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Abstract With the great advancement of experimental tools, a tremendous amount of biomolecular

data has been generated and accumulated in various databases. The high dimensionality, structural
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complexity, the nonlinearity, and entanglements of biomolecular data, ranging from DNA knots, RNA

secondary structures, protein folding configurations, chromosomes, DNA origami, molecular assembly,

to others at the macromolecular level, pose a severe challenge in their analysis and characterization.

In the past few decades, mathematical concepts, models, algorithms, and tools from algebraic topol-

ogy, combinatorial topology, computational topology, and topological data analysis, have demonstrated

great power and begun to play an essential role in tackling the biomolecular data challenge. In this work,

we introduce biomolecular topology, which concerns the topological problems and models originated

from the biomolecular systems. More specifically, the biomolecular topology encompasses topological

structures, properties and relations that are emerged from biomolecular structures, dynamics, inter-

actions, and functions. We discuss the various types of biomolecular topology from structures (of

proteins, DNAs, and RNAs), protein folding, and protein assembly. A brief discussion of databanks

(and databases), theoretical models, and computational algorithms, is presented. Further, we system-

atically review related topological models, including graphs, simplicial complexes, persistent homology,

persistent Laplacians, de Rham–Hodge theory, Yau–Hausdorff distance, and the topology-based ma-

chine learning models.

Keywords Persistent homology, topological data analysis, biomolecular topology, protein structure,

machine learning

MR(2010) Subject Classification 55N31, 92E10, 92D20, 62R40, 92C40

1 Introduction

A major trend for biology in the 21st century is its transition from phenomenological and de-
scriptive sciences to quantitative and predictive sciences. This transition happens due to the
generation and accumulation of a gigantic amount of data, which are systematically organized
and deposited in various databanks, such as GenBank, Protein Data Bank (PDB), Electron
Microscopy Data Bank (EMDB), etc. The availability of the huge amount of experimental
data provides both unprecedented opportunities and great challenges for mathematicians [201].
Among them, biomolecular structure-function relationships have the most profound impact on
bioengineering and biomedicine, and are widely regarded as the “holy grail” [202]. Mathemati-
cally, geometry plays a very important role in biological sciences. Geometric tools and modeling
not only help to visualize biological data [57, 167], but also fill the gap between theoretical mod-
els and structural information [2, 28]. A prominent example is the virtual screening in drug
design [110, 172], where the drug candidates match with the concave regions of the biomolec-
ular targets geometrically, just like a key to a lock. The combination of geometrical models
with physical models, particularly quantum mechanics and molecular mechanics, contributes
tremendously to biophysics and biochemistry [47, 169].

However, biomolecular geometrical measurements have always been plagued by excessive
structural details and are computationally expensive. In contrast, topology studies the funda-
mental characteristics of spaces — such as connectivity, dimensionality, and continuous trans-
formation — so topological tools can dramatically reduce the irrelevant structural details and
preserve only the intrinsic information [202]. In particular, algebraic topology [95, 152] has
the unique advantage in the quantitatively description of intrinsic network properties. For in-
stance, it has been used in the characterization of the underling functional networks generated
from different brain regions based on the neural activity [83]. Topological invariants have also
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demonstrated great advantages in characterizing biomolecular structures, and have been used in
DNA supercoiling [173], Flp and Cre recombination [192], assembly of virus capsids [190, 206],
and the design of DNA origami [49, 175]. In particular, knot invariants have been widely used
in the modeling and analysis of DNA packing, recombination, and replication [8, 9, 71].

Recently, persistent homology, a new branch of algebraic topology, has been proposed to
bridge traditional topology and geometry, and provide a potentially revolutionary approach to
complex biomolecular systems [202]. The essential idea is to introduce a filtration process and
measure homology groups by their “lifespans” during the process [41, 70, 228]. Different from
traditional topological models, the “lifespan” measurement provides a family of geometric char-
acterizations of the topological invariants. Persistent homology has been successfully applied in
the analysis of protein structure, flexibility, dynamics, and function [32, 76, 212–214, 218]. With
the ever-increasing data, the exceptional power of topology in dimensionality and complexity
reduction has attracted enormous attention [38, 69]. Topological data analysis (TDA) has been
developed as one of the most promising apparatus for data science [38, 139]. In particular,
topological machine learning and deep learning models have delivered amazing results in drug
design which is one of the most challenging fields in modern biology [31, 33–35, 210]. Based on
topological representation and featurization, these (deep) learning models have achieved state-
of-the-art results in the prediction of protein-ligand binding affinity, protein-protein binding free
energy, and mutation-induced protein folding stability change. Topological models have con-
sistently delivered the best results in D3R Grand Challenges, a worldwide annual competition
series in computer-aided drug design [156, 157]. Their tremendous successes have demonstrated
the great potential of topological models in data analysis and biological science.

The current paper offers a brief review of a new area called biomolecular topology. To
avoid confusion, biomolecular topology in this paper refers to as the topological properties and
relations that are emerged from biomolecular structures, dynamics, and functions. We discuss
the challenging topological problems, methods, algorithms, and models originated from/for the
biomolecular systems. In particular, our focus is protein topology, including protein struc-
tures, protein folding, protein complexes, and protein assemblies. We also discuss the related
topological problems, including protein folding pathways, binding affinity predictions, assembly
mechanisms, etc., and the various datasets related to these problems. The other focus of the
paper is a general introduction of the related topological tools and models, including Gaus-
sian network model, simplicial complexes, persistent homology, persistent Laplacian, de Rham
homology, Yau–Hausdorff distance, and topology-based machine learning models.

The paper is organized as follows. Section 2 is devoted to biomolecular topological proper-
ties. We discuss topological problems in protein structures, protein folding, protein assembly,
and DNA/RNA structures. A review of the topological models and topological data analysis is
given discussed in Section 3. The paper ends with a conclusion.

2 Topology for Biomolecules

Biological sciences are arguably one of the most important subjects that have fundamentally
changed our society and world. During the past few decades, the research on biology has under-
gone a transition from phenomenological and descriptive sciences to quantitative and predictive
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sciences. Tremendous topological challenges and problems have arisen from biomolecular struc-
tures, dynamics, and functions. In this section, we provide a very brief introduction to these
problems. Our focuses are protein structures, folding, and assembly, although DNA and RNA
are discussed as well.

2.1 Protein Structure

Figure 1 The topology for proteins. (A) A general review of protein structures, including primary

structure, secondary structure, tertiary structure and quaternary structure. (B) The

secondary-structure-based protein classification into three types, i.e., all-Alpha, all-Beta,

mixed-Alpha-and-Beta. (C) The illustration of a simulated protein folding process by using steered

molecular dynamics. (D) The illustration of three types of protein complexes, including

protein-protein, protein-DNA/RNA, and protein-ligand. (E) The illustration of the icosahedra

symmetry structures for two virus capsid structures (PDB IDs: 2WWS and 1M4X)

Protein is made up of amino acids, which contain an amine group (NH2), a carboxyl group
(COOH), as well as a unique side chain (known as R group) specific to each of 20 amino acids.
The NH2 group from one amino acid can interact with the COOH group from another, to form a
peptide bond. One H2O molecule is generated in this process, which composes the H atom from
NH2 and the OH group from COOH. With these covalent peptide bonds, a chain or a sequence
of amino acids, called a polypeptide, is formed and becomes the primary structure of the protein.
However, in order for the protein to perform its function, the polypeptide has to be further
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arranged or folded into a three dimensional (3D) structure, i.e., the protein conformation. As
illustrated in Fig. 1 (A), the amino acids within a segment of polypeptide chain can interact
with each other to form two types of secondary structures, i.e., alpha-helix and beta-sheet.
These secondary structure components will further fold into a more complicated 3D structure,
known as the protein tertiary structure. It should be noticed that formation of the secondary
and tertiary structures is largely due to the non-covalent interactions, such as hydrogen bonding,
ionic interactions, van der Waals forces, hydrophobic interactions, and electrostatic interaction.
However, these structures are often further stabilized by covalent disulfide bridges. Finally,
if more than one polypeptide chains (or subunits) exist simultaneously in a protein-protein
complex, it is usually called the protein quaternary structure.

Currently, there are more than 188,000 biomolecular structures in the PDB. The availability
of this huge amount of biomolecular 3D structures brings a great opportunity for an in-depth
understanding of the protein functions and mechanisms. The detailed comparison and classi-
fication is a key step in biomolecular data analysis. Two databanks, i.e., CATH and SCOPe
(structural classification of proteins-extended), are built to classify all the available protein
structures into hierarchical categories. In both databanks, protein structures are split into indi-
vidual polypeptide chains. By comparison, structurally or functionally conserved polypeptide
regions are identified and are defined as protein domains. The information of secondary struc-
tures, domains, and their topological structures are used in the classification. Specifically, in
CATH, protein structures are classified into four levels, i.e., class (C), architecture (A), topology
(T), and homologous superfamily (H), thus the name CATH. Proteins are divided according
to their secondary structures into three types, i.e., all-alpha, all-beta, and mixed-alpha-and-
beta. Figure 1 (B) illustrates these three types. The protein structures are classified into many
architecture types, including roll, barrel, sandwich, ribbon, trefoil, propeller, clam, etc. The
subdivision is mainly based on the secondary structure arrangement. Further description is
given to protein fold topology in the biophysics sense. It focuses on the details of how the
secondary structure elements are connected, that is the topology of the common structural
features. Finally, the evolution information is considered and the highly conserved domains are
called homologous at the homologous superfamily level. The SCOPe databank uses a similar
way for structural classification.

