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Understanding the relationships between genomic sequences is essential to the classification and char-
acterization of living beings. The classes and characteristics of an organism can be identified in the cor-
responding genome space. In the genome space, the natural metric is important to describe the
distribution of genomes. Therefore, the similarity of two biological sequences can be measured. Here,
we report that all of the viral genomes are in 32-dimensional Euclidean space, in which the natural metric
is the weighted summation of Euclidean distance of k-mer natural vectors. The classification of viral gen-
omes in the constructed genome space further proves the convex hull principle of taxonomy, which
states that convex hulls of different families are mutually disjoint. This study provides a novel geometric
perspective to describe the genome sequences.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A genome space consists of all known genomes and provides
insights into their relationships, reflecting the important nature
of the genomic universe [1]. Mathematically, the genome space
can be considered to be the moduli space and constructed as a sub-
space in a high-dimensional Euclidean space. In this space, a gen-
ome sequence is uniquely represented as a point, yet how
sequences are arranged in the genome space is unknown. Another
difficult task is to find a proper natural metric for describing the
geometry of the genome space. The metric should reflect the struc-
tural and functional proximity of biological sequences [1]. It is
essential for measuring the nucleotide distribution and inferring
similar properties among genomic sequences. Briefly, the genome
space with a proper metric is a powerful means of determining
the phylogenetics and classification of genomes.

The methods to analyze biological sequence similarity can be
alignment-based or alignment-free. Traditional alignment-based
methods are inefficient at handling massive amounts of sequence
because of the computational complexity and memory. However,
alignment-free methods can overcome these limitations, such as
traditional Natural Vector [2], k-mer theory [3], power spectrum
[4], and density-based method [5]. Notably, the traditional Natural
Vector, a probabilistic approach, illustrates the 12-dimensional
nucleotide distributions, including the counts, mean locations,
and normalized central moments of each nucleotide. The Natural
Vector method and its extended versions have been applied to
many studies and achieve high accuracy in sequence classification
and phylogeny [6–8]. Here we apply the Natural Vector method
with high order central moments to construct the genome space
and combine k-mer theory and Natural Vector to define the new
metric.

Each genome sequence is transformed into a natural vector in
the genome space and corresponds to a point. The key characters
of the genome space are the spatial patterns of the sequence
points. The protein space based on the Natural Vector method
has been proposed [9]. In the 250-dimensional protein space, the
convex hulls corresponding to different families are disjoint.
Therefore, the convex hull principle of taxonomy by protein
sequences is devised [10], and the protein sequence arrangement
in the protein space has been unfolded. However, the scarcity of
studies on genomic space prompts us to develop a similar
approach to infer the genome space by the similarity and diversity
of sequences. Genomes contain all genes that specify the morpho-
logical and physiological characteristics of organisms [11–14], and
sequences from the same family have similar nucleotide distribu-
tion. The convex hull principle for genome states that the points
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of one family are located in different spatial regions from points
belonging to other families. In other words, the convex hull formed
from natural vectors from the same family does not intersect with
the convex hulls formed from natural vectors from other families.
This fact inspired us to calculate the dimension of natural vectors
when the convex hulls from different families for genomic
sequences are mutually disjoint. Then, the genome space exists,
and the subspace of the Euclidean space under this dimension is
the genome space.

A virus is small in size and simple in structure, with only one
kind of nucleic acid (DNA or RNA). We downloaded all reference
viral genomes in NCBI to construct the genome space. The refer-
ence genomes are of high quality and reliable for genome space
construction. We find that the viral genome space is located in a
32-dimensional Euclidean space, which means that the convex hull
principle for vial genomes holds in a 32-dimensional space. This
study shows that the Euclidean distance of the natural vectors can-
not reflect the biological similarity of genome sequences according
to the results of the nearest neighborhood classification. Under
multiple attempts for the metric definitions, we propose a new
natural metric that contains the differences in the genome distri-
butions of 1-mer to n-mer [15–17]. We define the metric as the
weighted summation of Euclidean distance of k-mer Natural Vec-
tors. The uncertainty of k gives the space to adjust the weights
and improve the classification accuracy using the metric definition.
The classification and phylogenetic results of virus families demon-
strate the performance of the metric definition. The construction of
genome space with the novel natural metric makes it possible to
characterize the huge genome universe and solve the fundamental
problems of genome sequences.

