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Abstract—It remains challenging how to find existing but undiscovered genome sequencemutations or predict potential genomesequence

mutations based on real sequence data. Motivated by this, we develop approaches to detect new, undiscovered genome sequences.

Because discovering newgenome sequences through biological experiments is resource-intensive, wewant to achieve the new genome

sequence detection taskmathematically. However, little literature tells us how to detect new, undiscovered genome sequencemutations

mathematically.We form a new framework based on natural vector convex hull method that conducts alignment-free sequence analysis.

Our newly developed two approaches, Random-permutation Algorithmwith Penalty (RAP) andRandom-permutation Algorithmwith

Penalty andCOstrained Search (RAPCOS), use the geometry properties captured by natural vectors. In our experiment, we discover a

mathematically new human immunodeficiency virus (HIV) genome sequence using some real HIV genome sequences. Significantly, the

proposedmethods are applicable to solve the new genome sequence detection challenge and havemany good properties, such as

robustness, rapid convergence, and fast computation.

Index Terms—Natural vector, convex hull, new genome sequence, random permutation, RAP method

Ç

1 INTRODUCTION

WITH the rapid development of biological technologies,
more and more genome sequences are measured.

Genome sequences store the information of many important
physiological processes of life such as reproduction, cell divi-
sion, and protein synthesis. It is also an internal factor that
determines the adaption, evolution, phenotypic variance of
life. For example, the genome sequences of human immuno-
deficiency virus (HIV) help to understand why HIV leads to
acquired immunodeficiency syndrome (AIDS). Meanwhile,
genome sequences can serve as identification for different
species. The genome sequences of HIV assist scientists to dis-
tinguish HIV from other species. To distinguish genome
sequences of different species, comparative sequence analy-
ses mentioned in [1], [2], [3], [4], [5], are applied to measure
the similarity among different genome sequences in the past
decades. Some alignment-free sequence comparison meth-
ods are also developed [6]. The natural vector method pro-
posed by Deng et al. [7] associates a vector with a genome
sequence to describe the distribution (i.e., the locations and
number of occurrences) for each nucleotide in the genome
sequence.

Although many genome sequences have been measured,
for many species, only part of genome sequences are known.
For example, as an RNA virus, HIV mutates very quickly, so
many genome sequence mutations are not learned. If we can
find some existing, undiscovered genome sequence muta-
tions or potential future sequence mutations, the scientists

can conduct drug research on the virus more comprehen-
sively. Due to the limits of resources and technologies, we
propose to detect new, undiscovered genome sequences
mathematically. We call the challenge new genome sequence
detection. Themathematically detected new genome sequen-
ces can also support further biological experiments. For
example, newly detected HIV genome sequence may help to
understand unknown properties of HIV. Generating new
genome sequence is a popular topic. For example, real
sequence data is used to simulates new offspring genome [8];
people study genetic variation by simulating genome sequen-
ces [9], [10]. But it is notwell studied how to use real sequence
data to find existing but undiscovered sequencemutations or
predict potential sequence mutations. Hence, we are inspired
to develop newmethod.

The motivations of our work are from two aspects. First,
we can discover existing but unlearned genome sequence
mutations. Many genome sequences have been well studied.
However, some existing mutations are still not learned by
biologists. We propose to detect the existing, undiscovered
genome sequence mutations mathematically. This detection
is based on real genome sequences and uses the genome
sequence space scheme [11], [12], which is widely used for
protein, gene or genome, like Koonin. et al. [13]. Also, we can
predict potential genome sequence mutations. For example,
the mutation of HIV is extremely fast [14]. If we can predict
the possible sequence mutations, it may help the drug
research. Second, in metagenomics [15], the genomic analy-
sis uses microbial DNA extracted directly from communities
in environmental samples. Some existing genome sequences
in the communities may not be fully extracted. Our proposed
mathematical genome sequence detection can be a good sup-
plement for currentmetagenomic analysis.

In this work, we solve the new genome sequence detec-
tion problem by exploring the properties shown in natural
vector method [7]. It is proven that the natural vector holds
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one-to-one relationship with genome sequence [7], which
can be represented in a finite dimensional space. The natu-
ral vector method achieves good performance in sequence
comparison, and displays the natural relationships among
genome sequence of different species [16], which is called
natural vector convex hull method. Convex hull is a widely
used approach in computational biology [17], [18], [19].
Actually, convex hull is the smallest convex polygon formed
by a set of points, where the convex polygon encloses all of
the points in the set. Natural vector method is extended
applying the geometry properties of natural vectors [20],
[16]. Experiments demonstrate that the natural vector con-
vex hull method separates natural vectors whose corre-
sponding genome sequences come from different species.

We know the genome sequences with natural vectors in
the same convex hull share similar genetic properties and
are highly likely in the same genome group. Accordingly,
we seek new natural vectors in convex hull to detect new
genome sequence. If new genome sequences whose natural
vectors fall in the convex hull formed by known ones, the
new ones are likely from the same species as the known
ones. Our goal is to use natural vector convex hull method
to find new genome sequences based on several known,
real genome sequences.

Here, we propose our heuristic algorithms, Random-
permutation Algorithm with Penalty (RAP, henceforth) and
Random-permutationAlgorithmwith Penalty andCOstrained
Search (RAPCOS, for short). RAP and RAPCOS enjoy great
properties like robustness of convergence, rapid convergence
and fast computation.

The rest of paper are organized as follows. Section 2
reviews the related work, defines the new genome sequence
detection problem and states the problem formulation. In
section 3, we show the new genome sequence detection
problem is NP-hard. Section 4 states the newly proposed
RAP and RAPCOS methods. In Section 5, we explore the
detailed process of solving the detection problem. Section 6
includes the experiments to show the effectiveness and
robustness of our proposed methods. The methods are con-
cluded and discussed in Section 7.

2 RELATED WORK

In this part, we review some related work including natural
vector method and natural vector convex hull method. Our
work is inspired by these two methods.

2.1 Natural Vector Method

We first introduce some denotations applied throughout the
paper: bold letters as vectors; K ¼ fA;C;G;Tg as the set of
four nucleotides; S ¼ ðs1; s2; . . . ; snÞ as a genome sequence
of length n (si 2 K; i ¼ 1; 2; . . . ; n); nk (k 2 K) as the number
of nucleotide k; s½k�½i� as the distance from the first nucleotide
(regarded as origin) to the ith nucleotide k; mk and Dk

2

(Equation (1)) as the mean position of nucleotide k and the
second-order normalized central moment of nucleotide k,
respectively.

mk ¼
Xnk
i¼1

s½k�½i�
nk

; Dk
2 ¼

Xnk
i¼1

ðs½k�½i� � mkÞ2
nkn

: (1)

Then, the natural vector of genome sequence S is defined:

v ¼ ðnA; nC; nG; nT;mA;mC;mG;mT; D
A

2;D
C

2; D
G

2 ; D
T

2Þ0: (2)

An example for natural vector: ACACGTGT is com-
puted as ð2; 2; 2; 2; 2; 3; 6; 7; 18 ; 18 ; 18 ; 18Þ0. There are two impor-
tant properties of natural vectors:

X
k2K

nk ¼ n;
X
k2K

nkmk ¼
1

2
ðn2 þ nÞ:

Actually, natural vector can include higher-order nor-
malized central moments like

Dk
j ¼

Xnk
i¼1

ðs½k�½i� � mkÞj
ðnknÞj�1

; k 2 K; j ¼ 2; 3; . . . ; nk: (3)

But natural vector in Equation (2) is the most widely used
form, which is also applied in this paper. After displaying
genome sequences as natural vectors in a finite dimensional
space, we measure the distance between two natural vectors
vð1Þ, vð2Þ to demonstrate the difference between genome
sequences Sð1Þ, Sð2Þ. In particular, the euclidean distance is
used, where k � k is the euclidean norm for vector.

dðSð1Þ;Sð2ÞÞ ¼ dðvð1Þ;vð2ÞÞ ¼ kvð1Þ � vð2Þk: (4)

2.2 Natural Vector Convex Hull Method

Convex hull is a widely discussed topic in computational
biological [17], [18], [19], which is defined as the smallest
convex set where all the points are inside. Many algorithms
are designed to find convex hull, like gift wrapping algo-
rithm [21], incremental insertion algorithm [22], random-
ized incremental algorithm [23].