2.2 Protein Folding

Protein folding is a process in which randomly coiled polypeptides fold into their (unique) 3D
structures. Figure 1 (C) illustrates a simulated protein folding process. Although exceptions
have been found for Anfinsen’s dogma [6], most functional proteins are well-folded with a
unique 3D structure. More importantly, misfolded or disordered proteins can usually cause
serious diseases, including Mad-cow disease, Parkinson’s disease, Alzheimer’s disease, etc. In
general, these diseases usually involve misfolded intermediate structures, such as Amyloid β,
Tau protein, α-synuclein, prions, etc. These misfolded structures can be then assembled into
toxic oligomers with common amyloid folds.

So far, the prediction of the protein folding pathway remains to be a challenge both theo-
retically and computationally. In the folding funnel hypothesis, a well-folded protein structure
has the global minimum of the Gibbs free energy. In contrast, misfolded configurations or in-
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termediate folding structures, have higher free energies, thus they are kinetically favored but
are thermodynamically unstable. Various experimental tools, such as atomic force microscopy,
optical tweezers, and bio-membrane force probe, have been devised to study the unfolding
force distribution, stable intermediates, and transitional non-native states. Computationally,
steered molecular dynamics (SMD) is proposed to explore the inverse process of protein folding
[78, 101, 134]. Despite the progress from experimental and computational works, the folding
mechanism remains elusive. This is mainly due to the reason that protein folding is a highly
complex and dynamic process, which involves a huge number of degrees of freedom.

Recently, machine learning and deep learning models have demonstrated great power in
protein 3D structure prediction [203]. In particular, AlphaFold (and AlphaFold 2) has revo-
lutionized the area of protein-structure prediction, and is widely regarded as one of milestone
events in structural biology and biophysics [107, 189].

2.3 Protein Complex

Proteins are involved in almost all biological processes. Although some proteins function inde-
pendently, the vast majority of proteins form protein complexes with other molecules, including
proteins, DNA, RNA, ions, and ligands, to achieve their biological functions. Figure 1 (D) il-
lustrates the three types of protein complexes that exist widely. The formation of a protein
complex is known as molecular recognition, and the components from the complex demonstrate
molecular complementarity. Non-covalent interactions, such as hydrogen bonding, hydrophobic
forces, van der Waals forces, π − π interactions, electrostatic interaction, etc, as well as solvent
effects, play the dominant role in the molecular recognition. Various databases for 3D struc-
tures of these complexes are available, for instance, PDBbind (http://www.pdbbind.org.cn/),
PDIdb (http://melolab.org/pdidb/web/content/home), and Protein-Protein Interaction Affin-
ity Database (https://bmm.crick.ac.uk/ bmmadmin/Affinity/). The interaction networks from
the protein complexes are also available in databases, such as BioGRID (https://thebiogrid.org/)
and STRING (https://string-db.org/).

Protein-DNA complex The protein-DNA complexes play a fundamental role in both the
maintenance and regulation of genetic information. In a cell nucleus, the DNA sequence binds
with proteins to form histones, which are further packed into highly complicated chromosome
structures with the help of various scaffold proteins. The protein-DNA complexes also con-
trol and regulate various biological processes, including DNA transcription, DNA repair, DNA
expression, etc.

Protein-ligand complex The protein-ligand complexes are important for biological signal
transmission. The ligand-mediated signal transmission is essential to all life processes. Biolog-
ically, a ligand can bind to a certain specific site of a protein to activate (or deactivate) some
biological functions. The binding affinity can vary greatly for different systems, and the bind-
ing proteins can have large conformational changes. The protein-ligand binding mechanism is
a hot research area in drug discovery. The prediction of potential binding sites (hot spots) and
binding affinities is of essential importance for efficient drug design and discovery.

Recently, machine learning-based models have demonstrated their great power in binding
affinity prediction with a much higher accuracy than all traditional models [3, 25, 74, 106, 122,



Biomolecular Topology: Modelling and Analysis 1907

125, 179, 183, 208]. These learning models can be classified into two classes, i.e., target-based
approaches and ligand-based approaches. In target-based approaches, molecular descriptors
from proteins and protein-ligand complexes are considered as the input for learning models.
In contrast, ligand-based approaches usually make use of features only from ligands. The
performance of both two classes highly relies on the selection of molecular descriptors. In fact,
molecular descriptors or fingerprints are essential to all learning models for molecular data
analysis in materials, chemistry, and biology [133, 163].

Molecular descriptors can be obtained from structural, chemical, physical, and biologi-
cal properties. Molecular descriptors from structural properties can be one-dimensional (1D),
two-dimensional (2D), three-dimensional (3D), and four-dimensional (4D) [133, 163]. The 1D
molecular descriptors include atom counts, bond counts, molecular weight, fragment counts,
functional group counts, and other summarized general properties. The 2D molecular descrip-
tors include topological indices, graph properties, combinatorial properties, molecular profiles,
autocorrelation coefficients, etc. There are more than 5,000 types of 2D descriptors that are
widely used in QSAR/QSPR models. The 3D molecular descriptors include molecular sur-
face properties, volume properties, autocorrelation descriptors, substitute constants, quantum
mechanical descriptors, etc. A related higher computational cost is usually required for the gen-
eration of 3D molecular descriptors. The 4D chemical descriptors are a series of 3D descriptors
for configurations from a dynamic process.

Recently, topological data analysis (TDA) [70, 228] and other advanced mathematics have
been considered for biomolecular characterization and description [31, 35, 155] and achieved
great success in various steps of drug design, including protein-ligand binding affinity pre-
diction [34–36, 158, 159], protein stability change upon mutation prediction [31, 33], toxicity
prediction [210], solvation free energy prediction [193, 194], partition coefficient and aqueous
solubility [211], binding pocket detection [225], etc. These models have also demonstrated
great advantages over traditional molecular representations in D3R Grand challenges [156?
, 157]. Molecular descriptors can be combined together to form a large-sized vector, known
as molecular fingerprints. Based on structural properties, there are various methods and mod-
els for the systematical generation of molecular fingerprints, including substructure key-based
fingerprints [67], path-based fingerprints [93, 160], circular fingerprints [171], pharmacophore
fingerprints [118, 181], and encoded fingerprints. Moreover, deep learning models, such as
autoencoder, CNN, GNN, and Transformer, have also been used in molecular fingerprint gener-
ation [56, 68, 144, 168, 207, 217]. The molecular descriptors and fingerprints are widely used in
QSAR/QSPR models and machine learning models for material, chemical, and biological data
analysis.

Protein-protein complex Protein-protein interactions (PPIs) play an essential role in a
wide range of biological processes and mechanisms, including cell metabolism, signaling, protein
transport, and immune system [81, 84]. They can be affected by protein mutations and genetic
variations, which may result in disease and drug resistance [164]. The understanding of PPIs,
in particular PPIs upon mutations, is significant to various biomedical applications, including
disease-associated mutation analysis, drug design, and therapeutic intervention [81, 84]. Effi-
cient computational methods and models have been developed for the evaluation PPI binding
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affinity, in particular, PPI binding affinity changes upon mutations (ΔΔG). These models can
be grouped into three categories, including molecular dynamic (MD)-based models, statistical
energy-based models, and machine learning models. MD-based models, including FoldX [91],
Rosetta [114], zone equilibration of mutants (ZEMu) [66], single amino acid mutation-induced
changes in binding free energy (SAAMBE) [161], and others [81], usually characterize the bind-
ing affinity of PPIs with various physical energy terms, including van der Waals interactions,
electrostatic energies, hydrogen bonds, solvation energy, etc. Based on the contacts at atomic,
residual, or coarse-grained levels, statistical-energy-based models have been proposed, such as
BindProfX [216], BeAtMuSiC [61], contact potentials [148], Profile-score [184], and Dcomplex
[127]. These models extract various intermolecular potentials from experimental structures to
study PPI binding affinity. With the great advancements in data accumulation, learning mod-
els and computational power, data-driven machine learning models have been developed and
achieved the state-of-the-art results in PPI analysis [176].

The fast-growing interests in PPI based machine learning models are mainly due to the
development of various PPI databases in the past few decades, including Alanine scanning en-
ergetics database (ASEdb) [186], protein-protein interactions thermodynamic database (PINT)
[117], structural kinetic and energetic database of mutant protein interactions (SKEMPI) [147],
a database of binding affinity change upon mutations (DACUM) [79], antibody-bind database
(AB-Bind) [177], protein-protein complex mutation thermodynamics (PROXiMATE) [105],
kinetic and thermodynamic database of mutant protein interactions (dbMPIKT) [126], and
SKEMPI 2.0 [103]. SKEMPI 2.0 is the combination of several databases including SKEMPI,
AB-Bind, PROXiMATE, and dbMPIKT with manually curated data from the literature. It con-
tains a total of 7,085 mutations on various types of protein complexes, such as protease-inhibitor,
antibody-antigen, and TRC-pMHC complexes. More specifically, there are about 3,000 single-
point alanine mutations, about 2,000 single-point non-alanine mutations, and roughly 2,000
multi-point mutations.

With the ever-increasing PPI data, a great amount of data-driven learning models have
been developed [81, 176], such as mCSM [170], ELASPIC [182], BindProf [26], MutaBind
[223], iSEE [80], MuPIPR [226], ProAffiMuSeq [104], and GeoPPI [129]. In general, these
data-driven models can be classified into two types, i.e., featurization-based machine learning
models and end-to-end deep learning models. For the machine learning models, different types of
PPI information from sequences, inter-residue interactions, evolutionary conservation, dynamic
properties, energy terms, pharmacophore descriptors, structure-based descriptors, and others,
are used as input features for machine learning models, such as support vector machine (SVM),
random forest (RF), gradient boost trees (GBT), etc. Note that these input features are
generated by using mathematical, physical, chemical, and biological models. For end-to-end
deep learning models, proteins are usually represented as surfaces, graphs, or networks with
embedded vectors or one-hot-vectors [27, 75]. The intrinsic features for PPIs are automatically
learned and implicitly represented in deep learning models. The most commonly used deep
learning models for PPIs are graph neural networks (GNN) and geometric learning models.
Even with the great advancements, generating highly efficient molecular featurization, which is
key to the performance of learning models, is still a challenging problem [133, 163]. Recently,
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advanced mathematical tools, in particular topological data analysis are used in molecular
representation and featurization [31, 35, 143, 155]. Their combination with learning models
have achieved great success in various steps of drug design. In particular, the TopNetTree
model has demonstrated great power in predicting protein-protein binding affinity changes
upon mutations [195]. It outperforms all existing models and provides great insights for the
SARS-CoV-2 mutations [51, 198].