2. Materials and methods

2.1. Virus genomic sequences dataset and the statistic information

There are 9603 viral reference sequences in NCBI (National
Center for Biotechnology Information) up to March 2020 (ftp://f
tp.ncbi.nlm.nih.gov/genomes/Viruses). We download all
sequences and update our lab database VirusDB [18]. In this
study, we remove three types of sequences: (1) viruses without
Baltimore class label; (2) viruses without family label; and (3)
families including one or two sequences. And 7382 sequences
are retained, which belong to 83 families, 304 genera, and 7 Bal-
timore classes (dsDNA, ssDNA, dsRNA, (+) ssRNA, (–) ssRNA,
ssRNA-RT and dsDNA-RT). The sequence statistical information
is shown in Fig. A.1. Baltimore class I contains the most
sequences, as well as the most families and genera, the average
sequences length is also the longest. Baltimore class Ⅵ only has
1 family and Baltimore class Ⅶ has 2 families, the two classes
only account for 2% of the total number of reference sequences.
It is worth noting that some viruses from Baltimore class I ~ V
have multiple segment genomic sequences. The detailed acces-
sion numbers are shown in Data A.1, and families and genera
information are shown in Data A.2 and A.3.

2.2. Natural vector with high order central moments

Let S ¼ s1s2s3 � � � sn be a genomic sequence of length n, and
L ¼ A;C;G; T=Uf g. For k 2 L, we define the indicator functions:
wk �ð Þ : L ! 0;1f g, i.e.:

wk sið Þ ¼ 1; ifsi ¼ k;
0; otherwise:

�
Where si 2 L; i ¼ 1;2;3; � � � ;n:
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� Let nk ¼
Pn

i¼1wk sið Þ denote the counts of nucleotide k in S.

� Let lk ¼
Pn

i¼1i
wk sið Þ
nk

specify the average location of letter k.

� Let Dk
j ¼

Pn
i¼1

i�lkð Þjwk sið Þ
nj�1
k

nj�1
be the j-th central moment of position

of letter k.

Then we can get (8 + 4n)-dimensional Natural Vector:

nA;nC ;nG;nT ;lA;lC ;lG;lT ;D
A
2;D

C
2 ;D

G
2 ;D

T
2; � � � ;DA

nþ1;D
C
nþ1;D

G
nþ1;

�
DT

nþ1; � � �
�

Here we give an example. If the genomic sequence is ACGG-
TAGTCC, the indicator functions are shown in Table A.1.

The corresponding components of distribution vector are calcu-
lated as follows:

� nA ¼ 2;nC ¼ 3;nG ¼ 3;nT ¼ 2.
� lA ¼ 1 � 12 þ 6 � 12 ¼ 3:5; lC ¼ 2 � 13 þ 9 � 13 þ 10 � 13 ¼ 7;
lG ¼ 3 � 13 þ 4 � 13 þ 7 � 13 ¼ 4:67; lT ¼ 5 � 12 þ 8 � 12 ¼ 6:5.

� DA
2 ¼ 1�7

2ð Þ2
2�10 þ 6�7

2ð Þ2
2�10 ¼ 0:63;

� DC
2 ¼ 2�7ð Þ2

3�10 þ 9�7ð Þ2
3�10 þ 10�7ð Þ2

3�10 ¼ 1:27;

� DG
2 ¼ 3�14

3ð Þ2
3�10 þ 4�14

3ð Þ2
3�10 þ 7�14

3ð Þ2
3�10 ¼ 0:29;

� DT
2 ¼ 5�13

2ð Þ2
2�10 þ 8�13

2ð Þ2
2�10 0:23;

Then the 12-dimensional Natural Vector is:
ð2;3;3;2;3:5;7;4:67;6:5;0:63;1:27;0:29;0:23Þ.

2.3. k-mer Natural vector

K-mer li is a string of length k composed of four nucleotides. If
genomic sequence is still S ¼ s1s2s3 � � � sn, si 2 fA;C;G; T=Ug, li½j� is
the location of the j-th occurrence of a k-mer li in S,

i ¼ 1;2; � � � ;4k. For each given k, the distributions of a k-mer li
can be described by three quantities.
� nli denotes the counts of k-mer li occurrences in S;
� lli

specify the average location of k-mer li;

� Dli
m ¼Pnli

m¼1

li j½ ��lli

� �m

nm�1
li

n�kþ1ð Þm�1 ðm ¼ 1;2 � � � ;nli ) is the m-th central

moment of emergence position of letter k-mer li

Thus,highorderk-merNaturalVectorforsequenceSisdefinedby:

nl1 ; :::;nl
4k
;ll1

; � � � ;ll
4k
;Dl1

2 ; � � � ;D
l
4k

2 ; � � � ;Dl1
n ; � � � ;D

l
4k
n

� �
:

