is equal to the number of
points in Bx1x2 .
(7) For each n 2 N;1 6 n 6 N, the first n amino acid in the protein
is determined by Xn, that is, given the coordinates of Xn in a CGR
image, we can obtain the first n amino acids in the protein.

As an example, Fig. 4 shows the three-dimensional CGR image
of Kininogen-1 (KNG1_HUMAN, entry number P01042 in Uniprot),
a protein in human kidney with 644 amino acids. Fig. 4 (a) shows
o acids of KNG1_HUMAN (P01042), ‘‘MKLIT”. (b) Three dimensional Chaos Game



Fig. 3. (a) The ball controlled by 20 amino acids. (b) The ball BL and the balls controlled by dipeptides ‘xL’.

Fig. 4. Three-dimensional CGR image of KNG1_HUMAN. (a) shows the location of points in the ball B, (b) is an enlargement of BL , and (c) is an enlargement of BGL .
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Fig. 5. Three-dimensional CGR image of (a) KNG1_HUMAN (P01042), (b) KNG2_BOVIN (P01045) and (c) UROM_HUMAN (P07911).
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the location of points in the unit ball, (b) is an enlargement of BL,
the ball controlled by amino acid L and (c) is an enlargement of
BGL, the ball controlled by dipeptide GL. In Fig. 4 (c), there are four
points contained in BGL , which means that the dipeptide GL exists
four times in the protein KNG1_HUMAN.

With the help of three-dimensional CGR images, we can intu-
itively count the number of occurrence of a certain amino acid or
dipeptide in a protein and compare the frequency of different
amino acids or dipeptides qualitatively. Fig. 5 shows the three-
dimensional CGR image of three different KNG1_HUMAN
(P01042), KNG2_BOVIN (P01045) and UROM_HUMAN (P07911).
From Fig. 5, we can see that the three-dimensional CGR images
of KNG1_HUMAN (P01042) and KNG2_BOVIN (P01045), which
are both a kind of kininogen serving to be an inhibitor of thiol pro-
teases, are more similar; while the three-dimensional CGR image
of UROM_HUMAN (P07911) is different from others, and the bio-
logical function of this protein is promoting the formation of com-
plex filamentous gel-like structure of the apical membrane of
certain cells, which is also different from the other two proteins.

Nevertheless, in order to analyze the CGR image quantitatively
and mine more information about proteins from their CGR images,
we need to associate each CGR image with an ENV that can sum-
marize the information contained in the CGR image.

2.2. Construction of the Extended Natural Vector

The ENV we constructed in this study is a vector obtained by
integrating information of dipeptides contained in a CGR image.
It can help summarize the properties of a CGR image and reflect
the characteristics of the amino acid sequence represented by the
image. The ENV corresponding to a CGR image can be built with
the following steps.

1. For a given three-dimensional CGR image, we count the fre-
quency of points in each of the ball controlled by the 400 dipep-
tides, and thus, according to Theorem 1. (6), we get the
frequency of each dipeptide in the amino acid sequence.
Table 2
The number of dipeptides in each group of KNG1_HUMAN (P01042).

Group 1 2 3

Number of dipeptides 127 106 75

Group 9 10 11
Number of dipeptides 1 0 0
2. Divide the 400 kinds of dipeptides into at most 16 groups
according to the frequency. Dipeptide occurring least is
assigned to group 1, while the most frequent dipeptide is
assigned to group 16. The group of other dipeptides is linearly
correlated to their frequency.
More precisely, the frequency of dipeptide x1x2 is recorded as
ax1x2 ;x1;x2 2 X. Denote M ¼ max ax1x2 : x1;x2 2 X

� �
and

m ¼ min ax1x2 : x1;x2 2 X
� �

. Then the group number k
(1 6 k 6 16) of x1x2 is determined by the following formula:
k ¼ round
15