A detailed summery of topology-based machine learning models can be found in Section 3.8.

2.4 Protein Assembly

Protein assembly, which is the protein quaternary structure, is an essential functional form
of macromolecules. Biologically, one or several kinds of proteins can assemble under certain
symmetric rules into a macromolecular structure. Among the protein assembly structures, the
one that has attracted the most attention from mathematicians is virus capsid, which is the
virus shell structure made from proteins.

Protein assembly is an important topic in mathematical virology, which is a new mathe-
matical area for the study of virus capsid structures and their assembly mechanism [191] and
mathematical modeling of viral evolution, transmission, and their impacts on diagnostics, small
molecular drugs, antibody therapies, and vaccines [50, 51, 196, 197]. Historically, it has been
found that icosahedral symmetry occurs predominantly in virus structures [222]. As illustrated
in Figure 1 (E), viruses usually adopt the icosahedral symmetry for their capsid shell. Proteins
on the capsid are highly ordered and aggregated in clusters (or capsomeres) of three, five and
six. To explain the organizational principles, Caspar and Klug proposed a series of polyhedra
that encode the locations of the proteins [42]. Their model is used to reconstruct and classify
the viral capsid structures from the experimental data. Recently, Twarock has proposed viral
tiling theory by using the Coxeter group theory [190, 206]. Other than the family of polyhedra
in the Caspar–Klug theory, the viral tiling model can generate a new finite series of polyhedra,
called the triacontahedral series, which significantly enhances the performance of traditional
models.

2.5 DNA/RNA Topology

Figure 2 The illustration of DNA/RNA topology. (A) The six types of DNA structures, including
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A-duplex, B-duplex, Z-duplex, triplex, G-quadruplex, and Holiday junction. (B) The simulated

chromosome structures for mammalian genome. (C) A simulated RNA secondary structure by using

ViennaRNA. (D) Illustration of a DNA origami (PDB ID:4V5X)

DNAs and RNAs are molecular repositories of genetic information. Their structures have
various interesting topological properties. Other than the common double helix structures,
which are usually found in the B-form of DNA, various other forms exist, including A-helix,
Z-helix, Triplex, G-quadruplex and Holiday Junction. Figure 2 (A) illustrates these different
topological structures. Various databases are constructed for the study of DNA structures
and their interactions, including nucleic acid databank (http://ndbserver.rutgers.edu/), nu-
cleic acid-ligand database (NALDB) (http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php), and G-
quadruplex ligands database (http://www.g4ldb.org/ci2/index.php).

Chromosomes are the physical realization of genetic information. It is composed of DNA-
protein complexes and is one of important cellular entities [22, 98]. Chromosome is essential
for supporting essential biological functions, such as DNA replication, transcription, repair of
DNA damage, and chromosome translocation [45, 48]. More interestingly, chromosomes have
highly complicated hierarchical structures, which can be studied by chromosome conformation
capture techniques [60, 62, 123]. Essentially, a contact frequency matrix can be generated and
a 3D structure can be reconstructed. Figure 2 (B) illustrates the chromosome structure from
the mammalian genome [180].

There are various types of RNAs, including ribosomal RNA(rRNA), messenger RNA(mRNA),
transfer RNA(tRNA), and others. Compared with DNAs, RNAs are smaller in their sizes and
tend to fold into complicated secondary structures. The understanding of how an RNA sequence
folds into a specific secondary structure is key to RNA engineering. Under the energy mini-
mization hypothesis, an RNA sequence will fold into its configuration only when the loop region
energies are minimized and their stacked pairs are maximized. Various algorithms and combina-
torial models are developed to solve the RNA secondary structure design problem [96, 97, 174].
An example of RNA secondary structure is demonstrated in Figure 2 (C). It is generated by
using ViennaRNA Web Service (http://nibiru.tbi.univie.ac.at/forna/).

Other than the generic information, DNAs and RNAs have been used as synthetic materials.
Essentially, the sequences of DNAs and RNAs can be specially designed so that they can be
engineered into some unique 3D structures. In particular, DNA nanotechnology can be used
to assemble nanoscale DNA structures with various structures. One of the most promising
DNA nanotechnologies is DNA origami. The transformation of a flat sheet of paper into a
highly ordered structure through folding and sculpting techniques is called origami. In DNA
origami, specially-designed long DNA strands are folded into highly complicated 3D structures
with the help of short staple DNA strands. An example of a DNA origami (PDB ID: 4V5X)
is demonstrated in Figure 2 (D). Highly complicated topological structures can be achieved by
the careful design of DNA sequence information [49, 175].

3 Topological Models for Biomolecules

Topological representations and modeling are of vital importance for the analysis of biomolecu-
lar data. In general, a biomolecule can be characterized from different topological perspectives
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based on its intrinsic properties that we are interested in. For instance, if one wants to know the
knot or supercoil properties of proteins or DNAs, one can consider their backbone structures
and topologically characterize them as continuous strings. If one wants to perform a molecule
dynamic simulation, one must consider all the covalent and non-covalent bonds between the
atoms. Mathematically, various topological models can be used in biomolecular data analy-
sis and prediction, including graphs, simplicial complexes, hypergraphs, homology, spectral,
Hodge-Laplacian, and others. A briefing introduction of these models is given in this section.

3.1 Graph and Network

Figure 3 Topological representation of a protein. (A) The chain representation of a protein. The coil

chain is composed of Beta-sheets and Alpha-complexes. (B) The graph representation of a protein.

(C) The simplicial complex representation of a protein

Graph or network models are the most widely used models in biomolecular representations
among all topological representations [10, 11, 102, 109, 121]. For instance, elastic network
models, including Gaussian network model (GNM), anisotropic network model (ANN), and
others, are popular tools for the study of biomolecular flexibility and normal modes [58]. In
molecular dynamic models, biomolecular networks are constructed based on atomic covalent
bonds. Other than the characterization of intramolecular interactions, graphs and networks are
also key models for the characterization of intermolecular interactions. Figure 3 (B) illustrates
a graph representation of a protein.

Mathematically, one can build up various types of matrices based on a graph, and use
them to study molecular topological information. One of them is the Laplacian matrix L. For
instance, in GNM, for a protein with N number of Cα atoms, an N by N Laplacian matrix can
be constructed as

Lij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1, i �= j and rij ≤ rc;

0, i �= j and rij > rc;

−
∑

k �=i

Lik, i = j.

. (3.1)
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Here rij is the distance between the ith and jth atoms, and rc is a predefined cutoff distance.
In GNM, if two atoms are within the cutoff distance, they are assumed to be “connected”.
The spectral information from the Laplacian matrix is used for the characterization of protein
flexibility [58].

Another important connection matrix is Hessian matrix [10]. If one defines the coordinate
of the ith-atom as (xi, yi, zi), a 3N × 3N Hessian matrix can be constructed with local 3 × 3
matrix Hij given by

Hij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
r2
ij

⎡

⎢
⎢
⎣

(xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)

(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

⎤

⎥
⎥
⎦ ,

i �= j and rij ≤ rc;

03×3, i �= j and rij > rc;

−
∑

k �=i

Hik, i = j

(3.2)

for i, j = 1, 2, . . . , N . Hessian matrix is widely used in biomolecular normal mode analysis
[10, 58].

3.2 Simplicial Complex

Simplicial complex is a very important concept in topology [59, 152]. Recently, simplicial
complexes have been used in the study of data, in particular, the characterization of complex
connection information within/between data [116]. Simplicial complex is able to provide richer
information than graph models, which only characterize pair-wise interactions. Computation-
ally, one can construct simplicial complexes from various types of data, including point-clouds,
matrices, volumetric functions, networks, graphs, and others. Simplicial complex is one of the
essential mathematical tools for data sciences and computer sciences.

Geometrically, 0-simplex means a point, 1-simplex means a line segment, 2-simplex means
a triangle, 3-simplex means a tetrahedron, etc. An n-simplex can be regarded as a polyhedron
spanned by n+1 geometrically independent points (they are not in any hyperplane of dimension
n) in the Euclidean space R

n. In mathematical language, a (geometric) n-simplex spanned by
n + 1 geometrically independent points a0, . . . , an is given by

σn =
{ n∑

i=0

tia
i | 0 ≤ ti ≤ 1,

n∑

i=0

ti = 1
}

⊆ R
n.

Simplices are the basic units of a simplicial complex, and the construction of a simplicial complex
from a graph or dataset usually starts with simplices. A simplicial complex K in the Euclidean
space R

n is a collection of simplices in R
n such that

(i) Every face of a simplex of K is in K;
(ii) The intersection of any two simplices of K is either empty, or a common face of them.
Another equivalent description of simplicial complexes is the abstract simplicial complex.

Let V be an ordered set. An abstract simplicial complex K is a collection of finite nonempty



Biomolecular Topology: Modelling and Analysis 1913

subsets of V , such that if σ is an element in K, so is every nonempty subset of σ. The abstract
simplicial complex is a combinatorial version of simplicial complex. Figure 3 (C) illustrates a
simplicial complex representation for a protein.