Tian et al. [16] and Zhao et al. [20] show the natural vector
convex hull of one species is disjoint from the convex hull of
the others. Applying natural vector to distinguish genome
sequences of different species is referred as natural vector
convex hull method. With fixed number of natural vectors,
natural vector convex hulls are actually convex polyhedrons.

2.3 Problem Formulation

In this section, we define the concept of new genome
sequence detection challenge and the importance to solve
this problem.

Biological experiments for sequencing requires massive
resources and advanced technologies to discover new
genome sequence, in particular, new genome sequencemuta-
tions. New genome sequence detection is a mathematical
problem that detects undiscovered genome sequences mathe-
matically based on known, real genome sequence data. For
example, part of HIV genome sequences are known. Mathe-
matically, we can use real HIV genome sequences to find
undiscovered genome sequence mutations or predict new
ones.We also need to show the obtained newgenome sequen-
ces share similar properties with known ones. In particular,
we use the mathematical properties of genome sequences
shown by natural vector method [7] for new genome
sequence detection problem.
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We define new genome sequence detection problem as
finding a new genome sequence based on known, real
genome sequences using natural vector method. In detail, in
new genome sequence detection problem, first, real genome
sequence data from one species are given. The corresponding
natural vectors of these sequences form a convex hull. Second,
find a new genome sequence whose natural vector falls into
the convex hull. Here, we formulate the new genome
sequence detection problem. There are N genome sequences
and N corresponding natural vectors (Equation (2)):
SðiÞ;vðiÞ; i ¼ 1; 2; . . . ; N , where the superscript ðiÞ denotes the
ith sequence or vector.N given natural vectors form a convex
hull ConvðfvðiÞgNi¼1Þ. The goal of new genome sequence
detection is to find a new genome sequence Snew, whose
corresponding natural vector vnew falls into the convex hull
ConvðfvðiÞgNi¼1Þ, Equation (5),

vnew ¼
XN
i¼1

aiv
ðiÞ; ai � 0 ;

XN
i¼1

ai ¼ 1; (5)

where ai is the coefficients of convex combination.

3 NEW GENOME SEQUENCE DETECTION

IS NP-HARD

In this section, we illustrate why the new genome sequence
detection challenge is NP-hard (non-deterministic polyno-
mial-time hardness). We first give Lemma 1.

Lemma 1. The new genome detection problem is an integer pro-
gramming problem.

The proof of Lemma 1 is in supplementary material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2020.3040706.

Theorem 1. It is NP-hard to solve the new genome detection
problem as an optimization problem.

Proof. It is proven that integer programming is NP-hard [24]
and only linear integer programming has general algo-
rithms to solve. For example, zero-one integer linear pro-
gramming is widely explored in [25], [26]. Without the
linear constrains, the zero-one integer programming can
only be solved by heuristic methods. There are no general
algorithms to solve such kind of NP-hard problems.

With Lemma 1, the new genome sequence detection is
integer programming, so it is NP-hard. tu
Stemming fromTheorem 1, we design the two algorithms,

RAP and RAPCOS in the view of heuristic, randomized
algorithm.

4 METHODS

Theorem 1 reveals that the new genome sequence detection
problem is a challenge to solve an integer programming
problem, which is NP-hard. In this section, we propose
algorithms to deal with the challenge efficiently.

Natural vector (Equation (2)) uses the information about
counts of four nucleotides and their positions in the genome
sequence. In particular, the mean position and the second-
order normalized central moment in Equation (1) uncover

the distributions of the nucleotides. In Equation (5), not all
convex combinations can result in new natural vectors.
There are some requirements to meet for a natural vector.
For example, the first four terms in natural vector are
nA; nC; nG; nT, which must be positive integers. In geometry,
a point with integer coordinates in the convex hull is called
a lattice point. Equation (5) tells us all the possible new nat-
ural vectors vnew should have lattice points as their first four
terms. To determine the solution to Equation (5), the sub-
problem (Equation (6)) should be solved first.

nnew

k ¼
XN
i¼1

ain
ðiÞ
k ; k 2 K; ai � 0;

XN
i¼1

ai ¼ 1; (6)

where nnew

k and n
ðiÞ
k are from vnew and v, separately. Begin-

ning with this point, we first solve subproblem (Equa-
tion (6)). With the integer points fixed for vnew, the numbers
of fA;C;G;Tg are constant. Then, the detection problem is
simplified as a permutation problem. With a proper permu-
tation approach, we can explore when the new natural vec-
tor falls into the convex hull ConvðfvðiÞgNi¼1Þ.

The first method gives a general solution to address opti-
mization problem in sequence space. Different choices of loss
function can deal with different problem settings. The second
method focuses on how to formulate a mapping from a natu-
ral vector to a genome sequence more accurately compared
with the first method. To heuristically solve the new genome
sequence detection, we propose Random-permutation Algo-
rithm with Penalty (RAP, henceforth). The algorithm effi-
ciently mapping natural vector to genome sequence is called
Random-permutation Algorithm with Penalty and COn-
strained Search (RAPCOS, for short). In particular, the
method RAPCOS is an improved version of RAPwith respect
to problemswith known natural vector.

The following two definitions are used in the process of
method development.

Definition 1 (Target natural vector). Target natural vector
is the target vector we approximate, where the vector is natural
vector.

Definition 2 (Fuzzy target natural vector). Fuzzy target
natural vector is the target vector we approximate, where the
vector is not necessarily natural vector.

4.1 Random-Permutation With Penalty

The proposed approach, Random-permutation Algorithm
with Penalty which is called RAP for short, is a heuristic
method for solving computationally hard optimization
detection problem in sequence space. RAP belongs to the
family of random local search [27], where new value of loss
function is compared with the previous one. Because the
local search is random, the results cannot be guaranteed. In
particular, in our detection problem, the new sequence is
recorded only when the loss decreases. That is to say, with
the goal of minimizing loss function, each local search is
adopted only if the loss function drops, which is simple but
efficient for the detection problem. Besides the random local
search, we use penalty to accelerate the random choice in
each step of local search.