And its dimensional is 4k � nþ 1ð Þ:k-mer Natural Vector with
second central moment has been verified to be enough to represent
the sequence and satisfies one-to-one mapping, so the k-mer Nat-

ural Vector is 4k � 3 dimension:

nl1 ; :::;nl
4k
;ll1

; � � � ;ll
4k
;Dl1

2 ; � � � ;D
l
4k

2

� �
:

2.4. Convex hull principle

Convex hull is one of the most fundamental concepts in compu-
tational geometry [19]. The geometric structure is widely used in
many application domains, such as image processing [20,21] and
pattern recognition [22,23]. Mathematically, the convex hull of a
point set x1; x2; � � � ; xkf g; xi 2 Rn is the minimal convex set that con-
tains these points. Note that a convex set C is the region such that
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straight line segment connecting any two points within C is also
located in C. Any region which has hollowness, dent or extended
vertices are not convex. Particularly a triangle is composed of all
convex combinations of its three vertexes and a tetrahedron con-
sists of the convex combinations of its four vertexes in three
dimensions. By the concept of convex combinations, the convex
hull of a finite point set C is equivalently defined as the set of all
convex combinations of points in C:

convC ¼ h1x1 þ h2x2 þ � � � þ hkxkf jxi 2 C; h1 þ h2 þ � � � þ hk ¼ 1;
hi � 0; i ¼ 1;2; � � � ; kg:

One of the important properties for the convex hull is that its
boundary is spanned by some points of C, called vertexes and the
rest points of C are lying inside the hull. When all xi are two dimen-
sional vectors, the convex hull is a convex polygon. In general, the
convex hull is called convex polytope in high dimensional space.
We use the convhull function incorporated in MATLAB to find the
convex hull of a finite point set.

In this study, xi is the natural vector and we propose a convex
hull principle of molecular biology for viruses, pointing out that
convex hulls corresponding to different virus families or genera
do not overlap with each other. For those viruses with a single seg-
ment sequence, we directly calculate the natural vectors and then
establish a convex hull. For those viruses with multi-segment
sequences, we first calculate the natural vector of each segment
of the virus and establish a small convex hull for these segment
sequences, and then build a large convex hull with the remained
viruses of the family to which the virus belongs. In this way each
family corresponds to a point cloud, which reflects the genetic vari-
ety of this family.

2.5. Linear programming method

Determining the separateness of two convex polyhedrons is a
significant problem. Most of the popular methods are capable in
low dimensional space [24]. While these approaches fail to work
if the dimension is high. Calculating the distance between two con-
vex polytopes is an efficient way to judge whether two convex
hulls intersect, which can be implemented by quadratic optimiza-
tion regardless of the dimension. If A is the convex hull of point set
fa1; a2; � � � ; amg and B is the convex hull of point set fb1; b2; � � � ; bng.
The method to prove the separateness between A and B is the lin-
ear programming (LP) method, it can be solved through linprog
function in MATLAB. The mathematical principle is that if there
exists non-zero coefficients fk1; k2; � � � ; km; b1; b2; � � � ; bng in feasible
domain such that the optimization value of the following LP prob-
lem is 0, then A and B intersect:

min 0

s:t:
Pm

i¼1kiai ¼
Pn

j¼1bjbjPm
i¼1ki ¼ 1; ki � 0; i ¼ 1;2; � � � ;mPn
j¼1bj ¼ 1;bj � 0; j ¼ 1;2; � � � ; n
2.6. The projection method

If two convex hulls do not intersect in high dimension, the cor-
responding projected 2-dimensional convex hulls do not intersect
either. To visualize the disjoint convex hulls, we project the high
dimensional convex hulls into 2-dimensional space. We use the
idea of support vector machine (SVM) and Linear Discriminate
Analysis (LDA) as the projection method to achieve our goal.

SVM is a famous method to do classification [25]. The easiest
situation is the linear kernel, that is to say, if two sets of points
in high dimensional space are linearly separable, there exists a sep-
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arating hyperplane between these two sets. Then we can take the
normal vector and the vector perpendicular to it as the direction of
the new coordinate axis, and project natural vectors in these two
directions. Then the convex hulls of these two sets are disjoint in
2-dimensional space. The mathematical method to determine the
normal vector and offset item of the hyperplane is as follows. There

is a dataset D ¼ x1; y1ð Þ; x2; y2ð Þ; � � � ; xm; ymð Þf g; xi 2 Rd; yi 2 fþ1;�1g
including two classes of samples. The separating hyperplane is

wTxþ b ¼ 0;w ¼ w1;w2; � � � ;wdð ÞT is the normal vector, b is the off-
set item. To find the separating hyperplane with the maximum
margin, it is equivalent to solve the following convex quadratic
programming problem:

min
w;b

1
2 wj jj j2

s:t:yi wTxiþbð Þ � 1;i¼1;2;���;m:

The dual problem is easier to solve, so the dual algorithm is usu-
ally used to find the solution of the primal problem. First, Lagrange
multiplier aiði ¼ 1;2; � � � ;mÞ for each constraint is introduced and
the Lagrange function is defined as: L w; b;að Þ ¼ 1

2 wj jj j2
�Pm

i¼1aiyi w
Txi þ b

� �þPm
i¼1ai: According to the Lagrange duality,

the dual problem of the primal problem is maximal-minimum
problem: max

a
min
w;b

L w; b;að Þ: To find the optimal solution is equiv-

alent to solve the following dual problem:

min
a

1
2

Pm
i¼1

Pm
j¼1aiajyiyj xi � xj

� ��Pm
i¼1ai

s:t:
Pm

i¼1aiyi ¼ 0;ai � 0; i ¼ 1;2; � � � ;m:

From the above derivation steps and our dataset is discrete
point sets, the KKT (Karush–Kuhn–Tucker) conditions hold, so a�

is the optimal solution of the dual problem:

rwL w; b;að Þ ¼ 0;
rbL w; b;að Þ ¼ 0;

ai yi w
Txi þ b

� �� 1
� � ¼ 0;
yi w

Txi þ b
� �� 1 � 0;

ai � 0; i ¼ 1;2; � � � ;mð Þ;

8>>>>>><
>>>>>>:

:

We conclude that w� ¼Pm
i¼1a�

i yixi and b� ¼ yj �
Pm

i¼1a�
i yiðxi � xjÞ.

There is a vector v� being perpendicular to vector w. For vector
V ; yð Þ 2 D, we can project it into 2-dimensional space, and the
new coordinates are V �w� and V � v�. Then the points in D can be
separated into 2 clusters.

Above prime and dual problems are both quadratic program-
ming, and they can be solved by quadprog function in build-in
MATLAB or MOSEK toolbox. The size of the quadratic problem
relies on sample numbers, which will be time-consuming in real
operations, so there is an efficient algorithm, which can be imple-
mented by libsvm toolbox [26].

Linear Discriminate Analysis (LDA) is a dimension reduction
technology of supervised learning. The label of each sample in the
dataset is known before, which is different from Principal Compo-
nentAnalysis (PCA). The high dimensional vectors are projected into
lowdimensionalpoints such that thepoints fromthe samegroupare
as close as possible, and reverse for the different group [27].

We use SVM or LDA to project the high dimensional vectors into
2-dimensional space, then the classification result can be visual-
ized in a low dimensional space.

3. Results

3.1. Convex hull principle for genomes and viral genome space
construction

All of the reference viral genome sequences in NCBI up to March
2020 were downloaded, and we excluded sequences that have no



Fig. 1. The flowchart for constructing the viral genome space. The genome space is constructed based on 83 families. All convex hulls in a 32-dimensional space are mutually
disjoint.
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Baltimore classes or family labels. We also excluded the sequences
from these families that have only one or two sequences. The dataset
contains 7,382 sequences of 83 families. We used these viral
sequences to construct genome space, the flowchart of constructing
the genome space is illustrated in Fig. 1. Each viral genomic
sequence S was mapped into a (8 + 4n)-dimensional natural vector
first:

nA;nC ;nG;nT ;lA;lC ;lG;lT ;D
A
2;D

C
2 ;D

G
2 ;D

T
2; � � � ;DA

nþ1;D
C
nþ1;D

G
nþ1;D

T
nþ1

� �
;

where n = 1, 2, 3, . . ., 8. nk denotes the count of nucleotide k in S, lk

specifies the average location of letter k. Dk
j is the j-th central

moment of the position of the letter k, k 2 A;C;G; T=Uf g. The natural
vectors are located in R8þ4n. The convex hull for each virus family in
this high dimensional Euclidean space is constructed based on the
(8 + 4n)-dimensional natural vectors, and there are C2

83 ¼ 3403 con-
vex hull pairs. The convex hull principle of genome states that con-
vex hulls corresponding to different families are mutually disjoint.
Therefore, we checked whether all convex hull pairs intersect in
R12;R16;R20;R24;R28;R32;R36;R40 (n ¼ 1; � � � ;8), respectively. A simple
way to determine the separation between two convex hulls is the
linear programming [28], in which

Pm
i¼1kiai ¼

Pn
j¼1bjbj is satisfied

if the convex hull pair corresponding to two point sets
fa1; a2; � � � ; amg and b1; b2; � � � ; bnf g intersect, where