One can obtain different simplicial complexes, such as neighborhood complexes, Docker
complexes, and Hom complexes from a graph. This gives the possibility of using topological
methods to deal with problems in graph theory. The Kneser conjecture was proved in 1978 by
L. Lovász, who used the connectivity of neighborhood complexes to give the lower bound of the
chromatic number of Kneser graphs [112].

Example 3.1 Čech complex and Vietoris–Rips complex.
Given a collection of points V = {a0, a1, a2, . . . , ai, . . . } in Euclidean space R

n, the Čech com-
plex [82] Cε is the abstract simplicial complex whose k-simplices are determined by unordered
(k + 1)-tuples of points in V whose closed ε/2-ball neighborhoods have a point of common
intersection.

Given a collection of points V = {a0, a1, a2, . . . , ai, . . . } in the Euclidean space R
n, the

Vietoris–Rips complex [82] Rε is the abstract simplicial complex whose simplices are the set of
points in V which are pairwise within distance ε.

Example 3.2 Neighborhood complex.
Let G be a graph. The neighborhood complex [116] of G is the (abstract) simplicial complex
N (G) defined as follows: its vertices are all non-isolated vertices of G, and its simplices are all
the subsets of V (G) that have a common neighbor.

Example 3.3 Path complex.
A generalization of the notion of simplicial complex is the path complex for directed graphs
[85–87]. Let V be a finite set. For any integer n ≥ 0, an elementary n-path is a sequence
v0v1 · · · vn of vertices in V . A path complex on a nonempty finite set V is a nonempty collection
P of elementary paths on V such that if v0v1 · · · vn ∈ P then also v0v1 · · · vn−1 and v1v2 · · · vn
belong to P. Let K be an abstract simplicial complex defined over the finite ordered set V .
Each simplex σ ∈ K can be regarded as an ordered sequence with vertices in V . Recall that
the face maps of the simplicial complex K = {Kn}n≥0 are defined by

di : Kn → Kn−1, di{v0, . . . , vn} = {v0, . . . , vi−1, vi+1, . . . , vn}

for {v0, . . . , vn} ∈ Kn and i = 0, 1, . . . , n. If σ ∈ Kn, then d0σ, dnσ ∈ Kn−1. This implies that
a simplicial complex is indeed a path complex.

Let G = (V, E) be a simple digraph, that is, a directed graph having no multiple edges or
graph loops. An allowed n-path on G is a sequence

v0v1 · · · vn, v0, v1, . . . , vn ∈ V

such that (vi−1, vi) ∈ E, i = 1, 2, . . . , n. Denote Pn(G) the set of all allowed n-paths. In
particular, we have P0 = V and P1 = E. It can be directly verified that the family {Pn} of all
allowed paths is a path complex. This path complex, denoted by P(G), is the path complex of
the digraph G.
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3.3 Homology Group

The homology group is a fundamental homotopy invariant [95, 152]. In applications, homology
groups are more computable relative to other homotopy invariants. The success of persistent
homology in data analysis and machine learning is due to the characteristics of homology groups.
First, as a topological invariant, the homology group captures the overall structure and stable
features of data. Second, homotopy groups can describe the date-sets which are independent
of metric. However, homotopy groups are flexible as features, a more feasible method is the
persistent homology which will be introduced later.

Let G be an abelian group. Recall that a p-chain on a simplicial complex K is the abelian
group generated by the p-simplices in K with coefficients in G, denoted by Cp(K; G). Each
element in Cp(K; G) can be written as

x =
∑

i∈I

giσi, gi ∈ G, σi ∈ Kp,

where I is a finite set and Kp is the set of p-simplices in K. A chain group of K is a collection
of p-chains {Cp(K; G)}p≥0.

Let V (K) be an ordered set of the vertices in a simplicial complex K. Then each p-simplex
of K can be written as

σp = {v0, . . . , vp}, vi ∈ V (K), v0 < v1 < · · · < vp,

and we sometimes write σp = v0 · · · vp for convenience. The face maps are defined by

di : Kp → Kp−1,

v0 · · · vp �→ v0 · · · vi−1vi+1 · · · vp
for 0 ≤ i ≤ p. We have a boundary operator

∂p : Cp(K; G) → Cp−1(K; G)

given by ∂pσp =
∑p

i=0(−1)idiσp. It can be verified that ∂p−1∂p = 0. Then there is a long
sequence

· · · → Cp(K; G)
∂p→ Cp−1(K; G)

∂p−1→ · · · ∂1→ C0(K; G) ∂0→ 0,

which is called the simplicial chain complex of K, denoted by {Cp(K; G), ∂p}p≥0. The p-th
homology group of K is defined as the quotient group

Hp(K; G) = ker ∂p/im∂p+1,

where ker ∂p = {x ∈ Cp(K; G) | ∂p(x) = 0} and im∂p+1 = {∂p+1x |x ∈ Cp+1(K; G)}. The p-th
Betti number βp of K is the rank of the p-th homology group of K.

Note that the 0-th homology group of K describes the number of path connected components
of K, i.e.,

H0(K; G) ∼=
r

︷ ︸︸ ︷
G ⊕ · · · ⊕ G,

where r is the number of path connected components of K. It is obvious that β0(K) = r.
Especially, if K is path connected, we have

H0(K; G) ∼= G.
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The homology group is a topological invariant that can describe the intrinsic connection
information of the data. However, sometimes the features of data described by homology
groups are too flexible and rough. Besides, the simplicial complex obtained from a data-set also
depends on the scale of our observation. To solve the problem, persistent homology that can
describe the topological structures at different scales has been proposed.

Graph (or network) data play an important role in data sciences. Graph-based topology
models have attracted great attentions recently. Among them is the path homology model.

Let P be a path complex over a set V . Let F be a field. We denote Λn the F-linear space
generated by all the elementary n-paths, that is,

Λn =
{

∑

v0,...,vn∈V

av0v1···vnev0v1···vn

∣
∣
∣
∣ av0v1···vn ∈ F

}

.

Here {ev0v1···vn
, v0, . . . , vn ∈ V } is the basis of Λn. Then Λ = {Λn} is a chain complex with the

boundary operator ∂n : Λn → Λn−1 given by

∂nev0v1···vn
=

n∑

k=0

(−1)kev0···v̂k···vn
, n ≥ 1,

where v0 · · · v̂k · · · vn means omission of the index vk. For n = 0, we set ∂0ev = 0, ev ∈ Λ0. Now,
we denote An the F-linear space generated by all the elementary n-paths from P, that is,

An = An(P) =
{

∑

v0,...,vn∈V

av0v1···vnev0v1···vn

∣
∣
∣
∣ v0v1 · · · vn ∈ Pn, av0v1···vn ∈ F

}

.

It is obvious that A = {An} is a subspace of Λ. However, A does not have to be a chain
complex. For example, let G = (V, E) with V = {0, 1, 2} and E = {(0, 1), (1, 2)}. Then

A0 = span{e0, e1, e2}, A1 = span{e01, e12}, A2 = span{e012}.
Note that ∂e012 = e01 − e02 + e12. But e02 /∈ A1. One motivation is to get a chain complex
from A. Let

Ω0 = Ω0(P) = A0, Ωn = Ωn(P) = {σ ∈ An | ∂σ ∈ An−1}, n ≥ 1.

It can be verified that ∂Ωn ⊆ Ωn−1. Then Ω = {Ωn} is a chain complex with boundary operator
∂ : Ωn → Ωn−1. The path homology of the path complex P is defined as

Hn(P) = Hn(Ω∗(P)) =
ker ∂|Ωn

im∂|Ωn+1

.

In particular, if P is a simplicial complex, then the path homology of P coincides with the
usual homology of P. One interesting interpretation of path homology is as follows. By abuse
of language, it can be verified that Ω is the largest chain complex contained in A. Let Ξ be the
minimal chain complex containing A in Λ. Then we have

Hn(Ω∗) ∼= Hn(Ξ∗), n ≥ 0.

The path homology is an important invariant of digraphs which shows many excellent properties.
The reader may refer to the works by A. Grigor’yan, Yu. Muranov, and S.-T. Yau et al. [85, 88–
90] for more details on path homology.
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3.4 Persistent Homology

Persistent homology has been used to characterize biomolecular structures, flexibility, dynamics,
and functions [32, 41, 76, 212–214, 218]. Essentially, persistent homology provides a represen-
tation that retains the geometric information of the topological invariants, so that it works as
a bridge between geometry and topology. It captures the intrinsic topological structure prop-
erties and discards all the other irrelevant information. For data analysis, persistent homology
delivers a topological simplification of the high-dimensional and highly complicated data.

The filtration is one of the fundamental objects to build persistent homology. Let (R,≤) be
the category of real numbers with morphisms given by a → b for a ≤ b. Commonly, a filtration
(of simplicial complexes) is a functor F : (R,≤) → Simp from the category of real numbers to
the category of simplicial complexes satisfying

F(a) ⊆ F(b), for a ≤ b.

Two typical examples of filtrations are the Čech complexes and the Vietoris–Rips complexes.
For example, the Vietoris–Rips complex is given by F(ε) = Rε for ε ∈ R. It is obviously that
Rε ↪→ Rε′ is an inclusion of simplicial complexes for any ε ≤ ε′.