After solving subproblem (Equation (6)) and fixing the
counts of nucleotides, we need to solve a permutation
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problem. In each local search, we aim to find a new sequence
permuted based on the result of previous step. Herzog et al.
[28] propose that any permutation can be represented by 2
cycles. Accordingly, our detection problem is simplified as a 2
cycle permutation problem at each step. In each local search
of 2 cycle permutation, with the loss function going down, the
new sequence replaces the previous one to be the current
sequence.We conduct the process of random2 cycle permuta-
tion until the loss value is smaller than a preset limit.

Since the first four terms in natural vector are fixed after
solving problem, the initialization of genome sequence can
be randomly given. Then, in each step of random 2 cycle per-
mutation, two steps are adopted. First, two nucleotides are
randomly selected from the nucleotides K ¼ fA;C;G;Tg
and denoted as k; q 2 K; k 6¼ q. Second, two positions are
selected from the positions of k; q, respectively. Then, the 2
cycle permutation happens when the loss function drops
after the permutation between the two selected positions.

To select two nucleotides more efficiently, the penalty
probability is considered to offer different probabilities to
different nucleotides. With respect to a certain nucleotide,
the larger the difference between current natural vector and
target natural vector is, the more likely the nucleotide will
be chosen for permutation. Since the counts of with respect
to a certain nucleotide are fixed, the mean position and the
second-order central normalized moment should be mea-
sured simultaneously.

The penalty probability is defined in Equation (7). The
probability of k 2 K ¼ fA;C;G;Tg is

PkðSð1Þ;Sð2ÞÞ ¼ ðjmSð1Þ
k � mSð2Þ

k j þ jDk;Sð1Þ
2 �Dk;Sð2Þ

2 jÞP
j2KðjmSð1Þ

j � mSð2Þ
j j þ jDj;Sð1Þ

2 �Dj;Sð2Þ
2 jÞ

;

(7)

where Sð1Þ and Sð2Þ are the two genome sequences, and sca-
lars with superscript SðiÞ are the mk,D

k
2 from SðiÞ.

The Random-permutation Algorithm with Penalty(RAP,
henceforth) is displayed in Algorithm 1. In particular, the
loss function is denoted as “loss”, where one choice of the
loss function is lossðSseqÞ ¼ dðvseq;vtgÞ, where vtg is the target
natural vector, Sseq and vseq are the sequence and natural vec-
tor as variable. The distance function d is shown in Equa-
tion (4). Denote MIter as the maximal iteration number; � as a
preset limit.

RAP can also be applied to fuzzy target natural vector
(Definition 2). Because fuzzy target natural vector is not
required to be natural vector, the approximation ends up
with a sequence whose natural vector is sufficiently close to
the fuzzy target one.

4.2 Random-Permutation With Penalty and
Constrained Search

A particular kind of loss function we need to minimize is the
distance between the natural vector of our searching
sequence and the target natural vector. In each step of 2 cycle
permutation, two nucleotides k; q 2 K; k 6¼ q are selected and
mk, mq, D

k
2 and Dq

2 change after the permutation. If the four
values get closer to the target natural vector than the previ-
ous one simultaneously, the new values will be adopted and
the algorithmwill move to the next round of local search. So,

we analyze how the natural vector changes after the
permutation.

Algorithm 1. Random-Permutation AlgorithmWith
Penalty (RAP)

MIter: maximal iteration number; �: preset limit.
Initialization Step : Randomly generate a sequence Sseq with
nk; k 2 K requirement. And let Iter = 0.
Iteration Step
1: Get the positions of [A, C, G, T] based on Sseq.
2: while lossðSseqÞ > � and iter < MIter do
3: Iter = Iter + 1.
4: Get ½PA;PC;PG;PT�ðSseq;StgÞ based on Equation (7).
5: Let Snew = Sseq.
6: while lossðSnewÞ � lossðSseqÞ do
7: Randomly Select two nucleotides, k; q 2 K; k 6¼ q based

on Probabilities ½PA;PC;PG;PT�.
8: Randomly Select a position from the positions of k and

q, separately: posk and posq.
9: Get Snew from Sseq (Do a permutation between posk and

posq).
10: end while
11: Remove posk from positions of k and remove posq from

positions of q.
12: Add posq to positions of k and add posk to positions of q.
13: Let Sseq ¼ Snew.
14: end while
15: The Sseq is the sequence which minimizes our loss function

with the preset limit.

Lemma 2 has restrained the relation between mA;mC;
mG;mT.

Lemma 2. For a genome sequence S, the corresponding natural
vector v is in Equation (2).

If for k 2 K, mk < mtg

k , there must exist q 2 K; q 6¼ k,
where mq > mtg

q and vice versa.

In the following theorems, we discuss how permutation
affects the change of loss, where the loss is the distance
between the current sequence and the target sequence. In
Theorem 2, four cases are discussed. And we use the follow-
ing case as an example for denotations. For a genome
sequence S and a target sequence Stg, the corresponding nat-
ural vectors v and vtg are in Equation (2). We show a case
LG for comparing v and vtg. For a randomly selected nucle-
otide k 2 K.

Case LG: mk � mtg

k < 0, Dk
2 �Dk;tg

2 > 0, where we use G
and L to represent “Greater than 0” and “Less than 0”,
respectively. For example, case LG represents the first
inequality(mk � mtg

k ) is less than 0 and the second inequality
(Dk

2 �Dk;tg
2 ) is greater than 0.

In total, we have four cases denoted as LL, LG, GL, GG.

Theorem 2. For a genome sequence S and a target sequence Stg,
the corresponding natural vectors v and vtg are in Equation (2).
We show four cases LL, LG, GL, GG for comparing v and vtg.
The updated natural vector vnew should meet the following
requirement to make jmnew

k � mtg

k j < jmk � mtg

k j, jDk;new
2 �

Dk;tg
2 j < jDk

2 �Dk;tg
2 j. Denote s½k�½j� to be the selected position

and snew

½k�½j� to be the new position. Denote tk;j ¼ nkðnk � 1Þ�1

ð2mk � 2s½k�½j�n�1
k Þ � s½k�½j�.
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LL: snew

½k�½j� > maxftk;j; s½k�½j�g.
LG: If s½k�½j� < mk, then, s½k�½j� < snew

½k�½j� < tk;j.

GL: snew

½k�½j� < minftk;j; s½k�½j�g.
GG: If s½k�½j� > mk, , tk;j < snew

½k�½j� < s½k�½j�.

Theorem 2 provides better a local search strategy com-
pared with random search. However, Theorem 2 only con-
siders the selected one nucleotide k 2 K, it is not guaranteed
that kvnew � vtgk < kv� vtgk. Hence, we show more strict
constraints in Theorem 3. Under the same settings for S;v
and Stg;vtg, we consider a case LG&GL for two different
nucleotides k; q 2 K. And the k; q are guaranteed to be
selected following Lemma 2.

Case LG&GL: mk � mtg

k < 0 , Dk
2 �Dk;tg

2 > 0, mq � mtg

q >
0, Dq

2 �Dq;tg
2 < 0, where we also use G and L to represent

”Greater than 0” and ”Less than 0”, respectively. For exam-
ple, case LG&GL represents the first inequality (mk � mtg

k ) is
less than 0, the second inequality (Dk

2 �Dk;tg
2 ) is greater than

0, the third inequality (mq � mtg

q ) is greater than 0 and the
fourth inequality (Dq

2 �Dq;tg
2 ) is less than 0.

