
Fundamental Research 1 (2021) 559–564 

Contents lists available at ScienceDirect 

Fundamental Research 

journal homepage: http://www.keaipublishing.com/en/journals/fundamental-research/ 

Article 

Determination of the nucleotide or amino acid composition of genome or 

protein sequences by using natural vector method and convex hull principle 

Xiaopei Jiao 

a , 1 , Shaojun Pei a , 1 , Zeju Sun 

a , Jiayi Kang 

a , Stephen S.-T. Yau 

a , b , ∗ 

a Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China 
b Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, 101408, China 

a r t i c l e i n f o 

Article history: 

Received 25 April 2021 

Received in revised form 10 August 2021 

Accepted 12 August 2021 

Available online 3 September 2021 

Keywords: 

Natural vector 

Convex hull 

New sequences 

Optimization 

a b s t r a c t 

Although with the continuous development of sequencing technology, the number of genome and protein se- 

quences has grown rapidly, these sequences are only a small part of nature. Biologically, it is still a challenging 

and important problem to detect and predict some new genome or protein sequences based on real sequence 

data, which motivates us to solve the problem mathematically. The first step to predict the new sequences is 

determining the nucleotide or amino acid composition of them. In this paper, we apply natural vector method 

and convex hull principle to determine the nucleotide or amino acid composition of new genome or protein se- 

quences. Our algorithm is based on optimization strategy. The SARS-CoV-2 genome and protein datasets are used 

to verify the feasibility of our algorithm. Numerical experiments show that our algorithm can detect and predict 

possible number of each nucleotide or amino acid of genome and protein sequence with respect to the second 

order natural vectors. 
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. Introduction 

With the continuous development of sequencing technology, the

enome and protein sequences of many species have been well se-

uenced. The genome and protein sequences play a key role in biolog-

cal organisms because they can determine some internal factors, such

s adaption, evolution and phenotypes of life. Thus, these sequences

an serve as identification for different species. To distinguish genome

nd protein sequences of different species, many sequence coding meth-

ds are proposed to analyze the similarity of the sequences in the past

ecades [1–4] . We proposed a fast and accurate alignment-free method

alled natural vector method [5] . It associates a high dimensional vec-

or in Euclidean space to a genome or protein sequence, which performs

ell in different biological species, especially in viruses. 

The severe acute respiratory syndrome COVID-19 was discovered on

ecember 31, 2019 in China and is caused by a new type of coronavirus

alled SARS-CoV-2. Subsequently, many COVID-19 cases were reported

n the almost all over the world. A lot of SARS-CoV-2 genome and pro-

ein data have been measured and many different subtypes of the virus

ave been found [6] . However, the sequences of SARS-CoV-2 mutate

onsistently [7] . Due to this fact, detecting the variants of SARS-CoV-

 is very meaningful to study the properties of viruses and control the
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andemic of COVID-19. The first step to predict the variants is determin-

ng their nucleotide or amino acid composition. Therefore, we want to

ropose a data-driving algorithm to determine the nucleotide or amino

cid composition mathematically. The nucleotide or amino acid compo-

ition detected by our mathematical method will be beneficial and give

 guide to biological experimental research. 

Based on natural vector method, the sequences are transformed as

he points in the Euclidean space. And the first component of a natu-

al vector is the number of each nucleotide or amino acid. Then the

onvex hulls of natural vectors from different species are constructed to

tudy their relationships [8] . Mathematically, convex hull is the small-

st convex polygon formed by a set of points, where the convex polygon

ncloses all of the points in the set. The convex hull principle shows that

he convex hulls of the natural vectors of the sequences from different

pecies are disjoint [9] . The genome or protein sequences with natural

ectors in the same convex hull share similar properties and are highly

ikely from the same species. If new genome or protein sequences whose

atural vectors fall in the convex hull formed by known ones, those se-

uences are likely from the same species as known ones. Based on this

rinciple, we propose an algorithm to predict the number of each nu-

leotide or amino acid of new sequences. The genome and protein se-

uences of SARS-CoV-2 are used to test the algorithm and we get the

ossible nucleotide or amino acid composition of genome or protein of
ARS-CoV-2. 
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https://doi.org/10.1016/j.fmre.2021.08.010
http://www.ScienceDirect.com
http://www.keaipublishing.com/en/journals/fundamental-research/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fmre.2021.08.010&domain=pdf
mailto:yau@uic.edu
https://doi.org/10.1016/j.fmre.2021.08.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


X. Jiao, S. Pei, Z. Sun et al. Fundamental Research 1 (2021) 559–564 

2

2

𝑣  

w  

a

w  

t  

v

𝑣  

D  

(  

s

 

(  

a

ℝ  

t  

d

 

v  

t

𝐾

F  

 

s  

c  

(  

t  

i  

D  

D

w  

c

2

 

a  

f  

Z  

b  

t  

s  

q

 

o  

n  

fi

C  

w  

b



𝐷

𝐷

C  

t

𝐾

D  

t  

t  

fi  

s  

c

 

i  

f

 

fi  

s  

𝛼  

t  
. Problem formulation 

.1. Natural vector method 

⃗ = ( 𝑛 𝐾 , 𝜇𝐾 , 𝐷 

2 
𝐾 
, ⋯ , 𝐷 

𝑚 
𝐾 
) , (1)

here the first component { 𝑛 𝐾 , 𝐾 ∈  } is number of 𝐾 in the sequence

nd: 