The persistence module is a classical tool to describe persistent homology [228]. Let R be a
commutative ring with unit. A persistence module is a functor M : (R,≤) → ModR from the
category of real numbers to the category of R-modules. More precisely, a persistence module
is a family of R-modules {Mp}p∈R together with R-module homomorphisms fp→q :Mp → Mq

for p ≤ q such that:
(i) fp→p = id;
(ii) fq→r ◦ fp→q = fp→r for p ≤ q ≤ r.
Let F : (R,≤) → Simp be a filtration of simplicial complexes. For real numbers a ≤ b, we

have an inclusion of simplicial complexes

F(a) ↪→ F(b),

which induces a morphism of homology groups

H∗(F(a); F) → H∗(F(b); F)

with coefficient field F. It can be verified that H∗(F(−); F) is a persistence module. The (a, b)-
persistent homology of F , denoted by Ha→b

∗ (F), is the image of the induced map H∗(F(a); F) →
H∗(F(b); F). The (a, b)-persistent homology characterizes the generators that are born at time
a and survive to time b. Compared with the usual homology, persistent homology gives rigid
and computable features of data. Recently, multidimensional or multi-parameter persistent
homology have been extensively studied [120]. The essential idea is to consider multidimensional
filtration and persistence modules.

The persistent path homology [53] is another new variant of the persistent homology theory.
Let D be the category of digraphs, the morphisms are given by the digraph maps. A filtration
of digraphs is a functor G : (R,≤) → D from the category of real numbers to the category of
digraphs, that is,

(i) Ga ∈ D;
(ii) Denote fa→b : Ga → Gb for a ≤ b. Then fb→c ◦ fa→b = fa→c for a ≤ b ≤ c.
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The (a, b)-persistent path homology of G, denoted by Ha→b
∗ (G), is the image of the map

H∗(G(a); F) → H∗(G(b); F) induced by a → b. Here, F is the coefficient field. More generally,
let F : (R,≤) → Path be a filtration of path complexes, that is, a functor from the category of
real numbers to the category of path complexes. Then the (a, b)-persistent path homology of F
is defined to be

im(H∗(F(a); F) → H∗(F(b); F)),

where H∗(F(a); F) → H∗(F(b); F) is induced by a → b.

Example 3.4 (Edge-based filtration) Given a weighted directed network, that is, a digraph
G = (V, E) with a weight function w : E → R. Let Ea = {(u, v) ∈ E |w(u, v) ≤ a}, and let
Ga = (V, Ea). Then {Ga}a∈R gives a filtration of digraphs. The persistent path homology of
(G, w) is given by Ha→b

∗ (G) = im(H∗(Ga; F) → H∗(Gb; F)).

Example 3.5 (Path-based filtration) Let P be a path complex, and let w be a weight function
w : P → R such that w(v0v1 · · · vn−1), w(v1v2 · · · vn) ≤ w(v0v1 · · · vn) for each path v0v1 · · · vn
in P . Then Pa = {x ∈ P |w(x) ≤ a} defines a filtration of path complexes. The persistent path
homology of (P, w) is given by Ha→b

∗ (F) = im(H∗(Fa; F) → H∗(Fb; F)).

The filtration process is vital to all the persistent homology models. Other than the above
approaches, network-based filtration models can be obtained from time-dependent network
growing processes. With the strong connections to graph data, the persistent path homology
will have great potential in various applications.

3.5 Persistent Laplacian

Persistent Laplacian is a recent promotion of topological data analysis derived from a series of
methods such as spectral graph theory, circuit theory and persistent homology together with a
topological view of the combinatorial Laplacian on simplicial complexes [142].

In spectral graph theory [54], the graph Laplacian plays a fundamental role in optimization
problems on graphs [119, 135, 154], the efficient solution of equations [115, 132, 178] and the
network circuit theory [21, 65, 136]. Coincidentally, the Laplacian is not only a typical operator
on graph but also an important concept in the de Rham–Hodge theory on manifolds [24].
The Laplacian on de Rham complex is derived from the coboundary operators and the inner
product on differential forms. Lim discussed Hodge Laplacians on graphs [124]. The similarity
and difference between Hodge Laplacians and graph Laplacians were studied [166]. Omitting
the geometry, the natural idea is to consider a (co)chain complex with a specific inner product
structure, which leads us to the combinatorial Laplacian. From the perspective of topology,
the combinatorial Laplacian could appear in the studying of various objects such as graphs,
manifolds, simplicial complexes or even hypergraphs.

In recent years, the combinatorial Laplacian has been widely concerned and studied in
theory and application [92, 94, 113, 137, 145]. In the de Rham–Hodge theory, the Laplacian
determines the de Rham cohomology of manifolds, which indicates the potential to follow the
persistence of Laplacians. Recently, researchers begin to pay attention to persistent Laplacians
[142]. However, the ideas were outlined in earlier papers [52, 199] in 2019. Compared to
persistent homology, persistent Laplacians offer additional nonharmonic eigenfunctions and
eigenvlues for data analysis. Let K be a simplicial complex, and let C∗(K; R) be the chain
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group of K. We fix an inner product

〈·, ·〉 : C∗(K; R) × C∗(K; R) → R

on C∗(K; R). Note that the inner product on C∗(K; R) always exists, since we can at least take

〈σ, τ 〉 =

⎧
⎨

⎩

wσ ∈ R
+, if σ = τ ;

0, otherwise.

Let ∂∗
p : Cp−1(K; R) → Cp(K; R) be the adjoint operator of the operator ∂p : Cp(K; R) →

Cp−1(K; R). The p-th combinatorial Laplacian of K is defined by

ΔK
p = ∂p+1 ◦ ∂∗

p+1 + ∂∗
p ◦ ∂p.

In particular, we consider the case 〈σ, τ 〉 = δστ , or equivalently, the function

w : K → R
+

above by taking wσ = 1 for each σ ∈ K. Let Bp be the representation matrix of ∂p with
respect to fixed bases of Cp and Cp−1 with a given order. In this case, the coboundary op-
erator δp : Cp−1(K; R) → Cp(K; R) induced by ∂p is consistent with the adjoint operator
∂∗
p : Cp−1(K; R) → Cp(K; R), i.e., the representation matrix of ∂∗

p is exactly Bp with respect to
the dual bases of Cp and Cp−1. Moreover, the representation matrix of the p-th combinatorial
Laplacian is given by

Lp = Bp+1B
T
p+1 + BT

p Bp.

Similar to persistent homology, the persistent Laplacian works on a filtration of simplicial
complexes. Let F : (R,≤) → Simp be a filtration of simplicial complexes of finite type. For
real numbers a ≤ b, we have an inclusion

F(a) ↪→ F(b),

which induces a morphism of chain complexes

C∗(F(a), R) ↪→ C∗(F(b), R).

Let F(∞) =
⋃

a∈R
F(a) and C∗ = C∗(F(∞), R). We endow an inner product 〈·, ·〉 on C∗. As

a subspace of C∗, the chain complex C∗(F(a), R) can inherit an inner product structure from
C∗ and a boundary operator given by the restriction

∂a
p = ∂p|Cp(F(a),R) : Cp(F(a), R) → Cp−1(F(a), R).

Here, ∂∗ is the boundary operator on C∗. For convenience, we write Ca
p = Cp(F(a), R). Denote

the subspace
Ca,b

p = {x ∈ Cb
p | ∂b

px ∈ Ca
p−1}

the preimage of Ca
p−1 in Cb

p−1 under ∂b
p. Then we have a linear operator

∂a,b
p = ∂b

p |Ca,b
p

: Ca,b
p → Ca

p−1,

which induces an adjoint operator

(∂a,b
p )∗ : Ca

p−1 → Ca,b
p



Biomolecular Topology: Modelling and Analysis 1919

with respect to the inner product 〈·, ·〉. Consider the following diagram:

Ca
p+1

∂a
p+1 ��

� �

��

Ca
p

∂a
p ��

� �

��

(∂a,b
p+1)

∗�����
��

��
��

Ca
p−1

(∂a
p )∗

�� � �

��

Ca,b
p+1

∂a,b
p+1

�����������

��

����
��

��
��

Cb
p+1

∂b
p+1 �� Cb

p

∂b
p �� Cb

p−1

The p-th persistent Laplacian [142] is defined by

Δa,b
p = ∂a,b

p+1 ◦ (∂a,b
p+1)

∗ + (∂a
p )∗ ◦ ∂a

p .

In particular, if a = b, we have Δa,b
p = Δa

p, which is exactly the combinatorial Laplacian on Ca
p .

The following result shows that the persistent Laplacians indicate persistent Betti numbers of
persistent homology.

Theorem 3.6 ([142]) For each integer p ≥ 0, we have that βa,b
p = nullity(Δa,b

p ). Here,
nullity(Δa,b

p ) denotes the number of zero eigenvalues of Δa,b
p .

The persistence of the operator Δa,b
p is worth considering for many reasons. An interesting

story is the persistent Hodge decomposition theorem of combinatorial version.

Theorem 3.7 (Persistent Hodge decomposition theorem) Let F : (R,≤) → Simp be a filtra-
tion of simplicial complexes of finite type. Then

Ca
p (F) = ker Δa,b

p ⊕ im∂a,b
p+1 ⊕ im(∂a

p )∗.

Proof We will first prove
ker Δa,b

p = ker(∂a,b
p+1)

∗ ∩ ker ∂a
p . (3.3)

Indeed, it can be directly verified that ker Δa,b
p ⊇ ker(∂a,b

p+1)
∗ ∩ ker ∂a

p . On the other hand, if
ω ∈ ker Δa,b

p , then we have

0 = 〈Δa,b
p ω, Δa,b

p ω〉
= 〈∂a,b

p+1 ◦ (∂a,b
p+1)

∗ω + (∂a
p )∗ ◦ ∂a

pω, ∂a,b
p+1 ◦ (∂a,b

p+1)
∗ω + (∂a

p )∗ ◦ ∂a
pω〉

= 〈∂a,b
p+1 ◦ (∂a,b

p+1)
∗ω, ∂a,b

p+1 ◦ (∂a,b
p+1)

∗ω〉 + 〈(∂a
p )∗ ◦ ∂a

pω, (∂a
p )∗ ◦ ∂a

pω〉
since ∂a

p ◦ ∂a,b
p+1 ◦ (∂a,b

p+1)
∗ω = ∂b

p ◦ ∂b
p+1 ◦ (∂a,b

p+1)
∗ω = 0. The positive definiteness of the inner

product implies that
∂a,b
p+1 ◦ (∂a,b

p+1)
∗ω = 0, (∂a

p )∗ ◦ ∂a
pω = 0.