M �m
ax1x2 �m
� �þ 1

� �
ð2Þ

where round xð Þ means the integer nearest to x.
In our example of protein KNG1_HUMAN, dipeptide ‘HW‘ exists
most often (15 times) and thus, is assigned to group 16, while
127 dipeptides do not exist in the protein. Therefore, for
KNG1_HUMAN, M ¼ 15 and m ¼ 0. Because dipeptide ’GL’ exists
4 times, it is assigned to group 5. The number of dipeptides in
each group is summarized in Table 2.
Eleven dipeptides (‘LG‘, ‘TQ’, ‘SP’, ‘PI’, ‘KH’, ‘AT’, ‘QS’, ‘SL’, ‘DC’,
‘KK’, ‘KE’) are assigned to group 7 and Fig. 6 shows the 11 balls
controlled by dipeptides in group 7 of KNG1_HUMAN
(P01042). The coordinates of the center of the each ball are also
summarized in Fig. 6.

3. The first group of components in the ENV are f 1; f 2; . . . ; f 16,
where f i ¼ ni

400 ;1 6 i 6 16 and ni is the number of dipeptides
in group i. Some of ni; i ¼ 1;2; . . . ;16ð Þ, could be 0. In our exam-
ple, we have n1 ¼ 0:3175; n2 ¼ 0:2650; . . . ; n7 ¼ 0:0275; . . . ;
n16 ¼ 0:0025.

4. The second group of components in the ENV are mean locations
l1;i;l2;i; . . . ;l3;i; i ¼ 1;2; . . . ;16 of each group.
4

3

1
1

l1;i ¼ 1
ni

P
s2Group i

xs;i ; l2;i ¼ 1
ni

P
s2Group i

ys;i ; l3;i ¼ 1
ni

P
s2Group i

zs;i

ð3Þ
5 6 7 8

8 27 13 11 0

2 13 14 15 16
0 0 0 1



Fig. 6. Balls controlled by dipeptides in group 7 of KNG1_HUMAN (P01042).
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where xs;i; ys;i; zs;i
� �

is the coordinates of the center of the ball

controlled by dipeptide s. Define l1;i;l2;i;l3;i

	 

¼ 0;0;0ð Þ if

ni ¼ 0. In the example of protein KNG1_HUMAN, according to
Fig. 6, we have

l1;7;l2;7;l3;7

	 

¼ 0:9347;0:9849;0:9565ð Þ ð4Þ

5. The third group of components in the ENV are the normal-
ized second order central moments.

Di;r;s;u ¼
X

t2Group i

xt;i � l1;i

	 
r
yt;i � l2;i

	 
s
zt;i � l3;i

	 
u

ni
ð5Þ

where i ¼ 0;1;2; . . . ;15; r; s;uð Þ = (2,0,0), (0,2,0), (0,0,2),
(1,1,0), (1,0,1), (0,1,1).
In the example of protein KNG1_HUMAN, according to Fig. 6.
again, we have

D7;2;0;0;D7;0;2;0;D7;0;0;2;D7;1;1;0;D7;1;0;1;D7;0;1;1ð Þ ¼
0:2592;0:2067;0:1410;0:0156;�0:0224;�0:0649ð Þ ð6Þ

Now, we get the 160-dimensional ENV of a three-dimensional
CGR image,

ð f 1; f 2; . . . ; f 16 ;l1;1;l1;2; . . . ;l1;16 ;l2;1;l2;2; . . . ;l2;16 ;

l3;1;l3;2; . . . ;l3;16 ; D1;2;0;0;D2;2;0;0; . . . ;D16;2;0;0 ;D1;0;2;0;

D2;0;2;0; . . . ;D16;0;2;0 ;D1;0;0;2;D2;0;0;2; . . . ;D16;0;0;2 ;D1;1;1;0;

D2;1;1;0; . . . ;D16;1;1;0 ; D1;1;0;1;D2;1;0;1; . . . ;D16;1;0;1 ;D1;0;1;1;

D2;0;1;1; . . . ;D16;0;1;1 Þ ð7Þ

2.3. Distance measure

For two different amino acid sequences,we can construct their
160- dimensional ENV V1 ¼ p1; p2; . . . ; p160ð Þ and V2 ¼ q1;ð
q2; . . . ; q160Þ, where pi and qi are defined in (7). The biological dis-
tance of the two amino acid sequences is represented by the
160-dimensional Euclidean distance of their ENVs.