Therefore, we have eight cases denoted as LL&GL,
LL&GG, LG&GL, LG&GG, GL&LL, GL&LG, GG&LL,
GG&LG.

In Theorem 3, eight detailed cases are discussed for two
selected nucleotides k; q.

For a genome sequence S, the corresponding natural vec-
tor is v in Equation (2). For example, when mk < mtg

k , since a
position of A is replaced with a position of C, if mq > mtg

q ,
after the permutation, mnew

k and mnew

q are closer to mtg

k and mtg

q

than before, respectively. Strict conditions are considered in
Theorem 3 based on Theorem 2. Denote s½k�½j� to be the
selected position and snew

½k�½j� to be the new position. Since k
and q are two different nucleotides to be permuted, we have
snew

½k�½j� ¼ s½q�½j�, snew

½q�½j� ¼ s½k�½j�.

Theorem 3. For a genome sequence S and a target sequence Stg,
the corresponding natural vectors v and vtg are in Equation (2).
We show eight cases LL&GL, LL&GG, LG&GL, LG&GG,
GL&LL,GL&LG,GG&LL,GG&LG for comparing v and vtg

with respect to two selected different nucleotides k; q. The
updated natural vector vnew should meet the following require-
ment to make kvnew � vtgk < kv� vtgk. Denote hkðxÞ ¼
ðnk � 1Þ�1 2nkmk � ðnk þ 1Þx½ �, gkðxÞ ¼ ðnk þ 1Þ�1 2nkmk�½
ðnk � 1Þx�, where k 2 K can be replaced by q 2 K. And denote
r1 ¼ ðnk þ nqÞ�1 ðnq þ 1Þnkmk � ðnk � 1Þnqmq

� �
.

LL&GL: If mk < mq & r1 < s½k�½j� < mq, then
maxfs½k�½j�; hkðs½k�½j�Þg < snew

½k�½j� < gqðs½k�½j�Þ.
LL&GG: snew

½k�½j� > maxfs½k�½j�; hkðs½k�½j�Þ; gqðs½k�½j�Þ;mqg.
LG&GL: If s½k�½j� < minfmk;mqg, s½k�½j� < snew

½k�½j� < min
fhkðs½k�½j�Þ; gqðs½k�½j�Þg.

LG&GG: If s½k�½j� < minfmk; r1; gkðmqÞg, then max fs½k�½j�;
mq; gqðs½k�½j�Þg < snew

½k�½j� < hkðs½k�½j�Þ.
GL&LL: If mk > mq & mq < s½k�½j� < r1, then gqðs½k�½j�Þ <

snew

½k�½j� < minfs½k�½j�; hkðs½k�½j�Þg.
GL&LG: snew

½k�½j� < minfs½k�½j�; hkðs½k�½j�Þ; gqðs½k�½j�Þ;mqg.
GG&LL: If s½k�½j� > maxfmk;mqg, then maxfhkðs½k�½j�Þ;

gqðs½k�½j�Þg < snew

½k�½j� < s½k�½j�.
GG&LG: If s½k�½j� > maxfmk; r1; gkðmqÞg then hkðs½k�½j�Þ <

snew

½k�½j� < min fs½k�½j�;mq; gqðs½k�½j�Þg.

We also extend Theorem 2 to higher-order natural vector
(larger than 2) cases in the supplementary material, avail-
able online. The proofs of theorems are also supplemented,
available online.

RAP (Algorithm 1) can be applied to approximate target
natural vector via minimizing the distance between the natu-
ral vector of searching sequence and target natural vector.
According to Theorem 3, RAP method can be accelerated by
the constrained search. Review the eight cases mentioned in
Theorem 3. In each step of 2 cycle permutation, with two
selected nucleotides to be k and q, based on Theorem 3, it
is guaranteed that jmnew

k � mtg

k j < jmk � mtg

k j, jmnew

q � mtg

q j <
jmq � mtg

q j, jDk;new
2 �Dk;tg

2 j < jDk
2 �Dk;tg

2 j, jDq;new
2 �Dq;tg

2 j <
jDq

2 �Dq;tg
2 j. The loss decreases after each step of permuta-

tion, lossðSnewÞ ¼ kvnew � vtgk < lossðSÞ ¼ kv� vtgk.
The penalty in Equation (7) is also applied here to accel-

erate the choice of two nucleotides in each step of 2 cycle
permutation.

According to Lemma 2, there exist k; q 2 K; k 6¼ q, where
ðmk � mtg

k Þðmq � mtg

q Þ < 0. We can first search the constraints
in Theorem 3 based on the mean position condition just like
Theorem 2.

The constrained search in Theorem 3 is strict to some
extent. In particular, when the loss is really close to the min-
imum, there might be no positions that meet the require-
ment. Hence, we make use of the original strategy of RAP
method for random permutation when the constrained
search fails to get results.

The Random-permutation Algorithm with Penalty and
COnstrained Search (RAPCOS for short, henceforth) is dis-
played in Algorithm 2. The loss function is also lossðSnewÞ ¼
kvnew � vtgk.

5 SOLVE THE DETECTION PROBLEM

There are two different solutions to new genome sequence
detection problem. Both start from natural vector convex
hull and end up finding a new genome sequence. One deal
with sequence directly (Sequence-direct Solution), while the
other uses natural vector as an intermedium (Vector-mid
Solution).

The first path (Sequence-direct Solution) deals with
genome sequences directly. When a genome sequence
whose corresponding natural vector falls into the given con-
vex hull, we obtain the solution to the detection problem
directly, Fig. 1. We optimize over sequence space to find the
solution to detection problem. The second solution (Vector-
mid Solution) uses the natural vector falling in the natural
vector convex hull as an intermedium. We optimize over
vector space in the process. After obtaining a natural vector,
we map the natural vector back to a genome sequence,
Fig. 2. The final process requires optimization over sequence
space. Moreover, in both solutions, we need corresponding
loss functions to update genome sequence.

5.1 Solve the Detection Problem by the
Sequence-Direct Solution

The Sequence-direct Solution (Fig. 1) deals with the
problem efficiently by finding genome sequences whose
corresponding natural vectors fall into the convex hull
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directly. This approach does not require heavy computation
in the process of determining the existence of natural vectors
compared with the Vector-mid Solution discussed in the
next Section 5.2.

Algorithm 2. Random-permutation AlgorithmWith
Penalty and Constrained Search (RAPCOS)

MIter: maximal iteration number; �: preset limit.
Initialization Step : Randomly generate a sequence Sseq with
nk; k 2 K requirement. And let Iter = 0.
Iteration Step
1: while lossðSseqÞ > � and iter < MIter do
2: Iter = Iter + 1.
3: Get the positions of [A, C, G, T] based on Sseq.
4: Get ½PA;PC;PG;PT�ðSseq;StgÞ based on Equation (7).
5: Let Snew ¼ Sseq.
6: while lossðSnewÞ � lossðSseqÞ do
7: Randomly select a nucleotide k 2 K based on probabil-

ity ½PA;PC;PG;PT�.
8: Randomly select posk from the positions of k.
9: Denote Kc ¼ Knfkg.
10: for k1 2 Kc do:
11: if ðmk � mtg

k Þðmk1
� mtg

k1
Þ > 0 then:

12: Kc ¼ Kcnfk1g.
13: end if
14: end for
15: while K 6¼ ; do
16: Randomly select a nucleotide q 2 Kc.
17: Find the relation ofDk

2 andDq
2 according to

Theorem 3 and constrain the search region.
18: if The requirement for constrained search region is

satisfied then
19: Randomly select posq from the constrained search

region. Break.
20: end if
21: Kc ¼ Kcnfqg.
22: end while
23: end while
24: Remove posk from positions of k and remove posq from

positions of q.
25: Add posq to positions of k and add posk to positions of q.
26: Get Snew from Sseq (Permute posk and posq).
27: Sseq ¼ Snew.
28: end while
29: The Sseq is the sequence which minimizes our loss function

with preset limit.