Then we have
0 = 〈∂a,b

p+1 ◦ (∂a,b
p+1)

∗ω, ω〉 = 〈(∂a,b
p+1)

∗ω, (∂a,b
p+1)

∗ω〉,
which implies that (∂a,b

p+1)
∗ω = 0 in view of the positive definiteness of the inner product.

Similarly, we have ∂a
pω = 0. Thus ω ∈ ker(∂a,b

p+1)
∗ ∩ ker ∂a

p .
For any α ∈ Ca,b

p+1, β ∈ Ca
p−1, we have

〈∂a,b
p+1α, (∂a

p )∗β〉 = 〈∂a
p ◦ ∂a,b

p+1α, β〉 = 0,
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which shows that im∂a,b
p+1 and im(∂a

p )∗ are orthogonal. Now, we will prove

ker Δa,b
p = (im∂a,b

p+1)
⊥ ∩ (im(∂a

p )∗)⊥. (3.4)

By Formula (3.3), we have ker Δa,b
p ⊆ (im∂a,b

p+1)
⊥ ∩ (im(∂a

p )∗)⊥. If ω ∈ (im∂a,b
p+1)

⊥ ∩ (im(∂a
p )∗)⊥,

then we have
〈(∂a,b

p+1)
∗ω, x〉 = 〈ω, ∂a,b

p+1x〉 = 0, for any x ∈ Ca,b
p+1.

It follows that (∂a,b
p+1)

∗ω = 0 in Ca,b
p+1. Similarly, we have ∂a

pω = 0 in Ca
p−1. By Formula (3.3),

we obtain
ω ∈ ker(∂a,b

p+1)
∗ ∩ ker ∂a

p = kerΔa,b
p ,

which leads to the desired result.
Let ω ∈ Ca

p , and let v1, . . . , vn be an orthogonal basis of kerΔa,b
p . Denote ω0 =

∑n
i=0〈ω, vi〉vi.

Then we have
〈ω − ω0, vi〉 = 0, i = 1, . . . , n,

which implies that ω′ = ω − ω0 ∈ im∂a,b
p+1 + im(∂a

p )∗ = im∂a,b
p+1 ⊕ im(∂a

p )∗ in terms of Formula
(3.4). Similarly, ω′ can be written as

ω′ = ω1 + ω2, ω1 ∈ im∂a,b
p+1, ω2 ∈ im(∂a

p )∗.

Then we have ω = ω0 + ω1 + ω2, ω0 ∈ kerΔa,b
p , ω1 ∈ im∂a,b

p+1, ω2 ∈ im(∂a
p )∗. Moreover, a

straightforward calculation shows that the decomposition is unique. �
A notable result is that the persistent Laplacian indicates the persistent homology.

Theorem 3.8 Let F : (R,≤) → Simp be a filtration of simplicial complexes of finite type.
Then the morphism

ρ : ker(Δa,b
p ) → Ha→b

p (F), ω �→ [ω]. (3.5)

is an isomorphism of abelian groups for all a ≤ b, p ∈ N.

Proof By Formula (3.3), the map ρ is well defined. Let ρ(ω) = 0 for ω ∈ ker(Δa,b
p ). Then we

have
ω = ∂b

p+1α, α ∈ Cb
p+1.

Noting that ω ∈ Ca
p , we can write ω = ∂a,b

p+1α and α ∈ Ca,b
p+1. It follows that

0 = (∂a,b
p+1)

∗ω = (∂a,b
p+1)

∗∂a,b
p+1α,

which implies that ω = ∂a,b
p+1α = 0 by the positive definiteness of inner product. Thus ρ

is an injection. For any nonzero element z ∈ Ha→b
p (F), we choose a representative element

ω ∈ ker ∂a
p ∩ ker ∂b

p such that z = [ω]. By Theorem 3.7, we have a decomposition

ω = ω0 + ω1, ω0 ∈ kerΔa,b
p , ω1 ∈ im∂a,b

p+1.

Note that im∂a,b
p+1 ⊆ im∂b

p+1, we have [ω] = [ω0]. Then we have ρ(ω0) = z, thus ρ is a
surjection. �

Remark 3.9 For a ≤ b, the inclusion j : Ca
∗ ↪→ Cb

∗ of chain complexes induces a morphism of
homology groups

Hp(j) : Hp(Ca
∗ ) → Hp(Cb

∗).
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The Hodge theorem says that Hp(Ca
∗ ) ∼= kerΔa

p, where Δa
p = ∂a

p+1 ◦(∂a
p+1)

∗+(∂a
p )∗ ◦∂a

p . Hence,
we have a morphism of abelian groups kerΔa

p → ker Δb
p induced by Hp(j). However, it does

not always hold that j(ω) ∈ ker Δb
p for ω ∈ kerΔa

p. Let ω ∈ Ca
p . By the Hodge decomposition

theorem, we have

ω = ω0 + ω1, ω0 ∈ kerΔa,b
p , ω1 ∈ im∂a,b

p+1.

Define ha,b
p : kerΔa

p → kerΔb
p by ha,b

p (ω) = ω0. The proof of Theorem 3.8 shows that Hp(j) is
given by ha,b

p . Moreover, we have im(ha,b
p ) = kerΔa,b

p .

From the above theorem, we can identify the data {ker(Δa,b
p )}a,b∈R,p∈N with the the persis-

tent homology data {Ha→b
p (F)}a,b∈R,p∈N. Moveover, these two kinds of data provide the same

barcode.
Another interesting aspect is that the image of Δa,b

p seems to be stable, or precisely, we
have

im(Δa,b
p ) ⊆ im(Δa,c

p ), p ≥ 0

for any a ≤ b ≤ c. It can be obtained directly by the fact Ha,b
p (F) ⊆ Ha,c

p (F) and the persistent
Hodge decomposition theorem.

The persistent Laplacian heavily depends on the up-persistent Δa,b
p,up = ∂a,b

p+1 ◦ (∂a,b
p+1)

∗,
which is regarded as a Schur complement [37]. The monotonicity and stability of up-persistent
Laplacian eigenvalues have been proved. Note that the persistent Laplacian provides both
topological and spectral information for the characterization of data. Persistent homology
based models have been used in molecular data analysis [200, 204, 205].

3.6 Evolutionary de Rham–Hodge Theory

The evolutionary de Rham–Hodge method can be regarded as a variant of persistent Laplacian
in geometry. In fact, the idea of the evolutionary de Rham–Hodge method is earlier than the
persistent Laplacian [52, 224].

The de Rham–Hodge theory establishes the relationship between the de Rham cohomology
of an oriented closed Riemannian manifold and the harmonic forms. It is widely used in
differential geometry, algebraic geometry, partial differential equations, algebraic topology, etc.
[7, 12, 43, 44, 150]. Additionally, it also appears frequently in physics, data science and computer
science [19, 77, 138, 149].

The Laplacian operator plays a fundamental role in the de Rham–Hodge theory. We es-
tablish the notations to introduce the Laplacian on de Rham complexes. Let M be a compact
oriented Riemannian n-manifold without boundary. Let x1, . . . , xn be an orthogonal basis of
M , and let dx1, . . . , dxn be the dual basis of x1, . . . , xn. Denote Ωp(M) the space of all the
differential p-forms on M . The de Rham complex Ω∗(M) is a cochain complex with differential
operators dp : Ωp(M) → Ωp+1(M), p ≥ 0 given by

dp(fdxα1 ∧ · · · ∧ dxαp
) =

n∑

i=1

∂f

∂xi
dxi ∧ dxα1 ∧ · · · ∧ dxαp

.

Note that there is a codifferential operator

(dp)∗ : Ωp+1(M) → Ωp(M)
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adjoint to dp with respect to the L2 inner product given by

(α, β) =
∫

M

α ∧ β.

Here,  is the Hodge star operator [140]. The Laplacian operator Δp : Ωp(M) → Ωp(M) on de
Rham complex is defined by

Δp = (dp)∗ ◦ dp + dp−1 ◦ (dp−1)∗.

This definition is consistent with the definition of combinatorial Laplacian. Recall that the
space of harmonic p-forms Hp = {ω ∈ Ωp(M) |Δpω = 0} on a manifold M is isomorphic to the
cohomology of M [24], i.e.,

Hp ∼= Hp
DR(M) ∼= Hp(M, R),

where Hp
DR(M) = Hp(Ω∗(M)). By the Hodge composition theorem, we have

Ωp(M) = Hp ⊕ imdp ⊕ im(dp)∗, p ∈ N,

and each element ω ∈ Ωp(M) has a unique decomposition. Let h = {hp}p∈N be a family of
linear maps given by

hp : Ωp(M) → Hp, hp(ω) = ω0,

where ω = ω0 + ω1 + ω2, ω0 ∈ Hp, ω1 ∈ imdp, ω2 ∈ im(dp)∗.
From now on, the manifolds considered are always assumed to be compact oriented Rieman-

nian manifolds without boundary2) . The evolutionary de Rham–Hodge method is to consider
the Laplacian with respect to a (smooth) filtration of manifolds, the evolution of manifolds.
Let (R,≤) be the category of real number with morphisms given by a → b for a ≤ b. Generally,
an evolution (or filtration) of manifolds is a functor M : (R,≤) → Mani from the category of
real numbers to the category of smooth manifolds such that

ja,b : M(a) ↪→ M(b), for a ≤ b

is an immersion. For real numbers a ≤ b, we have a morphism of de Rham complexes

j∗a,b = Ω∗(ja,b) : Ω∗(M(b)) → Ω∗(M(a)),

which leads to the following commutative diagram.