2.4. Convex hull analysis

The distance from a vector to a convex hull can be calculated by
a quadratic optimization solution:
D2 ¼ min jY �
Xn
i¼1

kiXij2; 0 6 ki 6 1;
Xn
i¼1

ki ¼ 1 ð8Þ

where Y denotes a vector in the space, Xi; i ¼ 1;2; . . . ;n are mem-
bers in a vector set, and n is the size of the vector set.

The distance of two convex hulls can also be calculated by a
quadratic optimization solution:

D2 ¼ min
Pm
i¼1

kiXi �
Pn
j¼1
ljYj

�����
�����
2

; 0 6 ki;lj 6 1; s:t:
Pm
i¼1

k ¼ Pn
j¼1
lj ¼ 1

ð9Þ

where Xi; i ¼ 1;2; . . . ;m;Yj; j ¼ 1;2; . . . ; n, are members in two vec-
tor sets, and n;m are the size of the vector sets.
2.5. Other methods

When applying our methods into phylogeny analysis, we use
the principle of UPGMA to construct the phylogenetic tree. We also
make a comparison between our methods and the Natural Vector
method.
2.5.1. Natural vector (NV) method
Let S ¼ s1s2 . . . sn be an amino acid sequence of length n and

si 2 X; i ¼ 1;2; . . . ;n. For K 2 X, we define wK : X ! 0;1f g,

wK sið Þ ¼ 1 si ¼ K

0 si – K

�
ð10Þ

1. The first group of components in NV contains the number of
amino acid K in the amino acid sequence S : nK ¼ Pn

i¼1wK sið Þ.
2. The second group of components in NV contains the mean posi-

tion of amino acid K : lK ¼ Pn
i¼1

i� wK sið Þ
nK

.

3. The third group of components in NV contains the scaled vari-

ance of positions of amino acid K : DK
2 ¼ Pn

i¼1
i�lKð Þ2wK sið Þ

n� nK

The 60-dimensional NV of an amino acid sequence S is defined

by nA;nR; � � � ;nI;lA;lR; � � � ;lI;D
A
2;D

R
2; � � � ;DI

2

	 

.
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3. Results

3.1. Application in protein classification

According to Fig. 5, proteins with similar biological functions
and similar amino acid sequences have similar CGR images. Based
on the construction of ENV, the distance between these proteins
are also relatively short. Since homologous proteins (proteins in
the same protein family, superfamily or class) enjoy similar amino
acid sequences, we can classify proteins without family informa-
tion by the following steps:

Step 1. For a protein without family information, we can first
find all the families that the protein can possibly belong to. In
order to improve the accuracy of the classification, the alterna-
tive families are supposed to be as few as possible.
Step 2. Collect all the proteins in the alternative families and
construct the CGR image and the corresponding ENV of each
protein.
Step 3. Calculate the distance between the ENV of the protein to
be classified and the convex hull of each alternative family by
solving the quadratic optimization problem (8). The protein
without family information can be regarded as a member of
the family with the shortest distance.

3.1.1. Classification results of human protein groups
Human proteome dataset in UniprotKB contains 74,034 pro-

teins. Among them, 20,350 proteins in SwissProt have been manu-
ally annotated. Except for proteins without family information,
14,303 proteins are divided into 5048 classes, superfamilies, fami-
lies and subfamilies. While 2832 groups contain only one protein
Table 3
Ten groups of proteins analyzed in this study and the number of proteins in each
group.

No. Protein group Number of proteins

1 G-protein coupled receptor 1 family 671
2 Protein-tyrosine phosphatase family 93
3 Krueppel C2H2-type zinc-finger protein family 537
4 TRAFAC class 175
5 Small GTPase superfamily 162
6 Immunoglobulin superfamily 130
7 Protein kinase superfamily 490
8 Peptidase S1 family 119
9 Major facilitator (TC 2.A.1) superfamily 99
10 Glycosyltransferase 10 family 159

Table 4
The classification accuracy of 5 selected pairs of protein groups.

