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ABSTRACT

Bacterial evolution is an important study field, biological sequences are often used to con-
struct phylogenetic relationships. Multiple sequence alignment is very time-consuming and
cannot deal with large scales of bacterial genome sequences in a reasonable time. Hence, a
new mathematical method, joining density vector method, is proposed to cluster bacteria,
which characterizes the features of coding sequence (CDS) in a DNA sequence. Coding
sequences carry genetic information that can synthesize proteins. The correspondence be-
tween a genomic sequence and its joining density vector (JDV) is one-to-one. JDV reflects
the statistical characteristics of genomic sequence and large amounts of data can be ana-
lyzed using this new approach. We apply the novel method to do phylogenetic analysis on
four bacterial data sets at hierarchies of genus and species. The phylogenetic trees prove that
our new method accurately describes the evolutionary relationships of bacterial coding
sequences, and is faster than ClustalW and the existing alignment-free methods.

Keywords: bacteria, coding sequence, joining density vector, Manhattan distance.

1. INTRODUCTION

Bacteria are widely distributed on the earth and have important research significance in many

fields. For example, they promote the growth of the medical industry, improve the environment, and

participate in human nutritional cycle. The study of bacterial phylogeny has drawn increasing attention

(Mendler et al., 2019). The evolution of bacterial RNA polymerase, deoxyribonucleoside kinases, and so on has

profound implications for large scales of bacterial phylogeny and gene studies (Kreth et al., 2009). With the

development of sequencing and computer technology, more and more sequences are available to construct

bacterial phylogeny at molecular level (Li et al., 2017a,b; Pei et al., 2019). Homologous sequences indicate that

they are similar in function and evolutionary relationship, and the phylogenetic results can be represented by a

phylogenetic tree, in which sequences are divided into groups on the basis of sequence similarities.

Based on biological sequences, common approaches to construct phylogenetic relationships include

alignment and alignment-free methods in bioinformatics. Most alignment approaches depend on
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evolutionary model assumptions, they require long computation time to obtain results, and they cannot deal

with large scales of data in a reasonable time. On the other side, alignment-free methods can achieve

satisfactory results and need low computational complexity. In this case mathematical methods are often

used to compare biological sequences and do phylogenetic analysis, such as moment vector (Dong et al.,

2018), feature vector (Zhang et al., 2019), natural vector (NV) (Zheng et al., 2015; Li et al., 2016, 2017b),

and graphical representation (Hoang et al., 2016). A density method for studying genome comparison has

been proposed (Yu et al., 2011) before. However, the obtained density vector equals the length of the

biological sequence, which means this method is not applicable for bacterial genome sequences of millions

of base pairs. While this inspires us to cluster and classify bacteria from the perspective of probability.

Hence, we establish a new density approach, joining density vector method ( JDVM), to overcome the

earlier limitations. JDVM characterizes the features of coding sequence in a genome sequence, which fully

shows the statistical information of sequences. JDVM is applied to the clustering and classification of four

bacteria data sets. The results show JDVM clusters bacteria correctly. Besides, JDVM can deal with large-

scale data set and is faster compared with previous proposed approach.

2. METHODS

2.1. Bacteria data and tools

In this study, all bacterial data were from National Center Biotechnology Information (NCBI) in No-

vember 2019, All the programs in this article are written in MATLAB R2018a and run on the same laptop

(MacBook Air, 1.8 GHz Intel Core i5, 8 GB 1600 MHz DDR3).

2.2. The density and distribution in probability

For a DNA sequence s1‚ s2‚ . . . ‚ sn, its coding sequences are fsjsj + 1 . . . sk : 1 � j � k � n‚

j 2 j1‚ . . . ‚ jp

� �
g, we define its discrete density vector as p1‚ p2‚ . . . ‚ pn½ �, distribution vector

f 1ð Þ‚ f 2ð Þ‚ . . . ‚ f nð Þ½ � = p1‚ p1 + p2‚ . . . ‚ p1 + p2 + . . . + pn½ �:

pi =

2
n0

‚ si belongs two coding sequences‚
1
n0

‚ si belongs one coding sequence‚
0
n0

‚ si doesn0t belong any coding sequences:

8><
>:

n0 is sum of all coding sequence bases number: n0 = k1 - j1 + 1ð Þ + . . . + kp - jp + 1
� �

. There exists over-

lapping between coding sequences on a genome sequence, so the density vector has element 2=n0. The

correspondence between bacterium and its density vector is one-to-one.