Ω0(M(a)) d0
��

��

j0a,b

· · · �� Ωp(M(a)) dp
��

��
jp
a,b

Ωp+1(M(a)) dp+1
��

��

jp+1
a,b

· · ·

Ω0(M(b)) d0
�� · · · �� Ωp(M(b)) dp

�� Ωp+1(M(b)) dp+1
�� · · ·

It induces a morphism of cohomology groups

Hp(j∗a,b) : Hp
DR(M(b)) → Hp

DR(M(a)).

Denote Hp
a the space of harmonic p-forms on M(a). By the Hodge theorem [24], the above

morphism can be identified with
h ◦ jpa,b : Hp

b → Hp
a.

2) The evolutionary de Rham–Hodge method also works for manifolds with boundaries that are leaded to

applications [52]. For simplicity, we only highlight the results for manifolds without boundaries
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The p-th persistent harmonic space is defined by

Hp
a→b = im(Hp

b → Hp
a).

The data of persistent harmonic spaces {Hp
a→b}a,b∈R,p∈N can be identified with the data of

persistent cohomology {Hp
a→b}a,b∈R,p∈N.

The de Rham complex Ω∗(M(a)), a ∈ R with the inner product (·, ·) can also produce a
persistent Laplacian similar as the combinatorial version. One notable difference is that the
morphism of de Rham complexes

j∗a,b : Ω∗(M(b)) → Ω∗(M(a)), a ≤ b

is a projection. The inner product and coboundary operators on Ω∗(M(a)) can be induced by
that on Ω∗(M(b)).

Now, denote Ωp
a = Ωp(M(a)), a ∈ R for the sake of simplicity. Let (jpa,b)

∗ be the adjoint of
jpa,b, then (jpa,b)

∗ is injective. Indeed, if (jpa,b)
∗x = 0, we have

0 = ((jpa,b)
∗x, y) = (x, jpa,by), for any y ∈ Ωp

b .

Since jpa,b is surjective, we have (x, z) = 0 for any z ∈ Ωp
a, which implies that x = 0. Now, we

denote
Ωp+1

a,b = {ω ∈ Ωp+1
b | (dpb)∗ω ∈ (jpa,b)

∗Ωp
a}.

Define (da,b)∗ : Ωp+1
a,b → Ωp

a as follows: let ω ∈ Ωp+1
a,b , then (dpb)

∗ω = (jpa,b)
∗α for a unique α ∈ Ωp

a

since (jpa,b)
∗ is an injection. And then we let (dpa,b)

∗ω = α. Note that

(jp−1
a,b )∗(dp−1

a )∗(dpa,b)
∗ω = (jp−1

a,b )∗(dp−1
a )∗α = (dp−1

b )∗(jpa,b)
∗α = (dp−1

b )∗(dpb)
∗ω = 0.

Since (jpa,b)
∗ is injective, we have (dp−1

a )∗(dpa,b)
∗ = 0. Let (da,b)p be the adjoint of (dpa,b)

∗. Then
we have the following diagram.

Ωp−1
a��

jp−1
a,b

��

dp−1
a �� Ωp

a
(dp−1

a )∗
�� ��

jp+1
a,b

��

dp
a ��

dp
a,b

		��������� Ωp+1
a��

jp+1
a,b

��

Ωp+1
a,b

(dp
a,b)

∗



���������

� �

		���������

Ωp−1
b

dp−1
b �� Ωp

b

dp
b �� Ωp+1

b

The p-th persistent Laplacian on the evolution of manifolds is defined as

Δp
a,b = dp−1

a ◦ (dp−1
a )∗ + (dpa,b)

∗ ◦ dpa,b.

Similar as Formula (3.3), we have

kerΔp
a,b = ker(dp−1

a )∗ ∩ ker dpa,b. (3.6)

And we define the p-evolution harmonic space3) by Hp
a,b = kerΔp

a,b.
Moreover, the evolutionary Hodge decomposition theorem for the evolution of manifolds is

also established.
3) The definition is somewhat different from the original [52]. The ideas are originally from Guo Wei Wei et al,

and we unify the notations here
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Theorem 3.10 (Evolutionary Hodge decomposition theorem) Let M : (R,≤) → Mani be an
evolution of manifolds. Then

Ωp
a(M) = ker Δp

a,b ⊕ imdp−1
a ⊕ im(dpa,b)

∗.

The proof of Theorem 3.10 is similar to that of Theorem 3.7. The following lemma indicates
the persistence of ker Δp

a,b in a certain meaning and will be used in the proof of further theorem.

Lemma 3.11 ker Δp
a,b ⊆ kerΔp

a.

Proof Let α ∈ kerΔp
a,b. By the Hodge decomposition theorem, we have

α = α0 + α1 + α2, α0 ∈ ker Δp
a, α1 ∈ imdp−1

a , α2 ∈ im(dpa)
∗.

By Formula (3.6), we have α = α0 + α2. Let α2 = (dpa)
∗β2. For any u ∈ Ωp+1

a,b , let v = (dpa,b)
∗u.

It follows that (dpb)
∗u = (jpa,b)

∗v by definition. Then we have

0 = (dpa,bα, u) = (α0 + (dpa)
∗β2, (d

p
a,b)

∗u) = (α0, v) + ((dpa)
∗β2, v)

for any v satisfying (jpa,b)
∗v ∈ im(dpb)

∗. Since (jpa,b)
∗(dpa)

∗β2 = (dpb)
∗(jp+1

a,b )∗β2, we choose
v = (dpa)

∗β2. Note that (α0, (dpa)
∗β2) = (dpaα0, β2) = 0. We have

((dpa)
∗β2, (dpa)

∗β2) = 0,

which implies (dpa)∗β2 = 0. Hence, we obtain α = α0 ∈ ker Δp
a. This completes the proof of

this lemma. �
An interesting result says that the persistent harmonic space coincides with the evolution

harmonic space.

Theorem 3.12 Let M : (R,≤) → Mani be an evolution of manifolds. Then

Hp
a,b = Hp

a→b, a < b, p ∈ N.

Proof It is equivalent to proving ker Δp
a,b = hpjpa,b(ker Δp

b). Remember that

ker Δp
a,b = ker(dp−1

a )∗ ∩ ker dpa,b, ker Δp
b = ker(dp−1

b )∗ ∩ ker dpb .

(i) “⊇”. Let β ∈ kerΔp
b . Indeed, for any u ∈ Ωp+1

a,b , let v = (dpa,b)
∗u. By definition, we have

(dpb)
∗u = (jpa,b)

∗v. It follows that

(dpa,bj
p
a,b(β), u) = (jpa,b(β), (dpa,b)

∗u) = (jpa,b(β), v) = (β, (jpa,b)
∗v) = (β, (dpb)

∗u).

Since (β, (dpb)
∗u) = (dpbβ, u) = 0, we have (dpa,bj

p
a,b(β), u) = 0 for any u ∈ Ωp+1

a,b , which implies
that dpa,bj

p
a,b(β) = 0. Thus we have

jpa,b(β) ∈ ker dpa,b. (3.7)

Since dpaj
p
a,b(β) = jpa,bd

p
b(β) = 0, we have jpa,b(β) ∈ ker dpa. By the Hodge decomposition theorem,

we obtain
jpa,b(β) = hpjpa,b(β) + γ, γ ∈ imdp−1

a . (3.8)

Recall that (dp−1
a )∗(dpa,b)

∗ = 0, we have dpa,bd
p−1
a = 0. It follows that dpa,bγ = 0. So we have

hpjpa,b(β) = jpa,b(β) − γ ∈ ker dpa,b.

It is obvious that hpjpa,b(β) ∈ ker(dpa)∗. Thus hpjpa,b(β) ∈ ker Δp
a,b.
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(ii) “⊆”. Let α ∈ ker Δp
a,b. Since jpa,b is surjective, there is an element β ∈ Ωp

a,b such that
jpa,b(β) = α. Consider the Hodge decomposition of β given by

β = β0 + β1 + β2, β0 ∈ ker Δp
b , β1 ∈ imdp−1

b , β2 ∈ im(dpb)
∗.

Let β1 = dp−1
b γ1 and β2 = (dpb)

∗γ2 for some γ1 ∈ Ωp−1
b , γ2 ∈ Ωp

b . Then we have

jpa,b(β1) = jpa,b(d
p−1
b γ1) = dp−1

a jp−1
a,b γ1 ∈ imdp−1

a . (3.9)

Since dpa,pα = 0 and dpa,bd
p−1
a = 0, we have dpa,b(j

p
a,b(β0) + jpa,b(β2)) = 0. For any u ∈ Ωp+1

a,b , let
v = (dpa,b)

∗u with (dpb)
∗u = (jpa,b)

∗v by definition. It follows that

0 = (dpa,b(j
p
a,b(β0) + jpa,b(β2)), u)

= ((jpa,b(β0) + jpa,b(β2)), (d
p
a,b)

∗u)

= (jpa,b(β0), v) + (jpa,b(β2), v).