Pm
i¼1ki ¼ 1;
Table 1
The number of disjoint convex hull pairs changes with the increase in the dimension of the
natural vector is more than 32 (n � 6), there are no intersecting convex hull pairs. Accordi
with the lowest dimension, which indicates that the viral genome space is sitting in a 32

Euclidean space n = 1 n = 2 n = 3

R12 R16 R20

No. of disjoint convex hull pairs 3221 3291 3338
No. of intersecting convex hull pairs 182 112 65
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Pn
j¼1bj ¼ 1. The numbers of disjoint convex hull pairs in different

spaces are shown in Table 1. With the increase in the dimension
of natural vectors, disjoint convex hull pairs also increase. When
no convex hull intersects another one, the convex hull principle
for viral genomes holds in R32: Therefore, the viral genome space
is located in a 32-dimensional Euclidean space. Our results suggest
that viruses with a similar nucleotide distribution lie in the same
convex hull, and all convex hulls show the global landscape of
viruses at the family level.

To visualize this result, we propose to use support vector
machine (SVM) [29] to project the 32-dimensional convex hull into
2-dimensional space. Because each convex hull pair has been con-
firmed not to intersect another in R32, we can find a hyperplane
xTxþ b ¼ 0 to separate them. We take the normal vector x of
the hyperplane and a random vector m on the hyperplane being
perpendicular to vector x as two directions of the new axis. We
then projected the natural vector V into the hyperplane of these
two vectors v and x. The new 2-dimensional coordinates are
V �x and V � m, respectively. Through SVM projection, the dimen-
sion of natural vectors is reduced to 2, then the convex hull based
on the new 2-dimensional vectors for each family is formed. Every
two convex hulls from two viral families do not overlap, and the
complete results are stored in https://github.com/sunn19/Virus_
Genome_Space.git.
Euclidean space. Total convex hull pairs of family are 3404. When the dimension of the
ng to the definition of embedding dimension of the moduli space, we chose the space
-dimensional Euclidean space.

n = 4 n = 5 n = 6 n = 7 n = 8

R24 R28 R32 R36 R40

3354 3395 3403 3403 3403
49 8 0 0 0

https://github.com/sunn19/Virus_Genome_Space.git
https://github.com/sunn19/Virus_Genome_Space.git


Fig. 2. Virus convex hull landscape projection in R2. The numbers represent groups of viruses, and group name can be found in Data A.2 and A.3. The boundary of each convex
hull is marked in black color.
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To combine all convex hulls in one figure, we used the lin-
ear discriminant analysis (LDA) [30] method to transform the
high-dimensional convex hull into a 2-dimensional space. The
4230
2-dimensional landscape at the family level is shown in
Fig. 2A. Here, we only consider the hull shape instead of size
and location. The convex hulls of families for each Baltimore
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class are also mutually disjoint, and the results are presented
in Fig. A.3.

Notably, convex hulls are also mutually disjoint at the genus
level in the 32-dimensional genome space. We removed three
types of sequences: the sequences of the genus that have less than
two sequences, or have no genus label, or are not classified. There-
fore, total 304 sequences of genera are remained. There are
C2
304 ¼ 46056 convex hull pairs. Similarly, we built the virus land-

scape at the genus level. The 2-dimensional projection results are
stored in https://github.com/sunn19/Virus_Genome_Space.git.
We displayed the convex hulls of genera in multiple pictures
and, due to the limitation of picture size, there can be an overlap-
ping genus in different pictures. We only show part of the virus
landscape in Fig. 2B. The remaining part of the landscape is exhib-
ited in Fig. A.2 A and A.2 B. Three pictures constitute the 2-
dimensional landscape of viruses at the genus level. There are
102 genera in three pictures, respectively. Genus #203 is in both
Fig. 2B and A.2 A, genus #102 is in both Fig. A.2 A and A.2 B.

3.2. Novel natural metric

To show the geometry of the viral genome space, a descriptive
metric on this space shall be provided. We used the nearest neigh-
borhood (1NN) classification accuracy to determine the metric. The
1NN definition here is as follows, for a virus sequence V1, we cal-
culated the virus sequence V2 nearest to V1, and if these two
sequences have the same family label, the classification result is
correct, and the accuracy equals the number of correct labels
divided by the total number of labels. To find a reliable metric,
we removed virus sequences containing characters other than
ACGT; a total of 6916 viral reference sequences remained. Intu-
itively, the Euclidean metric can be put on the 32-dimensional
space, but the accuracy based on natural vector was only 79.9%,
which indicates that the Euclidean distance is not a proper metric
for this space. This requires us to define a new metric on the space.