For example, a bacterial DNA sequence is ACGTACGTAGC (Table 1). The first coding sequence is

CGT, its positions are from the second nucleotide to the fourth; the second coding sequence is TACG, its

positions are from the fourth nucleotide to the seventh; the third coding sequence is CGT, its positions are

from sixth nucleotide to eighth. There are 10( = 3 + 4 + 3) bases for three coding sequences. Its density

vector is defined as follows:

p1‚ p2‚ . . . ‚ p11½ � = 1

10
0‚ 1‚ 1‚ 2‚ 1‚ 2‚ 2‚ 1‚ 0‚ 0‚ 0½ �: (1)

The corresponding distribution vector is

Table 1. The Density Vector Example of a DNA Sequence

DNA A C G T A C G T A G C Length = 11

First coding sequence C G T Location in [2, 4]

First coding sequence T A C G Location in [4, 7]

First coding sequence C G T Location in [6, 8]

Density Vector*10 0 1 1 2 1 2 2 1 0 0 0 3 + 4 + 3 = 10

Distribution Vector*10 0 1 2 4 5 7 9 10 10 10 10
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f 1ð Þ‚ f 2ð Þ‚ . . . ‚ f 11ð Þ½ � = 1

10
0‚ 1‚ 2‚ 4‚ 5‚ 7‚ 9‚ 10‚ 10‚ 10‚ 10½ �: (2)

The density and distribution vectors’ length equals the length of the bacterial genome sequence.

2.3. Normalized probabilistic density

We have obtained a discrete density vector utilizing bases’ positions of coding sequence. However, the

density vector’s length is related to the genome sequence length, which limits the comparison of bacterial

sequences with difference length. We need to normalize density vectors.

Based on the division algorithm (Zhao et al., 2011), we divide the density vector into segments. First, we

fix k, which is a preset integer much less than N. N is a known integer. Then we define q as the quotient and

r as the remainder in the following equation when dividing N by k:

q =
N

k
‚ r = N - kq: (3)

Therefore, we divide the long density vector into k segments: The first r segments possess q + 1 elements

and the remaining k - r segments possess q elements:

N = kq + r = r q + 1ð Þ + k - rð Þq: (4)

Then all elements in each segment are added together: DV(m, k) is the sum of density vector in the mth

segment of the whole density vector. Equation (5) explains it clearly:

DV m‚ kð Þ =

Pm q + 1ð Þ

i = m - 1ð Þq + m

p ið Þ ‚ m = 1‚ 2‚ ::‚ r

Pmq + r

i = m - 1ð Þq + r + 1

p ið Þ‚ m = r + 1‚ r + 2‚ . . . ‚ k

:

8>>><
>>>:

(5)

k 2 K decides different dimensional vectors:

� k = 3 : DV 3ð Þ = DV 1‚ 3ð Þ‚ DV 2‚ 3ð Þ‚ DV 3‚ 3ð Þ½ �:
� k = 4 : DV 4ð Þ = DV 1‚ 4ð Þ‚ DV 2‚ 4ð Þ‚ DV 3‚ 4ð Þ‚ DV 4‚ 4ð Þ½ �:
� . . . . . .
� k = 19 : DV 19ð Þ = DV 1‚ 19ð Þ‚ DV 2‚ 19ð Þ‚ . . . ‚ DV 19‚ 19ð Þ½ �:
� . . . . . .

Next we combine these short discrete density vectors together to get the new vector, joining density

vectors ( JDVs):

JDV = DV 3ð Þ‚ DV 4ð Þ‚ ::‚ DV 19ð Þ½ �
DV 1‚ 3ð Þ‚ DV 2‚ 3ð Þ‚ . . . ‚ DV 1‚ 19‚ DV 2‚ 19ð Þ‚ . . . ‚ DV 19‚ 19ð Þ‚ . . .ð Þ

(6)

Here K = 3‚ 4‚ 5‚ 7‚ 11‚ 13‚ 17‚ 19‚ . . .f g. JDV 2 RS Kð Þ. S(K) indicates the sum of elements in set K. All

elements in set K are primes except 4, primes are simple. DV(2) is a little simple so we ignore 2, DV(4) is

more stable than DV(2). Different dimensional JDVs can be calculated by changing K size. In this way,

bacterial genomic sequences can be converted into JDVs and they can be compared in a same low-

dimensional vector space.