𝜇𝐾 = 

1 
𝑛 𝐾 

𝑛 𝐾 ∑
𝑖 =1 

𝑆 [ 𝐾 ] [ 𝑖 ] , 

𝐷 

𝑗 

𝐾 
= 

𝑛 𝐾 ∑
𝑖 =1 

(
𝑆 [ 𝐾 ] [ 𝑖 ] − 𝜇𝐾 

)𝑗 
𝑛 
𝑗−1 
𝐾 

𝑛 𝑗−1 
, 2 ≤ 𝑗 ≤ 𝑚, 𝑚 ≤ min 

(
𝑛 𝐾 

)
(2) 

here 𝑆[ 𝐾][ 𝑖 ] represents the 𝑖 -th position of genome composition 𝐾 in

he sequence. For example, for DNA sequence, the second order natural

ector is: 

⃗ = ( 𝑛 𝐴 , 𝑛 𝐶 , 𝑛 𝑇 , 𝑛 𝐺 , 𝜇𝐴 , 𝜇𝐶 , 𝜇𝑇 , 𝜇𝐺 , 𝐷 

2 
𝐴 
, 𝐷 

2 
𝐶 
, 𝐷 

2 
𝑇 
, 𝐷 

2 
𝐺 
) (3)

efinition 1. (Integer point) Integer point of a sequence is a vector

 𝑛 𝐾 , 𝐾 ∈  ) which consists of the numbers of nucleotides for a DNA

equence or amino acids for a protein sequence. 

For example, for a DNA sequence, corresponding integer point is

 𝑛 𝐴 , 𝑛 𝐶 , 𝑛 𝑇 , 𝑛 𝐺 ) ∈ ℝ 

4 which consists of the numbers of nucleotides. For

 protein sequence, corresponding integer point is ( 𝑛 𝐴 , 𝑛 𝑅 , 𝑛 𝑁 

, ⋯ , 𝑛 𝑉 ) ∈
 

20 which consists of the numbers of amino acids. Therefore, the in-

eger point of a DNA or protein sequence is essentially first 4 or 20

imensional components of its corresponding natural vector. 

Next we introduce some elementary properties satisfied by natural

ector. Some basic computations show that all moments of natural vec-

or should satisfy the following conditions: ∑
𝐾∈ 

𝑛 𝐾 𝜇𝐾 = 

𝑛 ∑
𝑗=1 

𝑗, 

∑
∈ 

𝑛 𝐾 ∑
𝑖 =1 

𝑆[ 𝐾][ 𝑖 ] 𝑙 = 

∑
𝐾∈ 

𝑙−1 ∑
𝑝 =1 

𝐷 

𝑙 − 𝑝 +1 𝐾𝑛 𝑙− 𝑝 𝑛 𝑙− 𝑝 
𝐾 

𝜇
𝑝 −1 
𝐾 

+ 

∑
𝐾∈ 

𝑛 𝐾 𝜇
𝑙 
𝐾 

= 

𝑛 ∑
𝑗=1 

𝑗 𝑙 , 2 ≤ 𝑙 ≤ 𝑚. (4) 

or convenience, we denote second equation in (4) as 𝐹 ( ⃗𝛼, 𝑙) = 

∑𝑛 
𝑗=1 𝑗 

𝑙 .

Next we explain the relationship between a sequence and its corre-

ponding natural vector. If we select a biological sequence, we can cal-

ulate the corresponding 𝑚 -order natural vector by the formula (1) and

2) . Conversely, by the knowledge of statistics, if all the moments up

o order 𝑚 ≤ min ( 𝑛 𝐾 ) are obtained, its corresponding discrete sequence

s fully determined. Hence we show that a biological sequence (such as

NA or protein) is corresponding to an order- 𝑚 natural vector uniquely.

efinition 2. ( [10] ) Natural vector space up to order 𝑚 is defined as: 

  = { ⃖⃖⃖⃗𝑛𝑣 = ( 𝑛 𝐾 , 𝜇𝐾 , 𝐷 

2 
𝐾 
, ⋯ , 𝐷 

𝑚 
𝐾 
) |𝐾 ∈  , 𝑛 𝐾 ∈ ℤ , 

∑
𝐾∈ 

𝑛 𝐾 𝜇𝐾 = 

𝑛 ∑
𝑗=1 

𝑗, 

∑
𝐾∈ 

𝑙−1 ∑
𝑝 =1 

( 

𝑚 

𝑙 − 1 

) 

𝐷 

𝑙 − 𝑝 +1 𝐾𝑛 𝑙− 𝑝 𝑛 𝑙− 𝑝 
𝐾 

𝜇
𝑝 −1 
𝐾 

+ 

∑
𝐾∈ 

𝑛 𝐾 𝜇
𝑙 
𝐾 

= 

𝑛 ∑
𝑗=1 

𝑗 𝑙 , 2 ≤ 𝑙 ≤ 𝑚. } (5) 

hich is a set of all natural vectors satisfying up to 𝑚 -th order moment

ondition. 