Note that (jpa,b(β0), v) = (β0, (j
p
a,b)

∗v) = (β0, (d
p
b)

∗u) = (dpbβ0, u) = 0. We have (jpa,b(β2), v) = 0
for any v satisfying (jpa,b)

∗v ∈ im(dpb)
∗. Choose v = (dpa)∗dpaj

p
a,b(β2), then we have

(jpa,b(β2), (dpa)
∗dpaj

p
a,b(β2)) = (dpaj

p
a,b(β2), dpaj

p
a,b(β2)) = 0,

which implies that

dpaj
p
a,b(β2) = 0. (3.10)

Now, to get the desired result, we need to make further use of the inner product on the de
Rham complex. Note that jpa,b : Ωp

b → Ωp
a is given by

jpa,bβ = β ◦ ja,b = β|M(a), β ∈ Ωp
b ,

where ja,b : M(a) ↪→ M(b). Now, we will show

dpb(j
p
a,b)

∗ = (jp+1
a,b )∗dpa.

It is equivalent to proving (dpa)∗j
p
a,b = jp+1

a,b (dpb)
∗. Let x1, . . . , xn be an orthogonal basis of M(b).

It suffices to show

(dpa)
∗jpa,bfdxi1 ∧ . . . dxip = jp+1

a,b (dpb)
∗fdxi1 ∧ . . . dxip , f ∈ C∞(M(b)).

Recall that ja,b is an inclusion, we have

∂(f ◦ ja,b)
∂xik

=
∂f |M(a)

∂xik

=
(

∂f

∂xik

)∣
∣
∣
∣
M(a)

=
∂f ◦ ja,b

∂xik

, k = 1, . . . , p.

A straightforward calculation shows the desired result. Thus we have

dpb(j
p
a,b)

∗α = (jp+1
a,b )∗dpaα, for any α ∈ Ωp

a.

By Formula (3.10), we obtain that

0 = dpaj
p
a,b(β2) = dpaj

p
a,b(d

p
b)

∗γ2 = dpa(d
p
a)

∗jpa,bγ2.

In view of the positive definiteness of the inner product, we have

(dpa)
∗jp+1

a,b γ2 = 0.
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It follows that
jpa,b(β2) = jpa,b(d

p
b)

∗γ2 = (dpa)
∗jp+1

a,b γ2 = 0.

Finally, by Lemma 3.11, we obtain that

α = hpα = hpjpa,bβ0,

which completes the proof. �
The following corollary is a direct result of Theorem 3.12, which is essentially similar to the

case of combinatorial Laplacian shown in Theorem 3.8.

Corollary 3.13 (Evolutionary de Rham theorem) Let M : (R,≤) → Mani be an evolution
of manifolds. Then we have an isomorphism

Hp
a,b

∼= Hp
a→b(F), a ≤ b, p ∈ N.

It is obvious that
im(Δp

a,b) ⊆ im(Δp
a,c)

for any a ≤ b ≤ c, which reveals that the stability of the persistent Hodge Laplacian in some
sense.

Quite a few examples such as the multibody systems, benzene (C6H6), and buckminster-
fullerene (C60) show the practical application potential of the evolutionary Hodge Laplacian
in data analysis and molecular biology [52]. Compared with the usual persistent homology,
the evolutionary Hodge Laplacian can describe the geometric progression together with the
topological persistence of data. In fact, persistent homology is not sensitive to homotopical
progression.

3.7 Yau–Hausdorff Distance

A systematic comparison of DNA or protein sequences is one of the most important topics in
genome data analysis. Many classical mathematical models have been proposed, such as mul-
tiple sequence alignment (MSA) [5], moment vectors [220] and feature vectors [99], to describe
gene sequences. Among these methods, Yau–Hausdorff distance, as a metric, provides an ac-
curate and efficient representation of DNA or protein sequences by the careful consideration of
“translations” and “rotations” [187, 188]. The Yau–Hausdorff distance is based on the graph-
ical representation method [219, 220], which gives a one-to-one mapping of DNA sequence or
protein sequence to a curves in a two-dimensional plane.

A sequence s of length L over a finite set F can be written as N1N2 · · ·NL, where Nl ∈
F, l = 1, 2, . . . , L. The graphical representation of the sequence s is a piecewise function in
broken line patterns given by

f(0) = 0, f(l) = f(l − 1) + y(Nl), l = 1, . . . , L,

where y : F → [−1, 1] is a one-to-one function. For example, a DNA sequence can be written
as N1N2 · · ·NL, where Nl ∈ {A, C, G, T} representing the four nucleotides A, G, C and T . The
function y is chosen by y(A) = 1/3, y(C) = −1/3, y(G) = −2/3, y(T ) = 2/3.

To compare DNA or protein sequences, it is crucial to find a metric to match two-dimensional
curves under translation and rotation. The Hausdorff distance [100, 111] is a usual criterion
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to measure the similarity between two-dimensional point sets. Let (X, ‖ · ‖) be a metric space.
For point sets A, B ⊆ X, the Hausdorff distance is defined by

h(A, B) = max
{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

.

In the early years, S. Yau et al began to find the biological distance to characterize genetic
sequences [63]. The Hausdorff distance and modified Hausdorff distance were introduced to de-
scribe viral genome phylogeny later [221]. Let X be a Euclidean space, the minimum Hausdorff
distance between A and B under translation is given by

H(A, B) = inf
t∈X

max
{

sup
a∈A+t

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A+t

‖a − b‖
}

.

The Yau–Hausdorff distance, as a criterion that measures the similarity between two curves to
characterize the similarity of sequences, is defined by

D(A, B) = max
{

sup
θ

inf
ϕ

H(Px(Aθ), Px(Bϕ)), sup
ϕ

inf
θ

H(Px(Aθ), Px(Bϕ))
}
.

Here, Px(Aθ) = {x cos θ − y sin θ | (x, y) ∈ A} denotes the one-dimensional point set given by
the projection of A on x-axis after being rotated counterclockwise by θ.

Remark 3.14 Recall that the Gromov–Hausdorff distance [108] between two metric spaces
is

dGH(X, Y ) = inf
(Z,dZ)

h(X, Y ),

where (Z, dZ) runs over all the metric spaces that X, Y can be isometrically embedded in. The
Mazur–Ulam Theorem says that an isometry between real normed linear spaces must be an
affine transformation, or more precisely, a composition of rotation and translation transforma-
tions. The definition of Yau–Hausdorff distance has the consideration of Gromov–Hausdorff
distance in some sense.

The Yau–Hausdorff distance, proved as a metric, is so far one of the most accurate criteria
for comparing the gene sequences in view of the following aspects:

(i) It inherits the advantage of Hausdorff distance, which is one of the most useful criteria
to measure the similarity between two-dimensional point sets.

(ii) All rotation and translation transformations are taken into account to reduce the impact
of local differences on the overall differences.

(iii) It avoids the calculation of Hausdorff distance of two-dimensional sets and can be
computed more efficiently.

Yau–Hausdorff method performs very well on the gene sequence analysis and validates many
known biological classifications such as DNA barcode, H1N1 virus, and influenza virus [187].
In addition, a three-dimensional Yau–Hausdorff method was introduced to compare protein
structures [188].
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Figure 4 The general process of topological data analysis (TDA)-based machine learning. There are

general four steps, including topological representation, topological analysis, topological feature, and

topology-based machine learning

3.8 Topology-based Machine Learning

Recently, TDA-based machine learning and deep learning models have achieved great successes
in drug design [31, 33–35, 210]. The essential idea for TDA-based machine learning is to extract
topological information from the data with persistent homology, convent the topological infor-
mation into feature vectors, and input feature vectors into machine learning or deep learning
algorithms [162]. Since persistent homology can generate unique topological features, and it
can be used in both supervised learning and unsupervised learning approaches, including PCA,
Isomap, K-means, KNN, Naive-Bayes, spectral clustering, SVM, CNN, Tree-based models, etc.
As illustrated in Figure 4, TDA-based machine learning can be roughly divided into four steps,
i.e., topological representation, topological analysis, topological feature, and topology-based
machine learning. For each step, various algorithms and softwares are available. For persistent
homology analysis, we have JavaPlex [185], Perseus [153], Dipha [14], Dionysus [64], jHoles
[20], GUDHI [141], Ripser [13], PHAT [15], DIPHA [14], R-TDA package [72], HERMES [200],
etc. For topological feature representation, we have persistent diagram (PD) [146], persistent
barcode (PB) [82], persistent landscape [29, 30], persistent image [1], etc. To convert topolog-
ical information into topological features, we have barcode statistical [32], binning approach
[31, 35], image representation [31, 35], persistent codebooks [23, 227], etc.

It is worth mentioning that for TDA-based machine learning, a great promise comes from
new ways of topological representations that can incorporate more structure information, in-
cluding persistent local homology [4, 16–18, 73], element specific PH [31, 33–35, 210], weighted
PH [165, 209], multidimensional PH [39, 40, 46, 55, 213, 215], etc. Although many mathe-
matical tools have been widely used in various fields of biomolecular, more methods are un-
der developing. The topology methods have great development potential in biomolecular in
view of the internal relationships between topological structures and biomolecular functions.
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Some mathematical objects such as neighborhood complex, Hom complex, hypergraph have
been used in the modeling of the biomolecules. The persistent theories based on hypergraphs
perform well in molecular representations for drug design and protein-ligand binding affinity
prediction [128, 130]. The neighborhood complex has been introduced and applied to drug
design [131]. The weighted hypergraph and Hom-complex are more general mathematical mod-
els for datasets and biomolecular structure. New mathematical tools and new applications of
mathematical tools in biomolecules remain to be constantly discovered and developed.

4 Conclusion

In this paper, we introduce a new interdisciplinary area—biomolecular topology. Biomolecular
topology encompasses topological structures, properties, and relations that are emerged from
biomolecular structures, dynamics, interactions, and assemblies. With the availability of the
gigantic amount of biomolecular data from experiments, the topological data analysis (TDA)
and various topological models will become more and more important. Biomolecular topology
will emerge as an important research area in the transition of biology from phenomenological
and descriptive sciences to quantitative and predictive sciences.
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