Because we do not focus on finding target natural vec-
tor, the loss function chosen in Algorithms 1 and 2 cannot
be used. To obtain the sequence, it is straightforward to
measure the distance from natural vector to the convex

hull and use it as loss function. However, in high dimen-
sional space, the computation of the distance to convex
hull is non-trivial. Moreover, much computation is wasted
since the loss function needs to be computed after each
time of permutation.

Here, we design a new loss function for more efficient
computation. With finite number of points in the set, the
convex hull is a convex hyperpolyhedron. The distance
from a point to the convex hull is actually the minimal dis-
tance among the ones from natural vector to all the surfaces.
However, if the number of points are more than the dimen-
sion, the computation is arduous. For example, when the
dimension is 12 and there are 101 points, there are 101

12

� �
sur-

faces which need be searched for the minimal distance.
However, when the dimension is 12 and there are 13 points,
there are 13

12

� � ¼ 13 surfaces which should be searched. This
motivates us to consider reducing the number of vertices to
reduce computation.

Accordingly, the simplest convex hyperpolyhedron, the
hyperpyramid is considered to construct loss function. In a
n-dimensional space, nþ 1 points can form a hyperpyramid
with nþ 1 hyperplanes, where the dimension of the hyper-
planes is n� 1.

5.1.1 The Equation of Hyperplane

We provide the equation to form hyperplane using n verti-
ces in a n-dimensional space. For example, in a 3-dimen-
sional space, v1 ¼ ðx1; y1; z1Þ0, v2 ¼ ðx2; y2; z2Þ0, v3 ¼ ðx3; y3;
z3Þ0 are used to determine a 2-dimensional surface w0v þ
b ¼ 0.

Combine three equations w0vi þ bi ¼ 0, i ¼ 1; 2; 3, the
surface is determined by

x� x1 y� y1 z� z1
x2 � x1 y2 � y1 z2 � z1
x3 � x1 y3 � y1 z3 � z1

0
@

1
A

������
������ ¼ 0;

where the left part computes the determinant. Similarly, in a
n-dimensional space, the corresponding matrix form for the
n� 1-dimensional hyperplane is:

v1 � v11 v2 � v21 � � � vn � vn1
v12 � v11 v22 � v21 � � � vn2 � vn1

..

. ..
. . .

. ..
.

v1n � v11 v2n � v21 � � � vnn � vn1

0
BBB@

1
CCCA

���������

���������
¼ 0; (8)

where v ¼ ðv1; v2; . . . ; vnÞ0 represents any point in a
n-dimensional space and vi ¼ ðv1i ; v2i ; . . . ; vni Þ0; i ¼ 1; 2; . . . ; n
represent n given vertices in n-dimensional space.

The distance from a point to the hyperplane, w0vþ b ¼ 0
is jw0vþ bj=kwk. From Equation (8), kwk2 is equal to the
quadratic sum of the coefficients of v1; v2; . . . ; vn.

Fig. 1. The workflow of the sequence-direct solution (Deal with sequence
directly).

Fig. 2. The workflow of the Vector-mid Solution (use natural vector as
intermedium).
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5.1.2 Design the Loss Function

In the setting of the Sequence-direct Solution (Fig. 1), the tar-
get natural vector is unknown. Here, we design a new loss
function to measure the distance from natural vector to
hyperpyramid.

The dimension of considered natural vectors is 12. First, if
we pick 13 vertices in convex hull and form a hyperpyramid
(13 vertices form the simplest convex hull in 12-dimensional
space), any natural vector falling into the hyperpyramid is
actually in the convex hull. Second, consider 12 vertices out
of 13. The hyperplane splits the 12-dimensional space into
two subspaces. Compare the relative position of the new nat-
ural vector and the remaining vertex. If they are at different
subspaces, the new natural vector can never be in the hyper-
pyramid. After considering all the 13 formed hyperplanes, if
natural vector and the remaining vertex are always at the
same subspace, we claim the natural vector fall into the
hyperpyramid, furthermore, in the convex hull. Hence, the
loss function is formed in:

lossðvÞ ¼
X13
i¼1

ReLU½�10 ðw0
ivþ biÞ
kwik

0
sgnðw0

ivþ biÞ�; (9)

where v is the natural vector of new sequence, w0
ivþ bi ¼ 0

is the equation of the hyperplane Equation (8), ReLU stands
for rectified linear unit, ReLUðxÞ ¼ maxð0; xÞ and sgn is
sign function. With loss equal to 0, the natural vector falls
into the hyperpyramid.

RAP (Algorithm 1) can naturally use loss function
(Equation (9)) to perform optimization. But the probabilities
for penalty in Equation (7) require target natural vector. The
mean of vertices is used here as fuzzy target natural vector
(Definition 2). Because fuzzy target natural vector is not nec-
essarily natural vector, RAPCOS cannot be applied in the
Sequence-direct Solution (Fig. 1).

The loss function (Equation (9)) has 0 minimum. Because
it measures the distance to a convex hull, we only need find
the genome sequence which makes the loss function suffi-
ciently small instead of exactly zero to make the natural vec-
tor fall into the convex hull. The change from optimization
to suboptimization can reduce much computation.

5.1.3 Form the Hyperpyramid in the Convex Hull

The last step to construct the loss function in Equation (9) is
to select vertices in convex hull. In particular, the 12-dimen-
sional natural vectors need 13 vertices to form a hyperpyra-
mid. If the vertices are selected out of the convex hull, the
algorithm will fail to detect points inside the convex hull.
Our strategy applies principal component analysis (PCA)
[29] to form new vertices.

Based on the subproblem (Equation (6)), we fix the first
four terms to be integers and the new hyperpyramid is
formed based on the fixed integers. In details, with
nA; nC; nG; nT fixed, we need to find 13 vertices to form the
hyperpyramid in 12-dimensional space. Hence, PCA is
applied to reduce the dimension with respect to the sample
size in Algorithm 3.

After PCA with respect to the sample size N , principal
components (PCi, 1 � i � N) are obtained in our example.
However, we cannot guarantee any of the principal

components fall into the convex hull. Further detailed strat-
egies are adopted to obtain the final 13 vertices of our
hyperpyramid, where the first 12 principal components are
used as directions instead of vectors.

First, choose the first 12 principal components (PCi,
1 � i � 12). Second, for each principal component, we use
PCi½1 : 4� to denote the first four dimensions. Then, form a
line segment in the 4-dimensional space, whose direction is
PCi½1 : 4�, and ðnA; nC; nG; nTÞ should be on the line segment.
Third, pick the head and end of the line segment with cer-
tain distance from ðnA; nC; nG; nTÞ, where ðnA; nC; nG; nTÞ falls
on the connection line between head and end. Fourth, we
constrain the generated heads and ends to fall into the con-
vex hull. The inhull

1 function implemented in Matlab is
easy to test whether a point falls into a convex hull.