.2. Convex hull principle 

Based on the natural vector method, each sequence is transformed

s a vector in the Euclidean space. Then convex hulls of natural vectors
560 
rom different biological groups can be constructed. Tian et al. [8] and

hao et al. [9] show the convex hulls of natural vectors from different

iological groups are disjoint, called convex hull principle. So based on

he principle, the problem of detecting some new genome or protein

equence from a biology group is turned into searching some new se-

uences whose natural vectors are in the convex hull of it. 

We consider one biology group consisting of 𝑁 sequences (genome

r protein). For every sequence, the corresponding natural vector is de-

oted by 𝑣 𝑖 = ( 𝑛 𝐾,𝑖 , 𝜇𝐾,𝑖 , 𝐷 

2 
𝐾,𝑖 

, ⋯ , 𝐷 

𝑚 
𝐾,𝑖 

) , 1 ≤ 𝑖 ≤ 𝑁 , where 𝐾 ∈  . We de-

ne the convex hull generated by { ⃗𝑣 1 , ⋯ , ⃗𝑣 𝑁 

} as below: 

onv ( ⃗𝑣 1 , ⋯ , ⃗𝑣 𝑁 

) ∶= 

{ 

𝑁 ∑
𝑖 =1 

𝛼𝑖 ⃗𝑣 𝑖 
||||𝛼𝑖 ≥ 0 , 

𝑁 ∑
𝑖 =1 

𝛼𝑖 = 1 

} 

(6)

here ⃗𝛼 = ( 𝛼1 , 𝛼2 , ⋯ , 𝛼𝑁 

) 𝑇 denotes the coefficient of convex linear com-

ination. 

We want to find a natural vector 𝑣 𝛼 = ( 𝑛 𝐾,𝛼, 𝜇𝐾,𝛼, 𝐷 

2 
𝐾,𝛼

, ⋯ , 𝐷 

𝑚 
𝐾,𝛼

) ∈
  contained in the Conv ( ⃗𝑣 1 , ⋯ , ⃗𝑣 𝑁 

) . We denote 𝑛 𝛼 = 

∑
𝐾∈ 𝑛 𝐾,𝛼 . 

We denote following vectors: 

𝑛 𝐾 = ( 𝑛 𝐾, 1 , 𝑛 𝐾, 2 , ⋯ , 𝑛 𝐾,𝑁 

) 𝑇 , 

𝜇𝐾 = ( 𝜇𝐾, 1 , 𝜇𝐾, 2 , ⋯ , 𝜇𝐾,𝑁 

) 𝑇 , 
⃗
 

𝑙 
𝐾 

= ( 𝐷 

𝑙 
𝐾, 1 , 𝐷 

𝑙 
𝐾, 2 , ⋯ , 𝐷 

𝑙 
𝐾,𝑁 

) 𝑇 , 2 ≤ 𝑙 ≤ 𝑚. (7) 

Then ⃗𝑣 𝛼 ∈ Conv ( ⃗𝑣 1 , ⋯ , ⃗𝑣 𝑁 

) is equivalent to existence of ⃗𝛼 such that: 

𝑛 𝐾,𝛼 = �⃗� ⋅ 𝑛 𝐾 , 

𝜇𝐾,𝛼 = �⃗� ⋅ 𝜇𝐾 , 

 

𝑙 
𝐾,𝛼

= �⃗� ⋅ �⃗� 

𝑙 
𝐾 
, 2 ≤ 𝑙 ≤ 𝑚. (8) 

onsidering 𝑣 𝛼 ∈   and Definition 2 , 𝑣 𝛼 must satisfy following equa-

ions: 

𝑛 𝐾,𝛼 = �⃗� ⋅ 𝑛 𝐾 ∑
∈ 

𝑛 𝐾,𝛼( ⃗𝛼 ⋅ 𝜇𝐾 ) = 

𝑛 𝛼∑
𝑗=1 

𝑗 

𝐹 ( ⃗𝛼, 𝑙) = 

𝑛 𝛼∑
𝑗=1 

𝑗 𝑙 , 2 ≤ 𝑙 ≤ 𝑚 (9) 

efinition 3. (Admissible integer point) If natural vector 𝑣 𝛼 is con-

ained in Conv ( ⃗𝑣 1 , ⋯ , ⃗𝑣 𝑁 

) , (i.e., Eq. 9 hold), then for DNA sequence,

he admissible point satisfying 𝑞-th moment condition is formed by the

rst 4-dimensional components of 𝑣 𝛼 (i.e., { 𝑛 𝐾,𝛼, 𝐾 ∈  } ). For protein

equence, the admissible point is formed by the first 20 dimensional

omponents of 𝑣 𝛼 . 