K-mer natural vector combines the frequency of k-mer and tra-
ditional natural vector, which reflects the distributions of strings of
length k in the genome sequences. Each genome sequence can be

mapped into a 4k nþ 1ð Þ-dimensional vector:

nl1 ; :::;nl
4k
;ll1

; � � � ;ll
4k
;Dl1

2 ; � � � ;D
l
4k

2 ; � � � ;Dl1
n ; � � � ;D

l
4k
n

� �
;

k-mer li is a string of length k composed of four nucleotides. nli

denotes the counts of k-mer li in S, lli
specifies the average location

of k-merli, and Dli
j is the j-th central moment of emergence position

of letter k-merli. The correspondence between a genetic sequence
and its associated k-mer natural vector is one-to-one [31]. The 1-
mer natural vector is the main component representing the
sequence distribution. The new natural metric based on k-mer nat-
ural vector is defined as:

d ¼ d1 þ 1
2
d2 þ � � � þ 1

2n�1 dn;

where dk is the Euclidean distance between k-mer natural vectors of
two genomic sequences. The beauty of our new natural metric def-
Table 2
The nearest neighborhood classification accuracies of virus family based on the new nat
accurate with the increase in n. For weight 1

k2
ðd ¼Pn

k¼1
1
k2
dkÞ, the accuracy decreases wh

d ¼ d1 þ 1
2d2 þ � � � þ 1

2n�1 dn .

Weight n 1 2 3 4

1
2k

Accuracy 79.9% 82.8% 83.3% 83
1
k2

Accuracy 79.9% 82.8% 83.3% 83
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inition is that it contains the distribution differences from 1-mer to
n-mer. The accuracies of virus family classification based on the
new metric are shown in Table 2. When n ¼ 9, the accuracy is
88.3%. We found that with the increase in n, the classification accu-
racy increased. We believe that the natural metric should involve all
the k-mers for k� 1. Consequently, we conclude that, when n is
large enough, the new metric can truly reflect the relationship
between viral sequences.
3.3. Natural graph for a small viral dataset

To illustrate that the new metric is meaningful, we used a small
dataset to draw a natural graph, which is a distance-based classifi-
cation method and a direct image of the relationships between
viral sequences could be obtained [32]. The dataset includes eight
families with fewer than ten sequences from Baltimore class I III IV
V, which are Bicaudaviridae, Tectiviridae, Picobirnaviridae,
Quadriviridae, Hepeviridae, Mesoniviridae, Filoviridae, and Ophioviri-
dae. The virus accession numbers are in Data A.4. The natural
graphical representation is shown in Fig. 3. The number in the
graph represents a viral sequence, and the sequences from the
same family are marked in the same color. The arrow from
sequence #2 to #3 indicates that #3 is the closest sequence to
#2. Two-way arrow indicates the two sequences are the closest
sequence to each other. The blue arrow shows the closest distance
(1-level), and the red arrow shows the sub closest distance (2-
level). For virus #2 (GenBank accession number: NC_029316), it
is from Bicaudaviridae of Baltimore class I. In the natural graphical
representation, it is closest to virus #1 (GenBank accession num-
ber: NC_007409), virus #1 is closest to virus #2 as well, the dis-
tance based on the k-mer natural vectors of the two viral
sequences is 115349.60. Virus #2 and virus #4 are the next closest
to each other, and the distance is 125452.95. There may be some
viral sequences missing in our dataset, which could be located in
virus #2 and virus #4; it is a challenging job to find these members.
The unique natural graph gives an accurate classification result and
shows the direct phylogenetic relationships between these eight
families. We also constructed a natural graph based on Euclidean
distance for comparison, as shown in Fig. A.4 and viral sequences
from the same family are lying together, which further demon-
strates the meaningfulness of our new metric definition. Our met-
ric contains more information about the distribution difference of
two sequences than Euclidean distance.
3.4. Phylogenetic analysis for each Baltimore class

As a further application of natural metric, we performed a phy-
logenetic analysis for each Baltimore class. The distance matrix
was computed based on the new metric, and the phylogenetic tree
was constructed by UPGMA algorithm [33] of MEGAX [34,35].
Fig. 4A shows the phylogenetic tree of 5 families from Baltimore
class I, which consists of 399 viral sequences and they are divided
into 5 clusters. The number of sequences per leaf is displayed next
to its right. Fig. 4B reveals the clustering result of four families, Cir-
coviridae, Nanoviridae, Inoviridae and Parvoviridae from Baltimore
ural metric for different n. For weight 1
2k
ðd ¼Pn

k¼1
1

2k�1 dkÞ, the classification is more
en n = 9, indicating that this definition is unstable. The natural metric is defined as