Finally, we obtain 24 points, fheadig12i¼1 and fendig12i¼1 for
the head and end of each linear segment. We choose all 12
heads fheadig12i¼1 and end1 (generated from the first principal
component). The choice of the 13 vertices fvertexig13i¼1 can
guarantee the point ðnA; nC; nG; nTÞ falls into the convex hull
of the first four dimensions of vertices fvertexi½1 : 4�g13i¼1.

The process of producing the new vertices for hyperpyra-
mid is described in Algorithm 3.

Algorithm 3. Process of Producing Vertices for
Hyperpyramid

N : the number of sequences. The first four elements of natural
vectors nA; nC; nG; nT are fixed.
Initialization Step : Compute the natural vectors of N sequen-
ces: fvðiÞgNi¼1.
1: Apply PCA to fvðiÞgNi¼1 with respect to sample size.
2: Pick fPCig12i¼1 from fPCigNi¼1.
3: For each 1 � i � 12, find headi, endi of the ith linear segment.

The direction from headi to endi is PCi and ðnA; nC; nG; nTÞ
falls on the connection line between headi½1 : 4�, endi½1 : 4�.

4: Make fheadig12i¼1 and end1 fall into the convex hull.
5: fheadig12i¼1 and end1 are the 13 vertices to form

hyperpyramid.

5.2 Solve the Detection Problem
by the Vector-Mid Solution

In this section, we solve the new genome sequence detection
problem using the Vector-mid Solution (Fig. 2). Stemming
from high dimensional space, Fig. 2 seeks one potential nat-
ural vector in the given convex hull. Then mapping function
from the natural vector space to the corresponding sequence
space is developed. Finally, we obtain a sequence from the
found potential natural vector.

It has been widely discussed as a basic algorithm how to
find point in a convex hull. However, to find the natural vector
withmomental conditions in a convex hull is not discussed.

Here, we explore how to test whether a given new vector
in space is a natural vector and define the natural vector
space. Because the mapping from a genome sequence to the
high dimensional space is strict and one-to-one, we can
define the natural vector space as a subspace of the high
dimensional space.

1. https://www.mathworks.com/matlabcentral/fileexchange/
10226-inhull
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Inspired by the subproblem (Equation (6)), we construct
the natural vector space step by step. First, the first four
terms, the counts of nucleotides, are integers. Second, based
on the first constraints, the mean positions need to meet
requirement in Equation (10). Third, based on the first and
second constraints, the second-order normalized central
moments need to meet requirement in Equation (10). Then,
for higher order central moments (Equation (3)), natural
vector needs to meet the requirements in Equation (12).

In details, for genome sequences and corresponding nat-
ural vectors SðiÞ;vðiÞ; i ¼ 1; 2; . . . ; N in Equation (2), we for-
mulate the vectors nk;mmk;D

k
2. For k 2 K,

nk ¼ ðnð1Þ
k ; n

ð2Þ
k ; . . . ; n

ðNÞ
k Þ0;

mmk ¼ ðmð1Þ
k ;m

ð2Þ
k ; . . . ;m

ðNÞ
k Þ0;

Dk
2 ¼ ðDk;ð1Þ

2 ; D
k;ð2Þ
2 ; . . . ; D

k;ðNÞ
2 Þ0;

and we want to find vch in the convex hull(ch), i.e.,

vch 2 ConvðfvðiÞgNi¼1Þ ¼
XN
i¼1

aiv
ðiÞjai � 0;

XN
i¼1

ai ¼ 1

( )
;

where nch
k ¼ aa0nk;m

ch
k ¼ aa0mmk;D

k;ch
2 ¼ aa0Dk

2, k 2 K. vch needs
to satisfy the constraints in Equation (10). Denote nch ¼P

k2K nch
k .

X
k2K

nch
k mch

k ¼
Xnch
i¼1

i;
X
k2K

Xnchk
i¼1

ðsch½k�½i�Þ2 ¼
Xnch
i¼1

i2; (10)

where the second constraint of Equation (10) is extended as:

X
k2K

Xnchk
i¼1

ðsch½k�½i�Þ2 ¼
X
k2K

nch
k nchDk;ch

2 þ nch
k ðmch

k Þ2
h i

: (11)

Besides the constraints in Equation (10), for higher order
central moments (Equation (3)), vch needs tomeet the require-
ments in Equation (12), wherewe denoteDk;ch

j ¼ aa0Dk
j , k 2 K.

X
k2K

Xnchk
i¼1

ðsch½k�½i�Þj ¼
Xnch
i¼1

ij; j ¼ 2; 3; . . . ; nk; (12)

where the left term in Equation (12) can be expanded using
nch
k ;mch

k ;Dk;ch
j ; j ¼ 2; 3; . . . ; nk; k 2 K, where each term is

also a function of aa. Denote F ðaa; jÞ; j ¼ 1; 2; . . . ; nk; k 2 K.
For example, F ðaa; 1Þ ¼ P

k2K nch
k mch

k and F ðaa; 2Þ ¼
½Pk2K nch

k nchDk;ch
2 þ nch

k ðmch
k Þ2� (right hand side in Equa-

tion (11)). The step by step process to explore natural vector
space is as follows. Assume we have explored from the
counts of nucleotides to jth order central moment, where
corresponding equations in Equations (10) and (12) are sat-
isfied. Then, F ðaa; jþ 1Þ varies with aa under the constraints.
The minimum and maximum of F ðaa; jþ 1Þ can be obtained.
If

Pnch

i¼1 i
jþ1 falls between the minimum and maximum, we

claim there exits natural vector satisfying the constraints of
ðjþ 1Þth order central moment. The details are provided in
supplemental material, available online.

In conclusion, the natural vector space should meet the
requirements for each central moments. We denote the

natural vector space using the counts, the mean positions
and the second-order central moments of nucleotides in
Equation (13). And leave the natural vector space with
higher order central moments in the supplementary mate-
rial, available online.

We denote the natural vector space as NV. For natural
vector v in Equation (2), denote n ¼ P

k2K nk. Then, NV is
defined in:

NV :¼ fv ¼ ðnA; nC; nG; nT;mA;mC;mG;mT; D
A

2; D
C

2; D
G

2 ; D
T

2Þ0jX
k2K

nkmk ¼
Xn
j¼1

j;
X
k2K

nknD
k
2 þ nkðmkÞ2

h i
¼

Xn
j¼1

j2g:

(13)

The natural vector space NV constrains the space to be
searched, which restrains the space in the convex hull for
potential natural vectors.

In the process of searching for potential natural vectors,
the constrained conditions are Equations (10) and (12). After
obtaining natural vector, the searching of sequence based on
known natural vector is quite applicable. In particular, RAP
(Algorithm 1) and RAPCOS (Algorithm 2) methods are
designed efficiently to solve the problem with target natural
vector (Definition 1). And the loss function can be used as
the distance between target natural vector and the natural
vector of current sequence.