In this paper, we will focus on the second order natural vector space,

.e., 𝑚 = 2 in Eq. 9 . For second order natural vector space, the third and

ourth equations in Eq. 9 become: 

∑
𝐾∈ 

𝑛 𝐾 

( 

𝑁 ∑
𝑖 =1 

𝛼𝑖 𝜇𝐾,𝑖 

) 

= 

1 
2 
𝑛 𝛼( 𝑛 𝛼 + 1) 

∑
𝐾∈ 

𝑛𝑛 𝐾 

𝑁 ∑
𝑖 =1 

𝛼𝑖 𝐷 

𝐾,𝑖 

2 + 𝑛 𝐾 

( 

𝑁 ∑
𝑖 =1 

𝛼𝑖 𝜇𝐾,𝑖 

) 2 

= 

1 
6 
𝑛 𝛼( 𝑛 𝛼 + 1)(2 𝑛 𝛼 + 1) (10) 

In order to detect possible new natural vectors in convex hull, the

rst step is to find potential admissible integer points. Eq. 9 are hard to

olve directly because this is a large scale underdetermined equations of

⃗. Therefore, for a particular integer point { 𝑛 𝐾,𝛼, 𝐾 ∈  } , we consider

o transform the existence of solution of Eq. 9 to following optimization
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min �⃗�( or max �⃗�) 
∑

𝐾∈ 𝑛 𝛼𝑛 𝐾,𝛼

∑𝑁 

𝑖 =1 𝛼𝑖 𝐷 

𝐾,𝑖 

2 + 𝑛 𝐾,𝛼

(∑𝑁 

𝑖 =1 𝛼𝑖 𝜇𝐾,𝑖 

)2 

𝑠.𝑡. 
∑𝑁 

𝑖 =1 𝛼𝑖 = 1 ∑𝑁 

𝑖 =1 𝛼𝑖 𝑛 𝐾,𝑖 = 𝑛 𝐾,𝛼 ∀𝐾 ∈  ∑
𝐾∈ 𝑛 𝐾,𝛼

(∑𝑁 

𝑖 =1 𝛼𝑖 𝜇𝐾,𝑖 

)
= 

𝑛 𝛼 ( 𝑛 𝛼+1) 
2 

0 ≤ 𝛼𝑖 ≤ 1 , 𝑖 = 1 , 2 , ⋯ , 𝑁 

(11) 

If target value 1 6 𝑛 𝛼( 𝑛 𝛼 + 1)(2 𝑛 𝛼 + 1) lies between minimum and maxi-

um, then by Definition 3 , { 𝑛 𝐾,𝛼, 𝐾 ∈  } is an admissible integer point

atisfying second moment condition. 

In the following, we will take two main steps to solve the integer

oint detection problem. Step 1 is to find integer points in the convex

ull of integer points of known sequences (dataset). Step 2 is to check

nteger points found in step 1 and verify admissible integer points by

olving optimization problem Eq. 11 . We will discuss the details of these

wo steps in the next section. 

. Methods 

.1. Find integer points in the convex hull of integer points of known 

equences 

In order to find admissible integer points, first we need to find in-

eger points contained in the convex hull generated by known integer

 𝑛 𝐾 , 𝐾 ∈  } in dataset. So we present following two methods. 

Geometric Method [12] : Consider the convex hull generated by a

et of points 𝐴 = { 𝑎 𝑖 } 𝑁 

𝑖 =1 ⊂ ℝ 

𝑛 . Let Γ ⊂ ℝ 

𝑛 be an arbitrary face of the

onvex hull of point set 𝐴 , then Γ is a hyper plane, which can be denoted

y Γ = { 𝑥 ∈ ℝ 

𝑛 ∶ 𝑎 ⊤𝑥 + 𝑏 = 0 , 𝑎 ∈ ℝ 

𝑛 , 𝑏 ∈ ℝ } . 
Let 𝑦 0 = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑎 𝑖 be the center of the point set 𝐴 , which is in the

onvex hull of 𝐴 . Therefore, for any point 𝑥 0 ∈ ℝ 

𝑛 , if 𝑥 0 is inside the

onvex hull of 𝐴 , then 𝑥 0 and 𝑦 0 must be on the same side of hyper

lane Γ, namely: 

 𝑎 ⊤𝑥 0 + 𝑏 ) ⋅ ( 𝑎 ⊤𝑦 0 + 𝑏 ) ≥ 0 (12) 

hecking Eq. 12 for each face Γ, we can conclude whether the point 𝑥 0 
s inside the convex hull of 𝐴 . 

Linear Programming Method [8] : Consider the same case with geo-

etric method. In order to test whether 𝑥 0 is in convex hull, we consider

he following linear programming: 

 

min 𝜆( or max 𝜆) 
∑𝑁 

𝑖 =1 𝜆𝑖 𝑎 𝑖 , 

𝑠.𝑡. 
∑𝑁 

𝑖 =1 𝜆𝑖 = 1 , 𝜆𝑖 ≥ 0 
(13) 

f target value (component of 𝑥 0 ) lies between minimum and maximum

f Eq. 13 , 𝑥 0 is in convex hull. 

For genome sequences, the integer point components are four dimen-

ional. The relationship between an integer point and the convex hull

an be easily detected with the geometric method. 