Protein group Number of Proteins

Classification 1
G-protein coupled receptor 1 family 671
Protein-tyrosine phosphatase family 93

Classification 2
Krueppel C2H2-type zinc-finger protein family 537
TRAFAC class 175

Classification 3
Small GTPase superfamily 162
Immunoglobulin superfamily 130

Classification 4
Protein kinase superfamily 490
Peptidase S1 family 119

Classification 5
Major facilitator (TC 2.A.1) superfamily 99
Glycosyltransferase 10 family 159
and 925 groups contain only two proteins, big groups are com-
posed of more than 50 proteins and there are 671 proteins in the
biggest group, G-protein coupled receptor 1 family.

To evaluate the accuracy of this protein classification method,
we applied it on some groups of proteins from human proteome.
Each group contains proteins from a certain protein family, super-
family or class, and thus proteins in each group have similar amino
acid sequences. The number of proteins in each group is summa-
rized in Table 3.

For two different protein groups, we keep about 10% retained
proteins in each group as proteins without family information
and use the rest to construct the convex hull of each protein family.
We first calculate the distance between convex hulls of the two
protein groups by solving the quadratic optimization in (9). The
results in Table 4 shows that each two convex hulls have strictly
positive distance and thus do not intersect with each other. The
retained proteins are assigned to one of the protein families
according to the above protein classification method. To evaluate
the performance of this classification method, we calculate the
accuracy and AUC (area under the curve) of each classification. In
order to compare our 3D-CGR with the existing 2D-CGR images,
we apply SVM (support vector machine) to the existing 2D-CGR
images proposed by Lochel et al. [14] and use this method to clas-
sify the proteins again. The results are summarized in Tables 4 and
5. The confusion matrices of these classifications are shown in sup-
plementary files.

As another comparison, instead of considering the convex hull,
we also try k-nearest neighborhood (KNN) method in protein clas-
sification. The performance of KNN method is not better than the
method considering the convex hull and the detailed classification
results are also shown in supplementary files.

Tables 4 and 5 show that the mean accuracy of the five classifi-
cations using our method is higher than the result using 2D-CGR
method. Besides, if the number of alternative families that a pro-
tein can possibly belongs to can be sufficiently narrowed down
in advance, we can use our method to complete the classification
with high accuracy. In practice, further classification information
of proteins in a certain family can also be obtained with our
method.

3.1.2. Classification of protein kinase C family
In order to further apply and test our protein classification

method, we classified protein kinase C (PKC) family by our method.
PKC is a family of enzymes, which can regulate protein activities
and cellular responses [15]. The PKC family can be biologically
divided into 3 groups, that is atypical protein kinase C (aPKC),
Number of Retained Proteins AUC Convex hull Distance

67 0.7960 0.0481
9

54 0.9198 0.0249
18

16 0.9231 0.0211
13

49 0.8622 0.0112
12

9 0.8741 0.0835
15



Table 6
The classification accuracy result of Protein Kinase C family.

PKC
group

Number of
PKCs

Number of
retained PKCs

Classification
accuracy

Average
accuracy

aPKC 257 26 100% 98.67%
cPKC 297 30 100%
nPKC 190 19 94.74%

Table 5
Accuracy of classifications using 2D-CGR & SVM and 3D-CGR & ENV (our method).