6 EXPERIMENTS

In our experiments, the given genome sequences are 101 HIV
genome sequences,which are collected fromHIVdatabase.2

RAP and RAPCOS (code3) are both well designed with
loss function. However, different loss functions affect the
performance of our randomized local search algorithms. As
we shown in our experiments, RAP method is suitable for
loss function that measures the distance to the convex hull,
like loss function (Equation (9)), where RAP performs much
better than RAPCOS. In another case, we consider the loss
function that measures the distance from the natural vector
of searching sequence to target natural vector (Definition 1).
RAPCOS performs better than RAP with such kind of loss
function, because RAPCOS is an improved version of RAP
designed for this loss function.

RAP and RAPCOS show their performance on different
tasks. Also, we analyze the convergence of RAP with three
different initialization.

In each experiment, the losses and the numbers of per-
mutation are recorded every five times when the losses
decrease.

6.1 Results When Loss Function With Target
Natural Vector

In this task, we use the loss function that measures the dis-
tance from the natural vector of searching sequence to target
natural vector. The preset limit for the convergence is set as
10�2 and the maximal iteration number is 104. We compare
the performance of RAP and RAPCOS methods on the task.
In particular, we focus on whether the two methods

2. https://www.hiv.lanl.gov/content/index
3. https://github.com/RuzhangZhao/NewGenomeSeqDetection

ZHAO ETAL.: NEW GENOME SEQUENCE DETECTION VIA NATURALVECTOR CONVEX HULL METHOD 1789

Authorized licensed use limited to: Tsinghua University. Downloaded on June 06,2022 at 00:31:16 UTC from IEEE Xplore.  Restrictions apply. 

https://www.hiv.lanl.gov/content/index
https://github.com/RuzhangZhao/NewGenomeSeqDetection


converge. Also, the rate of convergence is the essential part
to show the advantage of one method over the other.

We design three sequences with different lengths. In each
sequence, there are four nucleotides fA;C;G;Tg. The num-
bers of the four nucleotides are ½100; 100; 100; 100�, sepa-
rately, for the first sequence. For the second sequence, the
numbers are ½1000; 1000; 1000; 1000�, respectively. We choose
the numbers of fA;C;G;Tg close to real application in the
third sequence. The numbers are ½2976; 1386; 1776; 1892�,
separately.

The final sequence we aim to approximate is called target
sequence. For each settings, we randomly initialize a
sequence with the numbers of nucleotides the same as the
target sequence. The target natural vector is computed
based on the target sequence. Then, our task is to approxi-
mate the target sequence. Our implementation uses another
randomly initialized sequence with a certain distance to the
target natural vector.

We denote targeti and starti; i ¼ 1; 2; 3 to be the target
sequences and corresponding start sequences. Denote Loss0
and Lossfinal as initial loss and final loss for each sequence.
Denote Timeperm as the number of permutation of conver-
gence. For the first sequence with length of 400, the distance
from the natural vector of starting sequence (start1) to the
target natural vector (target1) is 25.78.

It is shown that the both method converge more slowly
with the reduction of loss. In particular, when the loss is
closer to 0, the convergence is much slower. The conver-
gence figure of the comparison between RAP and RAPCOS
on the first sequence (target1, start1) is displayed in Fig. 3,
which shows RAPCOS converges faster than RAP.

For the second sequence with length of 4000, the distance
from the natural vector of starting sequence (start2) to the tar-
get natural vector (target2) is 98.49. The third sequence has
the numbers of fA;C;G;Tg that are closet to the real applica-
tion of genome sequence. The distance from the natural vec-
tor of starting sequence (start3) to the target natural vector
(target3) is 136.63. The convergence figures of RAP and RAP-
COS for the second/ third sequence (target2/target3) are
shown in the supplementary material, available online. The
details of experiment are shown in Table 1.

In RAPCOS (Algorithm 2), there are some cases when all
the eight cases of Algorithm 2 are not satisfied. Then, ran-
dom selection (RAP) is carried out to continue the random
permutation process. Moreover, RAPCOS is an improved

version designed for the loss function measuring the dis-
tance from natural vector to the target natural vector but the
constrains of RAPCOS are more strict than RAP. RAP is
used to make RAPCOS more complete when the current
case fails to meet any of eight cases in RAPCOS.

We record the number when any of RAPCOS eight cases
are used for sequence update. In details, for the first
sequence (target1, start1) with 400 length, there are totally
460 out of 2024 permutations applying the eight cases of
RAPCOS, where the proportion is about 22.73 percent. Then,
for the second sequence (target2, start2) with 4000 length,
there are 402 out of 1381 permutations using the eight cases,
where there are 29.11 percent permutations. Finally, for the
third sequence (target3, start3), 301 out of 1153 permutations
are carried out based on the eight cases of RAPCOS, where
the proportion is about 26.11 percent.

In conclusion, there are about 20 to 30 percent permuta-
tions that apply the eight cases of RAPCOS. The remaining
permutation uses RAP. However, the true reason for the
great performance of RAPCOS is exactly the part applying
the eight cases. When permutation is selected from the con-
strained search region of RAPCOS, the loss certainly
decreases. The reduction is guaranteed by Theorem 3. This
is also the reason why RAPCOS performs better than RAP
with such kind of loss function with target natural vector.

6.2 Results When Loss Function is Distance to
Convex Hull

In this part, the task we use to test the performance of RAP
is the loss function measuring the distance to the convex
hull in Equation (9). The loss function is used in the
Sequence-direct Solution (Fig. 1). RAP works well for the
task, while for RAPCOS, because target natural vector is
required, RAPCOS is not suitable for this task. We compare
the performance of RAP and RAPCOS methods on the task.
The convergence of RAPCOS is not good, so we just show
the reduction of loss for RAPCOS method where the num-
bers of permutation are limited by the numbers of permuta-
tion of RAP. As we shown in the following three cases, the
convergence of RAP is great and the rate is fast.

The given 101 sequences are all HIV sequences. We ran-
domly initialize three sequences with the fixed numbers of
nA; nC; nG:nT, which are [2976,1386,1776,1892], respectively.
The fixed numbers solve the subproblem (Equation (6)). We
use three different initialization of sequences, where the
three sequences are denoted as seq1; seq2; seq3. The preset
limit for the convergence of RAP is 10�1.

Fig. 3. The convergence of RAP and RAPCOS based on target
sequence (target1), loss function is based on the distance between natu-
ral vector and target natural vector.

TABLE 1
Summary of the Experiments With Different Target

Sequences for RAP and RAPCOS

Method Name of Seq Length Loss0 Lossfinal Timeperm

RAP target1, start1 400 25.78 0.019 4974
RAP target2, start2 4000 98.49 0.003 8745
RAP target3, start3 8030 136.6 0.062 2723

RAPCOS target1, start1 400 25.78 0.023 1355
RAPCOS target2, start2 4000 98.49 0.038 1381
RAPCOS target3, start3 8030 136.6 0.062 1153

1 Loss0 is the initial loss for the sequence
2 Lossfinal is the final loss when the convergence stops.
3 Timeperm is the permutation count when the convergence stops.
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For the first sequence (seq1), the initial loss is 106.21; the
initial loss for the second sequence (seq2) is 128.34; for the
third sequence (seq3), the initial loss is 108.61.

The comparison between RAP and RAPCOS, including
the corresponding final losses and the numbers of permuta-
tion, are shown in Table 2.

For the first sequence (seq1), the comparison of conver-
gences between RAP and RAPCOS is shown in Fig. 4.