For protein sequences, the integer point components are 20 dimen-

ional, and it is hard to apply the geometric method directly. In order to

educe computational cost furthermore, we first separate the 20 integer

omponents in the natural vector into 3 parts, (  1 ,  2 ,  3 ) , with each

art 7, 7 and 6 amino acids, respectively. For each part, the points we

eed to check are all points in the rectangle 
∏

𝐾∈ 𝑖 [ 𝑚 𝐾 , 𝑀 𝐾 ] , 𝑖 = 1 , 2 , 3 ,
here 𝑚 𝐾 , 𝑀 𝐾 are the minimal and maximal number of amino acid 𝐾 in

ne of the known proteins. For each part, we use geometric method to

nd all the integer points in the convex hull. Next, the Cartesian prod-

ct of these parts can be used. Finally we use linear programming to

heck these points. This decomposition method will have higher effi-

iency than using linear programming directly. 
561 
.2. Verify admissible integer point based on optimization theory 

In this section, we will focus on Eq. 11 and provide corresponding

ptimization theory and method. By some basic computation, Eq. 11 can

e written as standard quadratic programming form: 

P ∶ 
⎧ ⎪ ⎨ ⎪ ⎩ 
min 𝑥 ( or max 𝑥 ) 

1 
2 𝑥 

𝑇 𝐴𝑥 + 𝑥 𝑇 𝑐 

𝑠.𝑡. 𝐵𝑥 − 𝑏 = 0 
𝑀𝑥 ≤ 𝑓 

(14) 

here 𝑥 ∈ ℝ 

𝑛 , 𝐴 ∈ ℝ 

𝑛 ×𝑛 , 𝑐 ∈ ℝ 

𝑛 , 𝐵 ∈ ℝ 

𝑚 ×𝑛 , 𝑀 ∈ ℝ 

𝑝 ×𝑛 , 𝑥 ∈ ℝ 

𝑚 . Feasible

et is defined by Ω = { 𝑥 ∈ ℝ 

𝑛 |𝐵𝑥 − 𝑏 = 0 , 𝑀𝑥 ≤ 𝑓} . Correspondingly, we

ave: 

 

 

 

 

 

 

 

𝐴 = 2 
∑

𝐾∈ 𝑛 𝐾,𝛼𝜇𝐾 ⃗𝜇
𝑇 
𝐾 
, 𝑐 = 𝑛 𝛼

∑
𝐾∈ 𝑛 𝐾,𝛼�⃗� 𝐾 , 

𝐵 = ( ⃗𝑛 𝐾 , ⃗1 , 
∑

𝐾∈ 𝑛 𝐾,𝛼𝜇𝐾 ) 𝑇 , 𝑏 = ( 𝑛 𝐾,𝛼, 1 , 
1 
2 𝑛 𝛼( 𝑛 𝛼 + 1)) 𝑇 , 

𝑀 = ( 𝐼 𝑛 , − 𝐼 𝑛 ) 𝑇 , 𝑓 = (1 , ⋯ , 1 , 0 , ⋯ , 0) 𝑇 , 

(15) 

here 𝐼 𝑛 is an identity matrix. Notice that 𝐴 is a positive semidefinite

atrix, i.e., 𝐴 ≥ 0 . Next we will analyze the property of optimal solution

f (14) . Lagrangian function can be calculated as below: 

 ( 𝑥, 𝜆, 𝜇) = 

1 
2 
𝑥 𝑇 𝐴𝑥 + 𝑥 𝑇 𝑐 + ( 𝐵𝑥 − 𝑏 ) 𝑇 𝜆 + ( 𝑀𝑥 − 𝑓 ) 𝑇 𝜇, 𝜆 ∈ ℝ 

𝑚 , 𝜇 ∈ ℝ 

𝑝 
+ 

(16) 

ual function is defined by 𝑔( 𝜆, 𝜇) = min 𝑥 ∈ℝ 𝑛 𝐿 ( 𝑥, 𝜆, 𝜇) and dual opti-

ization problem is as below: 

ual problem ∶ 

{ 

max 𝜆,𝜇 𝑔( 𝜆, 𝜇) 

𝑠.𝑡. 𝜇 ∈ ℝ 

𝑝 
+ , 𝜆 ∈ ℝ 

𝑚 
(17) 

ased on dual theory, dual problem always provides a lower bound for

rimal problem. 

We focus on the case when optimal solution of dual problem is equal

o one of primal problem (strong duality). In this case, well known

arush-Kuhn-Tucker (KKT) condition [13,14] holds. 

heorem 3.1. (Karush-Kuhn-Tucker) [13 , 14] For an optimization prob-

em: 

 

 

 

 

 

min 𝑥 𝑓 ( 𝑥 ) 
𝑠.𝑡. 𝑔 ( 𝑖 ) ( 𝑥 ) = 0 , 𝑖 = 1 , ⋯ , 𝑛 

ℎ ( 𝑗) ( 𝑥 ) ≤ 0 , 𝑗 = 1 , ⋯ , 𝑚 

(18) 

ith strong duality, its local optimal solution satisfies: 

 

 

 

 

 

 

 

 

 