Classification No. Accuracy

2D-CGR & SVM 3D-CGR & ENV (our method)

Classification 1 100% 96.05%
Classification 2 94.44% 95.83%
Classification 3 93.10% 100%
Classification 4 96.72% 91.80%
Classification 5 88.46% 91.67%
Mean accuracy 94.54% 95.07%
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novel protein kinase C (nPKC) and conventional protein kinase C
(cPKC). In our dataset, there are 257 aPKCs, 297 cPKCs and 190
nPKCs. We also retained about 10% PKCs in each group as PKCs
with unknown classification and use the rest to construct the con-
vex hull of aPKC, cPKC and nPKC subfamilies. The classification
result is shown in Table 6.
3.2. Phylogeny analysis

Influenza A viruses are negative-sense, single-stranded, seg-
mented RNA viruses. They are a constant threat to the health of
human and animal because of their high mutation rate [17]. In this
study, according to the taxonomy information in Uniprot, we col-
lect all the manually reviewed proteins of 22 Influenza A viruses
from 5 subtypes in Swiss-prot database. In order to use the infor-
mation from the entire proteome of viruses from each subtype,
we connect all the proteins from one kind of virus into a single
amino acid sequence, called the connected amino acid sequence.
Because the ENV is determined by the frequency of each dipeptide,
the order of the connection makes little difference in the ENV of
each subtype. In the meanwhile, we can obtain the NV of the con-
nected amino acid sequence.
Fig. 7. Phylogenetic tree constructed by our method, NV method and traditional alignme
tree of Clustal W method.
We calculate the distance matrices of ENV method and NV
method and use the principle of UPGMA to construct the phyloge-
netic tree of the 22 Influenza A viruses. In the meanwhile, we also
apply the Clustal W method on the connected amino acid
sequences, in order to make a comparison with traditional
alignment-based methods. As is shown in Fig. 7, the phylogenetic
tree constructed by our ENV method can demonstrate the phy-
logeny process more accurately, since it can properly classify each
subtype.

The result of phylogeny analysis shows that as an alignment-
free method, our method can deal with the information of several
sequences simultaneously. Therefore, our method may have appli-
cation prospect in comparison among protein families or
proteome.

3.3. Relationship between structural similarity and ENV distance

According to the research above, the distance between ENVs
can reflect the similarity of protein sequences. The less similar
the two protein sequences are, the greater the pairwise distance
between the corresponding ENVs is. And the root mean square
deviation (RMSD) of protein structure is often used to measure
the protein structural similarity, and higher values represent more
different structures [18]. Based on the principle that the protein
structure is closely related to its sequence, the RMSD and the
ENV-distance should be positively correlated.

First, we calculate the ENV-distance matrix X of protein
sequences and the RMSD matrix Y of protein structures. The pair-
wise similarity matrix by Clustal W is calculated for comparison
[19]. The Pearson correlation cor of two distance matrices is calcu-
lated to measure the relationship as follows.

cor ¼
Xn

i¼1
Xi � X
� �

Yi � Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi � X
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Yi � Y
� �2q ð11Þ

where n is the number of elements of the upper triangular of the
distance matrices, X and Y are means of X and Y, respectively.

Two datasets with different sequence lengths are used to ana-
lyze the relationship. The first dataset includes 8 serine hydrox-
ymethyltransferase proteins with the lengths of about 420 amino
acids, and the second dataset includes 8 response regulator pro-
teins with the lengths of about 100 amino acids. For the first data-
set, the Pearson correlation between the matrices of the ENV-
distance and the RMSD is 0.752, while that between the matrices
nt method. (a) is the tree of our method, (b) is the tree of NV method and (c) is the



Fig. 8. Linear regression of RMSD of a pair of protein structures and ENV distance of the corresponding protein sequences; the RMSD as the x-axis and the ENV-distance as the
y-axis (a) dataset 1: 8 serine hydroxymethyltransferase proteins (b) dataset 2: 8 response regulator proteins.
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of the sequence similarity by Clustal W and the RMSD is 0.183. For
the second dataset, the Pearson correlation between the matrices
of the ENV-distance and the RMSD is 0.648, while that between
the matrices of the sequence similarity by Clustal W and the RMSD
is 0.146. The Pearson correlation between the matrices of the ENV-
distance and the RMSD is larger than the matrices of the sequence
similarity by Clustal W and the RMSD for both datasets. So the
RMSD and the ENV-distance are correlated more significantly than
the RMSD and the sequence similarity by Clustal W.