5 6 7 8 9

.3% 84.1% 85.8% 86.9% 87.4% 88.3%

.3% 84.4% 86.3% 87.7% 88.0% 85.6%

https://github.com/sunn19/Virus_Genome_Space.git


Fig. 3. Natural graph of nine families based on the new natural metric. Each node represents a viral genome. The nodes marked in the same color are from the same family.
The distance between each two nodes is tagged on the arrow. The arrow from sequence #2 to #3 indicates that #3 is the closest sequence to #2. Two-way arrow indicates the
two sequences are the closest sequence to each other. The blue arrow shows the closest distance (1-level), and the red arrow shows the sub closest distance (2-level). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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class II, which shows that the genomes are divided into four sub-
groups, and it is in agreement with the old taxonomy. The phylo-
genetic trees for other Baltimore classes can be found in
Figs. A.5–A.8, which all gave perfect clustering results.

As a comparison, we also drew the tree based on Euclidean dis-
tance for each Baltimore class. The clustering trees are shown in
Figs. A.9–A.14. Fig. A.9 is the phylogenetic tree based on Euclidean
distance for Baltimore class I, where Siphoviridae and Adenoviridae
cannot be separate. Viral sequences from Inoviridae and Parvoviri-
dae are mixed in Fig. A.10. In Fig. A.11, a sequence from Totiviridae
clusters together with Chrysoviridae, and two sequences from Par-
titiviridae do not cluster with the other sequences in Partitiviridae.
In Figs. A.12–A.14, families from Baltimore class Ⅳ, V, and Ⅶ are
all separate. The above results demonstrate that the clustering
trees based on the new metric outperform those of the Euclidean
distance method and reveal the rationality of the new metric.
4. Discussion and conclusion

We addressed two problems proposed in the comparative geno-
mics of 23 mathematical challenges proposed by the Defense
Advanced Research Projects Agency (DARPA) in 2008 [36], namely,
‘‘The Geometry of Genome Space” and ‘‘What are the Fundamental
Laws of Biology?”. Through the convex hull principle, we found
that the viral genome space is located in a 32-dimensional Eucli-
dean space. In this space, we defined a novel natural metric, which
is the weighted summation of the Euclidean distance. It contains
the differences in the genome distributions of 1-mer to n-mer nat-
ural vectors. The new natural metric can reflect biological similar-
ity. Many methods based on the k-mer character have been
developed. However, most of them are based only on frequency,
without considering the distribution of k-mers, and the ordinary
k-mer methods lose a lot of information since they cannot recover
the sequence. The k-mer natural vector method contains both the
frequency and the distribution of k-mers, which does not lose
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information and produces a one-to-one correspondence between
genome sequences and vectors in a finite dimensional space. It is
a classical dilemma in k-mer methods to choose a proper k. For
each k, we get a metric, but which only gives partial information.
Thus, we weighed the distance of k-mer natural vector and
calculated the nearest neighborhood accuracy to determine
which metric is better. We tested other metrics, such as
the Manhattan distance d x; yð Þ ¼Pn

i¼1 yi � xi
�� ��� �

, Chebyshev

distance d x; yð Þ ¼ max
1�i�n

yi � xij j
� 	

and cosine similarity

cos \ x; yð Þð Þ ¼ x�y
xj j yj j ¼

Pn

i¼1
xi	yiPn

i¼1
x2
i

� �1
2	
Pn

i¼1
y2
i

� �1
2

 !
, and the Euclidean dis-

tance d x; yð Þ ¼ Pn
i¼1 yi � xið Þ2

� �1
2

� 	
had the best classification per-

formance. Moreover, we check several metrics with different
weights, for example, d ¼Pk

1
kk
dk and d ¼Pk

1
k2
dk, while the met-

ric (d ¼P
k

1
2k�1 dk) performs best on the one label classification,

where dk is the Euclidean distance of k-mer natural vector. The
beauty of our new metric definition is that all k-mers are involved.
Unfortunately, the limitation of our computer hardware makes it
difficult to compute the k-mer natural vectors when k goes
to greater than 9. The classification and phylogenetic results still
imply the new metric with weight 1

2k
is very powerful.