𝜕𝑓 

𝜕𝑥 𝑘 
+ 

∑𝑛 
𝑖 =1 𝜆𝑖 

𝜕 𝑔 ( 𝑖 ) ( 𝑥 ) 
𝜕𝑥 𝑘 

+ 

∑𝑚 
𝑗=1 𝜇𝑗 

𝜕ℎ ( 𝑗) ( 𝑥 ) 
𝜕𝑥 𝑘 

= 0 , 𝑘 = 1 , ⋯ , 𝑙 

𝑔 ( 𝑖 ) ( 𝑥 ) = 0 , 𝑖 = 1 , ⋯ , 𝑛 

𝜇𝑗 ℎ 
( 𝑗) ( 𝑥 ) = 0 , 𝑗 = 1 , ⋯ , 𝑚 

𝜇𝑗 ≥ 0 , 𝑗 = 1 , ⋯ , 𝑚 

(19) 

here condition corresponding to inequality constraints 𝜇𝑗 ℎ 
( 𝑗) ( 𝑥 ) = 0 , 𝑗 =

 , ⋯ , 𝑚 is called complementary slackness. 

Next we prove optimal solution of Eq. 14 satisfies KKT condition. 

heorem 3.2. Any local minimizer 𝑥 ∗ ∈ Ω of the problem Eq. 14 satisfies

he KKT conditions. 

roof. Since constraints of problem Eq. 14 consist of affine functions,

ased on Theorem 3.3 in the result of Eustaquio et al. [11] , then 𝑥 ∗ 

atisfies the KKT conditions. 

Theorem 3.2 shows the optimization problem corresponding to inte-

er point detection has good mathematical property. 

Based on strong duality property in Theorem 3.2 , we choose differ-

nt optimization algorithms to solve the problem Eq. 14 . For minimum,

ince 𝐴 is a positive semidefinite matrix, this is a convex optimization.
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Table 1 

An example to check first order condition of integer points. In column ’Re- 

sult’, ’1’ represents the integer point satisfies first moment condition, otherwise 

’0’. 

( 𝑛 𝐴 , 𝑛 𝐶 , 𝑛 𝑇 , 𝑛 𝐺 ) Min Value Target Value Max Value Result 

(8800,5379,9420,5731) 432933349 432930025 432936851.8 0 

(8800,5382,9423,5731) 433778037 433783785 433785876 1 

Table 2 

Proportion of interger points satisfying first moment con- 

dition. 

Trail 1 2 3 4 5 

Proportion 65.8% 68.5% 67.9% 66.5% 68.3% 
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Table 3 

New detected integer points satisfying second 

order moment condition and components of 

reference sequence. 

Integer point 𝑛 𝐴 𝑛 𝐶 𝑛 𝑇 𝑛 𝐺 

1 8800 5406 9429 5757 

2 8800 5404 9427 5759 

3 8800 5422 9454 5790 

4 8800 5403 9434 5757 

5 8800 5405 9424 5761 

6 8800 5406 9425 5757 

7 8800 5406 9423 5755 

8 8800 5406 9426 5755 

9 8800 5407 9419 5763 

10 8800 5404 9424 5761 

11 8800 5404 9427 5758 

Reference 8954 5492 9594 5863 

Table 4 

Nine integer points in the 20 dimensional convex hull. 

Integer point W M C R H Q V F I T 

New detected one 12 14 40 42 17 62 97 77 76 97 

Reference 12 14 40 42 17 62 97 77 76 97 

Integer point G P K L A S E D Y N 

New detected one 82 58 61 108 79 99 48 61 54 88 

Reference 83 58 61 108 79 99 48 61 54 88 

Fig. 1. Integer point comparison. Blue bar denotes nucleotide number of ref- 

erence sequence in the dataset. Yellow bar denotes average integer point of 

new detected 11 admissible points. The ’y-axis’ represents the corresponding 

nucleotide number. Result shows that there are high similarities between ref- 

erence sequence and new detected integer points. Biologically, new detected 

integers may have similar properties with known sequences in dataset. 

i  

f

 

m  

0  

m  

c  

o  

i

ctive set method can be applied. For maximum, this is a non-convex op-

imization problem, sequential quadratic programming can be applied. 

. Results 

.1. Integer point detection in the convex hull of genome sequences 

.1.1. Dataset pretreatment and numerical algorithm 

We download all the complete genome sequences of SARS-CoV-2

rom GISAID until July 19, 2020 ( https://www.gisaid.org/) . To ensure

he accuracy of analysis, the low-quality sequences which contain let-

ers other than A, C, G and T are eliminated from the dataset. All the se-

uences are in ’vertex.fasta’ which contains 8522 genome sequences. To

educe the calculation load, we only use a subset of the whole dataset to

onstruct the convex hull. We design following pretreatment algorithm

o make the convex hull large enough so that new admissible integer

oints can be found more easily. 

By Algorithm 1 , we select 1030 known SARS-CoV-2 natural vectors

rom whole dataset, i.e., a subset of dataset. 

In the following, we find integer points in the convex hull generated

y known integer { 𝑛 𝐾 , 𝐾 ∈  } by method in Section 3.1 . In our numer-

cal experiments, we will verify integer points in which component ’A’

s 8800. 

Next we introduce numerical algorithm. In order to calculate the

ptimization problem Eq. 11 , we first check whether the feasible set

onsisting of constraints is empty (first moment condition). Therefore

e propose following Algorithm 2 . 