2.4. Similarity measure

Once every DNA sequence is numerically characterized by coding sequence density vector, an appro-

priate similarity measure between two discrete density vectors is required for further analysis. Presently the

commonly used between two points is Minkowski distance in Euclidean space: for

X = x1‚ x2‚ . . . ‚ xn½ �
0
‚ Y = y1‚ y2‚ ::‚ yn½ �

0
2 Rn Manhattan distance: d X‚ Yð Þ =

Pn
i = 1

xi - yij j, Euclidean distance:

d X‚ Yð Þ = (
Pn

i = 1 xi - yið Þ2)1=2, and Chebyshev distance:d X‚ Yð Þ = max
i

xi - yij j.
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Kullback–Leibler divergence is used to measure two discrete probabilistic density vectors p1 and p2 (Yu

et al., 2011): H p1‚ p2ð Þ = p1 xð Þlog
p1 xð Þ
p2 xð Þ : H p1‚ p2ð Þ is not true metric because it is unsymmetric and does not

satisfy the triangle inequality. We now define the symmetric similarity measure, denoted by

d p1‚ p2ð Þ: d p1‚ p2ð Þ = H p1‚ p2ð Þ + H p2‚ p1ð Þ
2

. The values approach to 0 if two vectors are similar.

Cosine similarity is an angular distance that evaluates the similarity of two vectors by angle cosine

values: cos X‚ Yð Þ = X0�Y 0
Xj j Yj j. The values approach to 1 if two vectors are similar.

2.5. 1NN accuracy and area under the curve

k-Nearest neighbor (KNN) is a distance-based method (Thanh and Kappas, 2018), which can predict

cluster accuracy when k = 1. The definition of 1NN accuracy can be described as follows: for all sample i in

sample space, the nearest sample j can be determined, if the labels of sample i and j are the same, we

consider that the cluster result is correct, then 1NN accuracy rate = N0

N
, N0 is identical labels number, N is

sample size. The larger the accuracy rate is, the better the clustering result is.

Receiver operating characteristic (ROC) curve can be used to measure the performance of a classifier

(Hanley and Mcneil, 1982). In ROC curve, vertical axis indicates sensitivity, horizontal axis indicates 1-

specificity. The closer the point in the curve is to (0,1), the better the classifier performance is. Area under

the curve (AUC) is the area under the ROC curve. The greater the AUC value is, the better the classifier

performance is. Tenfold cross-validation is used popularly now: the data set is divided into 10 parts, 9 of

them are trained in turn and 1 of them is regarded as test set, the mean value of 10 results is viewed as the

accuracy estimation of the algorithm.

3. RESULTS

3.1. Determining set K

To determine set K, we randomly downloaded bacterial genome sequences from NCBI database and

applied JDVM on this data set, then checked if the classification labels obtained by our method are

consistent with those previous studied (Donovan et al., 2018). The data set includes 839 bacteria from nine

genera (Supplementary Table S1). Calculation time consists of two parts: JDVs and accuracy values. Here

30 = 3 + 4 + 5 + 7 + 11. (See also Supplementary Tables S2–S5). Calculation process is as follows:

Step 1: Transform each bacterium i into a JDV: JDVa
i ‚ i = 1‚ 2‚ . . . ‚ N. N is the data set size.

Step 2: For JDVa
i of each bacterium, find its nearest bacterium, if their labels are consistent, we note 1.

Step 3: Add all 1 together and divide the value by total number of bacteria to get the accuracy rates.

Step 4: Repeat above steps, a = 30d‚ 43d‚ . . . ‚ 199d.

Table 2 shows that the larger the set K size, the longer the computation time. We take dimension as

abscissa axis, and draw accuracy for different measures, the result proves that the accuracy rate of Man-

hattan distance is the biggest. We take different measures as x-axis, and draw accuracy for different

dimensional JDVs, the result indicates that 79d JDV gives the best result (Supplementary Fig. S1). Thus,

we determine K = {3, 4, 5, 7, 11, 13, 17, 19} and compare JDVs in R79.