The geometry of genome space shows that the convex hull prin-
ciple is fundamental in genome analysis because the distribution of
genome sequence determines its property. The underlying princi-
ple is that species close to each other have a similar distribution
of nucleotides in their complete genomes. The natural vector is
used to describe the distribution of nucleotides mathematically,
and each genome sequence is represented as a point uniquely in
high dimensional Euclidean space. Then using all these points,
one can form a convex hull in this space, which is helpful to
describe the similarity of the distribution among species. The con-
vex hull principle as a fundamental law of molecular biology for



Fig. 4. Phylogenetic trees of viruses from Baltimore class I and II, respectively. In a 32-dimmensional genome space, we can use the new metric to perform phylogenetic
analysis. (A) Tree of five families from Baltimore I. Sequence number of each group is presented besides the tree. (B) Tree of four families from Baltimore II. Genome sequences
are clustered into four clades.
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genome states that the convex hulls corresponding to different
families are mutually disjoint. Besides, there are no two species
that give the same point in the convex hull. Since the convex hull
delimits and delineates the boundary of the same family or genus
among the genome universe, if we can find a nucleotide sequence
whose natural vector lies in the convex hull, then we have found a
new, undiscovered species in this family [37]. Most phylogenetic
analysis is mainly based on known sequences. Convex hull princi-
ple makes it possible to detect unknown but possible existent
sequences and conduct further analysis. Moreover, it can create
genome space and can be used to sequence classification and gen-
ome comparison with the same topological structure globally.
Thus, we established the fundamental laws of genomes from a
mathematical perspective.

There are still a few remaining goals to be accomplished. First,
the dimension determination of the natural vector is associated
with the size and category of the genome sequence dataset. If we
use other genome datasets, such as bacteria or archaea, we may
need to recalculate the dimensions of the space. Second, the
4233
boundaries of protein convex hull have been demonstrated to be
basically stable [10]. However, the resulting convex hull bound-
aries of viruses may become bigger as more viral sequences are
discovered. We will test the stability of the boundaries of virus
family in future studies.
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[23] Cupec R, Vidović I, Filko D, Ðurović P. Object recognition based on convex hull
alignment. Pattern Recogn 2020;102:107199.

[24] Muller DE, Preparata FP. Finding the intersection of two convex polyhedra.
Theoret Comput Sci 1978;7:217–36.

[25] Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin
classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning
Theory 1992;92:144.

[26] Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Trans
Intell Syst Technol 2011;2:1–27.

[27] Barker M, Rayens W. Partial least squares for discrimination. Journal of
Chemometrics. 2003;17:166–73.

[28] Boyd S, Lieven V. Convex optimization. Cambridge 2004.
[29] Cortes C, Vapnik V. Support vector networks. Machine Learning.

1995;20:273–97.
[30] Martinez AM, Kak AC. PCA versus LDA. IEEE Trans Pattern Anal Mach Intell

2001;23:228–33.
[31] Deng M, Yu C, Liang Q, He R, Yau SST. A novel method of characterizing genetic

sequences: genome space with biological distance and applications. Plos one.
2011;6:E17293.

[32] Zheng H, Yin CC, Hoang T, He RL, Yang J, Yau SST. Ebolavirus classification
based on natural vectors. DNA Cell Biol 2015;34:418–28.

[33] Sneath PHA, Sokal RR. Numerical taxonomy. Freeman, San Francisco.
[34] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGAX: molecular evolutionary

genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–9.
[35] Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis

(MEGA) for macOS. Mol Biol Evol 2020.
[36] Defense Advanced Research Projects Agency (DARPA) 2008 proposal of the 23

mathematical challenges. http://www.darpa.mil/dso/personnel/mann.htm.
[37] Zhao R, Pei S, Yau SST. New genome sequence detection via natural vector

convex hull method. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, doi: 10.1109/TCBB.2020.3040706.

https://github.com/sunn19/Virus_Genome_Space.git
https://doi.org/10.1016/j.csbj.2021.07.028
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0020
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0025
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0030
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0030
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0045
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0055
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0055
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0060
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0060
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0060
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0070
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0070
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0070
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0075
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0075
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0080
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0085
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0085
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0095
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0095
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0100
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0105
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0140
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0145
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0145
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0150
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0150
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0155
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0155
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0155
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0160
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0160
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0170
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0170
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0175
http://refhub.elsevier.com/S2001-0370(21)00318-4/h0175
http://www.darpa.mil/dso/personnel/mann.htm

	Geometric construction of viral genome space and its applications
	1 Introduction
	2 Materials and methods
	2.1 Virus genomic sequences dataset and the statistic information
	2.2 Natural vector with high order central moments
	2.3 k-mer Natural vector
	2.4 Convex hull principle
	2.5 Linear programming method
	2.6 The projection method

	3 Results
	3.1 Convex hull principle for genomes and viral genome space construction
	3.2 Novel natural metric
	3.3 Natural graph for a small viral dataset
	3.4 Phylogenetic analysis for each Baltimore class

	4 Discussion and conclusion
	Funding
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