After checking feasible set, we will solve the problem Eq. 11 . By

ection 3.2 , we can use active set method for minimum problem of

q. 14 and sequential quadratic programming for maximum. In sum-

ary, we obtain following Algorithm 3 . 

.1.2. Admissible integer points in convex hull of genome sequences 

In this subsection, we will show some numerical results of integer

oint detection. Through Algorithm 2 , we can screen integer points sat-

sfying first moment condition effectively. In Table 1 , we show an ex-

mple. 

In order to test robustness of the Algorithm 2 , we run this algorithm

or 5 times. In every trial, number of random integer points is set 1000.

he proportion of integer points satisfying first moment condition is

isted in Table 2 . 

The results are stable and it shows that the integer points satis-

ying the first moment condition is many enough. We can estimate

he total number of integer points satisfying first moment condition is
(65 . 8+68 . 5+67 . 9+66 . 5+68 . 3) 

5×100 × 304760 = 205408 and this is still a large num-

er. 

In the following, we make numerical experiments by Algorithm 3 .

et Toler = 10 −10 and MaxIterNum = 10 4 . Result shows that there ex-
562 
st 11 integer points satisfying second order moment condition. In the

ollowing Table 3 , we list them. 

Total time consumed is about 13.8 hours. The proportion of ad-

issible integers satisfying second moment condition is approximately

 . 11% . Upper bound of admissible integer points can be roughly esti-

ated (≈ 335) . It can be seen that with considering higher order moment

ondition, number of admissible integer points will rapidly decrease. In

rder to show difference between a reference sequence and detected

nteger points, we give an illustration in Fig. 1 . 

https://www.gisaid.org/\051
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Fig. 2. New detected admissible integer point in the convex hull of protein 

sequences. ’x’-axis represents different amino acid. ’y’-axis represents the cor- 

responding amino acid number. For illustration, the range of ’y’-axis is rescaled. 

Blue points are admissible integer point. Green bar denotes the scope of number 

of each amino acid in the dataset. 

Algorithm 2 Verification of first order moment condition 

Step 1. Randomly select 1000 integer points in dataset. 

Step 2. Calculate following optimization problem and obtain its mini- 

mum and maximum. 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

min 𝛼( or max 𝛼) 
∑

𝐾∈ 𝑛 𝐾,𝛼𝜇𝐾 

𝑠.𝑡. 𝛼 ⋅ 𝑛 𝐾 = 𝑛 𝐾,𝛼

0 ≤ 𝛼𝑖 ≤ 1 , ∀1 ≤ 𝑖 ≤ 𝑁 ∑𝑁 

𝑖 =1 𝛼𝑖 = 1 

Step 3. Check whether following condition holds, 

𝑛 𝛼∑
𝑗=1 

𝑗 ∈ [ min 
𝛼

∑
𝐾∈ 

𝑛 𝐾,𝛼𝜇𝐾 , max 
𝛼

∑
𝐾∈ 

𝑛 𝐾,𝛼𝜇𝐾 ] 

If above condition holds, corresponding particular integer point allows 

nonempty feasible set and can be verified second order moment condi- 

tion further. Otherwise, this integer point can be excluded. 

Algorithm 3 Verification of Second order moment condition 

Step 1. Import 1030 genome sequences information and calculate corre- 

sponding natural vectors. Next, we choose integers in which 𝑛 𝐴,𝛼 = 8800 . 
Number of integer points is 304760. Set tolerance ‘Toler’ and maximum 

iteration number ‘MaxIterNum’. 

Step 2. If IterNum > MaxIterNum, exit the program. Otherwise, ran- 

domly select an integer point ( 𝑛 𝐴,𝛼, 𝑛 𝐶,𝛼, 𝑛 𝑇 ,𝛼 , 𝑛 𝐺,𝛼) among 304760 items. 

Step 3. Calculate optimization problem (20). IterNum = IterNum + 1. 

If target value 
𝑛 𝛼 ( 𝑛 𝛼+1) 

2 lies between minimum and maximum of (20), it 

turns to next step. Otherwise, return to Step 2 . 

Step 4. Calculate (14) and obtain the minimum and maximum of 𝐹 ( 𝑥 ) . 
If the following condition holds, output corresponding integer point 

( 𝑛 𝐴,𝛼, 𝑛 𝐶,𝛼, 𝑛 𝑇 ,𝛼 , 𝑛 𝐺,𝛼) . 
𝑛 ∑

𝑗=1 
𝑗 2 ∈ [ min 𝐹 ( 𝑥 ) , max 𝐹 ( 𝑥 )] 

‖𝐵 ⋅ 𝑥 1 − 𝑏 ‖2 ‖𝑏 ‖2 + 

‖𝐵 ⋅ 𝑥 2 − 𝑏 ‖2 ‖𝑏 ‖2 < Toler 

where 𝑥 1 , 𝑥 2 represent minimum point and maximum point calculated 

by active set method and sequential quadratic programming. 
Furthermore, in order to verify the feasibility of our detec-

ion method, we make following numerical experiments. By detec-

ion algorithm proposed in this section, we can verify integer point

8792,5389,9466,5761) is an admissible integer point falling in the con-

ex hull. 