Table 2. Performance Comparison of Different Dimension Joining Density Vectors and Measures

Dimension Manhattan Euclidean Chebyshev Cosine KLD Calculate time/s

30d 0.9452 0.9416 0.9190 0.9452 0.9452 221.2

43d 0.9476 0.9452 0.9190 0.9452 0.9452 221.2

60d 0.9476 0.9452 0.9261 0.9476 0.9452 243.4

79d 0.9535 0.9476 0.9285 0.9476 0.9499 265.8

102d 0.9547 0.9499 0.9225 0.9452 0.9440 305.8

131d 0.9535 0.9464 0.9249 0.9464 0.9404 341.3

162d 0.9511 0.9428 0.9285 0.9476 0.9440 375.2

199d 0.9487 0.9428 0.9273 0.9428 0.9404 408.3

KLD, Kullback–Leibler divergence.
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KNN is actually a classification method, the result may be overfitting. We provide AUC to measure the

classification results (Supplementary Fig. S2). The results are obtained by 10-fold cross-validation, AUCM 0:9844ð Þ
and AUC79 0:9837ð Þ are the greatest. That is to say, the selections of distance and K are appropriate.

3.2. Phylogenetic analysis of bacteria

JDVM is tested on four bacterial data sets (Table 3). Two hundred sixteen bacteria in the first data set are

all from one family (Enterobacteriaceae). Bacteria in the second data set come from different families. To

further illustrate the effectiveness of our method, we choose another two data sets (Pseudomonas, Strep-

tococcus) and cluster bacteria in species level. The first step in this process is the same as Determining set K

section, the next two steps are as follows:

Step 2: Calculate Manhattan distance matrix MN · N

Step 3: Draw neighbor joining phylogenetic tree using Mega7.

3.2.1. Phylogenetic analysis of Enterobacteriaceae. Enterobacteriaceae is the intestinal flora,

which is one of the most common pathogens in human beings. They spread easily from person to person

(Nordmann et al., 2011). JDVM is applied on this data set and a phylogenetic tree was obtained (Fig. 1):

these 216 bacteria are correctly clustered into six genera: Citrobacter, Enterobacter, Escherichia, Klebsiella,

Salmonella, and Shigella. This phylogenetic tree agrees well with those in standard biological taxonomy

(Donovan et al., 2018).

We also compared it with NV method (Yu et al., 2013) (Supplementary Fig. S3) and Fast Fourier

Transform (FFT) method (Hoang et al., 2015) (Supplementary Fig. S4); there are more than two branches

for one genus for both of clustering results.

3.2.2. Phylogenetic analysis of bacteria from different families. The second bacterial data set

from different families was selected for method’s reliability and validity. Phylogenetic tree on the basis of

79 dimensional JDV is constructed (Fig. 2). Three hundred sixty-six bacteria are divided into 11 clades:

Acinetobacter, Bacillus, Cloidioides, Enterococcus, Escherichia, Mycobacterium, Mycobacteroides, Sal-

monella, Staphylococcus, Vibrio, and Yersinia.

Table 3. Four Data Sets for Phylogenetic Analysis

The first data set

Enterobacteriaceae

The second data

set different families

The third data

set Pseudomonas

The fourth data set

Streptococcus

Genus name

Bacteria

no. Genus name

Bacteria

no. Species name

Bacteria

no. Species name

Bacteria

no.

Citrobacter 8 Acinetobacter 23 Pseudomonas aeruginosa 73 Streptococcus

agalactiae

83

Enterobacter 16 Bacillus 19 Pseudomonas fluorescens 4 Streptococcus

dysgalactiae

3

Escherichia 29 Cloidioides 33 Pseudomonas putida 11 Streptococcus

gallolyticus

4

Klebsiella 58 Enterococcus 32 Pseudomonas stutzeri 6 Streptococcus

pneumoniae

33

Salmonella 92 Escherichia 31 Pseudomonas syringae 7 Streptococcus

pyogenes

103

Shigella 13 Mycobacterium 71 Streptococcus

sobrinus

4

Mycobacteroides 9 Streptococcus

suis

36

Salmonella 73 Streptococcus

thermophilus

14

Staphylococcus 47

Vibrio 13

Yersinia 15

Total 216 366 101 280
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Alignment-free method, NV, and FFT are also used to cluster these 366 bacterial complete genomes

(Supplementary Figs. S5 and S6).