For the second/third sequence (seq2/seq3), the compari-
son between RAP and RAPCOS is supplemented.

The optimization using loss function Equation (9) is hard
to reach exact zero, so we stop the convergence using the
preset limit (10�1). Then, the results of RAP are tested by
inhull function to show whether they fall into the convex
hull. Empirically, when the loss is about 0.1, the natural vec-
tor of searching sequence falls into the convex hull. The rea-
son is that the hyperpyramid is inside the convex hull. As
shown in Fig. 4 and corresponding figures in supplemen-
tary material, available online, RAP converges faster than
RAPCOS. In fact, RAPCOS cannot converge in this task.

RAPCOS does not performs well for this task because
there is no target natural vector to constrained the search
region. The target vector we use in the task is the mean of
some vertices (fuzzy target natural vector, Definition 2),
which may not fall into the natural vector space. Therefore,
the constrained search in Theorem 3 does not work.

6.3 Robustness of the Convergence of RAP

The convergence of randomized algorithms is essential for
the implementation. Also, the rate of convergence largely

affects the effectiveness of the algorithms. And we call an
algorithm robust if the convergences are not associated with
different initialization. In this section, we use the loss func-
tion measuring the distance from the natural vector of
searching sequence to convex hull (Equation (9)). The preset
limit for the convergence is set as 10�2 and the maximal iter-
ation number is 104. We consider three aspects to show the
effectiveness and robustness RAP. First, the convergence
makes the natural vectors of final sequences fall into the
convex hull. Second, for different initialization of the start-
ing sequence, the convergences are robust instead of vary-
ing a lot with different initialization. Third, the rate of
convergence is fast, i.e., the convergence happens in some
limited number of permutation.

We initialize three sequences seq1; seq2; seq3 to test the
convergence. In each initialization, the random generation
process is repeated for 1,000 times. The sequence with the
smallest loss value is chosen to be the initialized sequence
for optimization. For each sequence, experiments are
repeated for five times. The details of convergence includ-
ing the initial loss, final loss and the number of convergence
are displayed in Table 3.

The initialization process makes the natural vectors of
starting sequences close to the convex hull. For the first
sequence (seq1), the initial loss is 9.55; the initial loss for the
second sequence (seq2) is 11.63; for the third sequence (seq3),
the initial loss is 8.36.

The five results for each sequence are denoted as res1,
res2, res3, res4, res5 in the following figures.

For the first sequence (seq1), the convergences of five dif-
ferent initialization are shown in Fig. 5.

For the second sequence (seq2) and the third sequence
(seq3), the convergences of five different initialization are
shown in the supplementary material, available online.

As shown in Fig. 5 and corresponding figures in supple-
mentary material, available online, for different initialization,
RAPmethod converges fast. The convergence happenswithin
about 10,000 times of permutation. And the convergences are

TABLE 2
Summary of the Experiments With Convex Hull

for RAP and RAPCOS

Method Name of Seq Loss0 Lossfinal Timeperm

RAP seq1 106.2 0.102 1966
RAP seq2 128.3 0.102 4780
RAP seq3 108.6 0.104 1724

RAPCOS seq1 106.2 7.770 3996
RAPCOS seq2 128.3 6.506 2422
RAPCOS seq3 108.6 8.489 2182

1 Loss0 is the initial loss for the sequence
2 Lossfinal is the final loss when the convergence stops.
3 Timeperm is the permutation count when the convergence stops.

Fig. 4. The convergence of RAP and RAPCOS based on initial sequence
(seq1), loss function is based on the distance from natural vector to con-
vex hull.

TABLE 3
Summary of the Experiments About the Convergence of RAP

Name of Seq Loss0 Lossfinal Timeperm

seq1 9.55

0.100 2827
0.106 7682
0.099 6439
0.105 8259
0.102 5831

seq2 11.63

0.098 5207
0.102 1368
0.099 3374
0.108 3596
0.103 1957

seq3 8.36

0.1324 3931
0.104 7533
0.102 2244
0.102 2244
0.103 2895

1 Loss0 is the initial loss for the sequence
2 Lossfinal is the final loss when the convergence stops.
3 Timeperm is the permutation count when the convergence stops.
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not associated with different initialization. Thus, RAP
approach is robustwith respect to different initialization.

To better show the results of convergence, we use princi-
pal component analysis (PCA) to visualize the natural vec-
tors of given sequences and the obtained ones. The first and
second principal components are used to plot the figures.

For the first sequence (seq1), the visualization of the con-
vergence is shown in Fig. 6. The five points in Fig. 6 is too
close to distinguish each other. One may refer to the supple-
mentary material, available online, for the jittered figure
based on Fig. 6.

For the second/third sequence (seq2/seq3), the visualiza-
tion of the convergence is shown in the supplementary
material, available online.

6.4 Computation Time

The computation time is measured using personal computer
(PC) since the requirement of memory is small. The experi-
ments are performed on 2.7 GHz Intel Core i5 and 8 GB 1867
MHz DDR3. The time for 1675 times of permutations is 59.89
seconds. In most experiments, the convergence ends within
2minutes. Due to the high efficiency of permutation, the pro-
posed algorithms are computationally efficient.

7 CONCLUSION & DISCISSON

Motivated to find existing undiscovered genome sequence
mutations, predict potential genome mutations or provide
supplement for metagenomic analysis, we propose the new
genome sequence detection problem. We apply the proper-
ties of natural vector convex hull method to detect new,
undiscovered genome sequencesmathematically. Two novel
randomized algorithms, RAP and RAPCOS, are proposed to
solve the new genome sequence detection problem. In partic-
ular, RAPCOS is an improved version of RAP when using
distance from natural vector to target natural vector as the
loss function. We provide two different solutions to new
genome sequence detection problem in Figs. 1 and 2. RAP
and RAPCOS are randomized algorithms enjoying many
great advantages. First, RAP is simple to implement and
require small memory size. Second, the convergence of RAP
is robust with respect to different initialization. Third, RAP
converges fast. Fourth, for certain loss function, RAPCOS,
which is an improved version of RAP, constrains the search
region to speed up the convergence. Fifth, the new genome

sequence detection problem is NP-hard but our RAPmethod
is applicable to solve the problem.

Our work has some limitations and some challenges
remain open to solve in the future. First, this work provides a
framework to detect new genome sequence. But the experi-
ments are only based on HIV genome sequences. The further
experiments on other viruses, bacteria, eukaryota and more
species be carried out under the same framework. For pro-
tein, there are twenty different amino acids, when applying
the framework to detect new amino acid sequences, the diffi-
culty are still unknown. Second, the choice of vertices in
Algorithm 3 is ad hoc. It remains a challenge to design better
strategies to assist the convergence of RAP and the detection
of new genome sequences. Third, our designed algorithm
can provide a genome sequence whose natural vector lies in
the given convex hull. It still remains a challenge to detect all
the genome sequences whose natural vectors are in the given
convex hull. Fourth, we use natural vector with counts,
mean positions and the second-order of central moments of
each nucleotide. Higher order central moments can be used
in further work. Fifth, the convergences of RAP and RAP-
COS are analyzed empirically. Some theoretical results about
the convergences are open to develop. Sixth, RAP is evalu-
ated in mathematical way, it remains open to design a more
biological way to perform evaluation.
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