We take the RMSD as the x-axis and the ENV-distance as the y-
axis to perform linear regression. As shown in Fig. 8, the linear cor-
relation between the ENV-distance and RMSD clearly provides evi-
dence of the positive correlation between RMSD and ENV distance.

4. Discussion

In this study, we propose a novel numerical representation
method for proteins. Firstly, amino acid sequences are transformed
into a CGR image in three-dimensional space. Since proteins are
made up of twenty kinds of amino acids and coincidentally, a reg-
ular dodecahedron consists of twenty vertices, we decide to dis-
tribute each amino acid on a vertex of regular dodecahedron and
transform the protein into a sequence of points inside the regular
dodecahedron. We have proved that the sequence of points is
uniquely determined by the protein, and thus, the study of amino
acid sequence can be converted to the study of its three-
dimensional CGR image.

Next, in order to quantitatively analyze the information con-
tained in the CGR images, we construct the ENV for each image.
With the help of CGR images and ENV, the information of protein
sequences is converted to a 160-dimensional vector in Euclidean
space, and thus, the features of proteins can be studied with math-
ematical instruments.

We try our method on several datasets and the results show
that the ENVs of homologous proteins tend to cluster together in
the 160-dimensional Euclidean space. This property can be applied
to the classification of proteins without family information. We
design a method of protein classification based on the above prop-
erty and obtain classification results with high accuracy.
Besides, our method can also be used in phylogeny analysis.
Rather than analyzing the distance among a certain protein from
different species, our method can analyze a group of proteins
simultaneously by connecting the proteins into a long sequence.
The construction of ENV guarantees that the ENV won’t change
much if we change the order of the connection.

We also analyze the relationship of RMSD of protein structures
and ENV-distance of protein sequences. It indicates that to a cer-
tain extent the RMSD of protein structures is positively correlated
with ENV-distance of protein sequences.

We compare the results of protein classification and phylogeny
analysis with those of NV method. In the case of a single amino
acid sequence, the NV method performs equally well with our
method. However, when it comes to the case of a group of proteins,
the NV method did not gather complete information from the
sequences, because it only measures the single amino acid’s num-
ber and position but ignores the information of dipeptides.

For the data we analyze in this study, the length of most single
amino acid sequence is less than 1000 and the connected sequence
we analyze for phylogeny analysis is about 4000. Since 20 amino
acids can form at most 400 dipeptides, it is suitable in our study
to consider the frequency of dipeptides in a sequence. Neverthe-
less, when analyzing longer connected amino acid sequences, our
method can also be applied. The only change we need to do is to
consider the frequency of other short peptide, say tripeptide or
tetrapeptide when constructing the ENV of the CGR images.
5. Data access

We constructed the CGR images and ENVs of proteins from
three datasets in Uniprot. The ENVs are then used in protein family
classification as well as phylogeny reconstruction.

Dataset 1 is composed of 5 families (G-protein coupled receptor
1, Krueppel C2H2-type zinc-finger, Protein-tyrosine phosphatase, Gly-
cosyltransferase 10 and Peptidase S1), 4 superfamilies (Small GTPase,
Protein kinase, Major facilitator (TC 2.A.1) and Immunoglobulin) and 1
class (TRAFAC) of proteins from human proteome. There are 2635
proteins in total and the number in each group is at least 93.
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Dataset 2 contains proteins from a protein family, Protein
Kinase C (PKC), which can be divided into three subfamilies, that
is atypical protein kinase C (aPKC), nPKC and cPKC. In our dataset,
there are 257 aPKCs, 297 cPKCs and 190 nPKCs.

Dataset 3 contains proteins of 22 Influenza A viruses. They are
composed of 5 subtypes (11 H1N1, 4 H2N2, 3 H3N2, 3 H5N1 and
1 H7N3), according to the taxonomy in Uniprot.

Dataset 4 contains 8 serine hydroxymethyltransferase proteins
and 8 response regulator proteins. The structures and sequences of
these proteins are from RCSB dataset (https://www.rcsb.org/).

All the accession numbers of the dataset mentioned above are
in supplementary files.
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