In the database of SARS-CoV-2 DNA sequences, we can find there

xists a real sequence whose number of nucleotides A, C, T, G

s indeed this integer point. The sequence information is ’ ℎ𝐶𝑜𝑉 −
9∕ 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎 ∕ 𝑁 𝑆𝑊 342∕2020 | 𝐸𝑃 𝐼 _ 𝐼 𝑆𝐿 _ 451604 |2020 − 03 − 29 ’. Com-

lete genome sequence is listed in Appendix 2 . This shows the feasibility

nd robustness of our integer detection algorithm and our method can

etect real sequence and potential new sequence. 

.2. Integer point detection in the convex hull of protein sequences 

.2.1. Dataset pretreatment and numerical algorithm 

The spike protein, which is critical for SARS-CoV-2 infection and dif-

ers CoV types, is responsible for ACE2 receptor binding and membrane

usion. So the amino acid sequences of spike protein of SARS-CoV-2

re downloaded for analysis. All the sequences are in ’protein_S_1.fasta’

hich contains 15586 amino acid sequences of spike proteins from the

ARS-CoV-2. However, most of the amino acid sequences are identical

nd there are only 841 different kinds of amino acid sequences in the

ataset. Different kinds of proteins are still similar to each other. In fact,

0046 of 15586 proteins has the same amino acid sequence, which can

e regarded as a reference sequence. Other 840 types of amino acid se-

uences can be regarded as a mutation from the reference sequence at

everal amino acid sites. For example, the only difference between the

econd most abundant amino acid sequence, ’D614G’, which exists 3124

imes in the dataset, and the reference sequence is that the 614th amino

cid changes from ’D’ to ’G’. Therefore, the convex hull generated by

equence in dataset is very small. 

Our main goal is to find admissible integer points in the con-

ex hull of protein sequences. The detection algorithm is similar to

ection 4.1 and is summarized as below. 

.2.2. Admissible integer points in convex hull of protein sequences 

For protein sequences dataset, the range of the number of each amino

cid is shown in Appendix 1 . By the method mentioned in Section 3.1 ,

e separate the 20 amino acids into three parts and detect each part

ith geometric method. Result shows that only 9 integer points in the

onvex hull generated by known integer points. All 9 integer points are

hown in Appendix 1 . 

For these 9 integer points, we calculate the optimization problem Eq.

1 by Algorithm 2 and 3 . Result shows that there exists unique admissi-

le integer point satisfying second order moment condition. In Fig. 2 , we

lgorithm 1 Data pretreatment 

tep 1. Calculate minimum and maximum in first 4 dimensional com-

onents of known natural vectors. 

: 8718 ∼9077,C: 5338 ∼5690,T: 9346 ∼9775,G: 5702 ∼6101. 

tep 2. Determine the scope of first 4 dimensional integer, which con-

ains minimum and maximum in first 4 dimensional integers of known

atural vectors. 

: 8718 ∼8795, 8955 ∼9077 

: 5338 ∼5393, 5491 ∼5690 

: 9346 ∼9467, 9601 ∼9775 

: 5702 ∼5762, 5864 ∼6101 

tep 3. Select known natural vectors satisfying Step 2 condition. 

how new detected admissible integer point and corresponding range of

ach component of known sequences. The new detected admissible inte-

er point is highly similar to integer point of reference sequence except

ild difference in amino acid ’G’. 
563 
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Algorithm 4 

Step 1. Find all integer points in the convex hull generated by integer 

points of known sequences. 

Step 2. Check the optimization problem (11) using the same method in 

Section 4.1 and verify admissible integer points of protein sequences. 
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. Conclusion 

With the development of biological technologies, more and more

enome sequences are measured. However, for many species, only a

mall part of genome sequences are known and studied. For example,

here appear some new mutations in SARS-CoV-2 consistently. So if

ome new, undiscovered genome sequences can be detected in advance,

cientists can better and more comprehensively conduct drug research

n the virus. In order to find potential new genome sequences based on

nown sequences dataset, it is the first and important step to find the

ossible number of compositions of a potential sequence. 

The natural vector method can describe the DNA or protein sequence

athematically. Convex hull principle can find quantitative relationship

etween different sequences. In our paper, in order to solve detection

roblem in the convex hull, we introduce optimization method which

argely reduces the difficulty of solving the equations directly. Optimiza-

ion has theoretical support and is a quick, efficient and robust algorithm

o verify the potential number of genome compositions in DNA or pro-

ein. Our detection algorithm can be used in different sequence datasets

heoretically. In this paper, we use DNA and protein sequence datasets

f SARS-CoV-2 to verify robustness of algorithm for different datasets

umerically. 

However, our work still has some limitations and challenges remain

pen to solve in the future. First, our algorithms only determine 4-

imensional integer points by the mean positions and the second order

f central moments of natural vector. Higher order central moments can

e used and the mean positions can be determined in the future work.

s well, this work provides a new algorithm to determine the number

f each nucleotide or amino acid of sequences, but the distributions of

ucleotides or amino acids in the sequences cannot be determined based

n current proposal, which need further to study. 
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