3.2.3. Phylogenetic analysis of Pseudomonas. Now we use the third data set, Pseudomonas, to do

phylogenetic analysis on species level. Pseudomonas is a common pathogen, which mainly exists in soil

and sea water. According to Figure 3, 101 bacteria are clustered into five groups correctly. NV and FFT

have been employed to construct phylogenetic tree (Supplementary Figs. S7 and S8). We also modify the

dimension of vector (K = {3, 4, 5, 7, 11, 13, 17}) to draw another tree (Supplementary Fig. S9). Pseudo-

monas stutzeri, Pseudomonas syringae, and Pseudomonas putida have two branches. The Euclidean dis-

tance of 79d JDVs is also calculated to get a result (Supplementary Fig. S10). Pseudomonas aeruginosa is

not separate from other bacterial species.

3.2.4. Phylogenetic analysis of Streptococcus. The coding sequence numbers of Streptococcus in

the fourth data set ranges from 1611 to 2508, and the average length of sequence is about 2,000,000 bp. The

phylogenetic tree is shown in Figure 4, which includes eight clades. The results of FFT and chaos game

representation (CGR) method (Hoang et al., 2016) are displayed in Supplementary Figures S11 and S12.

4. DISCUSSION

Our results would seem to demonstrate that JDVM can cluster bacterial sequence quickly and accurately.

We compare the computing time of alignment-free methods and traditional alignment method for third and

fourth data sets, as shown in Table 4. ClustalW is one of the most classic methods in the phylogenetic

analysis. Data import and sequence alignment cannot be completed in 24 hours in Mega 7, but only few

FIG. 1. Phylogenetic tree of the first data set: 216 bacteria from six genera of Enterobacteriaceae. Bacteria from same

genus are clustered together. The detailed bacterial information of each branch can be found in Supplementary

Material.

CLUSTER BACTERIA BASED ON CODING SEQUENCE DENSITY 1693

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Il
lin

oi
s 

C
hi

ca
go

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
1/

07
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



seconds are taken to calculate JDVs for the same data set: JDVM takes the least time (third data set: 52.5

seconds/fourth data set: 40.0 seconds) to calculate vector. CGR takes 1757.3 seconds for third data set and

1599.3 seconds for the fourth data set, Table 4 shows our method is more efficient than existing alignment-

free methods. For pseudomonas genus, sequence average length is about 6.5 · 106 bp, and Streptococcus

genus sequence average length is about 2.0 · 106 bp. The Streptococcus data set is larger, whereas it takes

less time than pseudomonas data set, that is because our method is related with sequence lengths. JDVM

does not require much memory to store large scales of bacterial sequence. However, ClustalW and FFT

method need more memory to store sequences than JDVM.

In addition, we calculate the 1NN accuracy rate for the third data set, and the value is 0.8614, which

shows that most bacteria have the same label with their nearest bacterium. The distances are shown in

Supplementary Table S6.

FIG. 2. Phylogenetic tree of the second data set, 366 bacteria from different families. Eleven classes are distinguished.
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5. CONCLUSION

JDVM is proposed to analyze and cluster bacteria in this article. The novelty of this method is that it

defines the density of coding sequence from probabilistic perspective. With this method, the features of

coding sequences hidden in the sequence can be effectively extracted, and each sequence is numerically

characterized by a JDV. Gene expression relies on coding sequence, thence this new method provides us

with a meaningful direction to study phylogeny. The traditional sequence alignment method is accurate

when constructing phylogenetic tree, but it is time-consuming. Compared with alignment and alignment-

free method, JDVM overcomes the deficiency that can process data quickly and is suitable for large

amounts of data. More importantly, the test results on several data sets show that it can give accurate

clustering results of bacteria without evolutionary assumptions.

The new method can be utilized to explore the phylogeny of coding sequences. Our phylogenetic results

are consistent with previous results. We have verified that joining density method can not only deal with the

long bacterial data, but also improve the computing efficiency. Although the density method performs well

FIG. 3. Phylogenetic tree of the third data set, 101 bacteria from Pseudomonas: P. aeruginosa, P. fluorescens, P.

putida, P. stutzeri, P. syringae. All species from same group are clustered together.
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on the speed and accuracy to cluster bacterial, there is still room for improvement. Density methods are

sensitive to the location of coding sequences and genome sequences must be complete otherwise it would

result in incorrect evolutionary conclusions.
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