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Abstract: The classification of protein sequences provides valuable insights into bioinformatics. Most
existing methods are based on sequence alignment algorithms, which become time-consuming as
the size of the database increases. Therefore, there is a need to develop an improved method for
effectively classifying protein sequences. In this paper, we propose a novel accumulated natural
vector method to cluster protein sequences at a lower time cost without reducing accuracy. Our
method projects each protein sequence as a point in a 250-dimensional space according to its amino
acid distribution. Thus, the biological distance between any two proteins can be easily measured by
the Euclidean distance between the corresponding points in the 250-dimensional space. The convex
hull analysis and classification perform robustly on virus and bacteria datasets, effectively verifying
our method.

Keywords: accumulated natural vector; convex hull method; proteins; alignment-free; classification

1. Introduction

Proteins, the highly complex substances that are the basic organic matter of life, have
been a hot topic for bioinformatics [1]. Proteins play different roles in the processes of life [2],
such as enzymes [3]. Proteins carry out the duties specified by gene information. Thus,
the research on proteins and protein sequences can reveal the evolutionary relationships
of different species. From the molecular biology perspective, a protein sequence is a
series of amino acids bonded via peptide bonds, and protein structures vary. There are
20 different types of amino acids that can be combined to make a protein [4]; the sequence
of the amino acids determines each protein’s unique three-dimensional structure and
specific function. These sequences contain the distribution information of 20 types of amino
acids, and a single nucleotide polymorphism (SNP) may result in a change in a protein’s
function [5]. There are many reasons for protein diversity [6]. One reason is the diversity
of the sequences; proteins are diverse both within and between families, which makes
classifying different virus or bacteria families based on protein sequences reliable.

Studying the relationship among different protein sequences is now a matter of great
concern in related research. The methods for sequence similarity analysis commonly
depend on a multiple sequence alignment, which usually requires a long computation
time to obtain results. Therefore, alignment-free methods are proposed to overcome this
ineffectiveness. Currently published alignment-free methods include graphical represen-
tation [7,8], probabilistic measure [9,10], k-mer [11,12], etc. Furthermore, sequence vector
representation methods without alignment are also popular, such as the moment vector [13]
and natural vector [14,15].

In this paper, we propose a novel alignment-free method for protein sequences. The
accumulated natural vector for genome sequences is a previously published method that
performs well on many datasets [16]. However, it ignores the vast field of protein sequences.
Similar to the 18-dimensional vector of nucleotide sequences [16], the accumulated natural
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vector of protein sequences we designed also covers the number, average position, variance,
and covariance information of amino acids. Detailed information is introduced in the next
chapter. Our method not only considers the basic properties of each amino acid but also
the covariance between them. Each protein sequence is in one-to-one correspondence
with a point in a 250-dimensional space. Subsequently, the biological distance between
two protein sequences is measured by the Euclidean distance between the corresponding
points. Therefore, this approach can classify sequences into the correct cluster at a lower
time cost without reducing accuracy. We also performed a convex hull analysis, which
states that the convex hull formed from the same family’s protein corresponding points
do not intersect with other families’ convex hulls. The classification results with high and
robust accuracy further validate our methods effectively.

2. Materials and Methods
2.1. Accumulated Natural Vector for Protein Sequences

Since the distribution of amino acids determines a protein sequence, the use of appro-
priate models to describe the distribution of amino acids is an important issue. Former
discrete models, such as the “pseudo amino acid composition” (PseAAC) model [17],
have been applied to the prediction of various protein attributes. The information that
can be extracted from the distribution of amino acids is very diverse. Our accumu-
lated natural vector method is a natural description of amino acid distribution infor-
mation. Assume S = (s1, s2, s3, · · · , sN) is a protein sequence of length N, i.e., si ∈
{A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}, i = 1, 2, · · · , N. Each letter rep-
resents a type of amino acid, and there are 20 letters representing 20 types of amino acids.
For convenience, the set of these 20 letters is denoted as A. This subsection defines the
accumulated natural vector of the protein sequence S.

2.1.1. Related Definitions

We first define the indicator function of these 20 amino acids, respectively:

Iα(i) =

{
1 if si = α

0 if si 6= α
(1)

where α ∈ A, i = 1, 2, · · · , N
Next, we define the accumulated indicator function of each amino acid:

Ĩα(k) =
k

∑
i=1

Iα(i) α ∈ A (2)

We have defined the indicator function and accumulated indicator function and no-
ticed that there is an obvious property: nα, the total amount of the amino acid α in the
sequence S, is the last column.

nα =
N

∑
i=1

Iα(i) = Ĩα(N) α ∈ A (3)

Now we define the average position of the amino acid α in the sequence S:

ζα =
∑N

i=1 Ĩα(i)
nα

α ∈ A (4)

For the two different amino acids α and β, define their covariance in the protein
sequence S as:

cov(α, β) =
N

∑
i=1

( Ĩα(i)− θα)× ( Ĩβ(i)− θβ)

nα × nβ
(5)
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where α, β ∈ A, θα = ∑N
i=1 Ĩα(i)/N, θβ = ∑N

i=1 Ĩβ(i)/N. Note that the definition of θα here
is different from the average position above.

Then, the variance of the amino acid α is the special case of α = β in (5):

Dα = cov(α, α) =
N

∑
i=1

( Ĩα(i)− θα)2

n2
α

α ∈ A (6)

Thus, we have defined every concept needed in the accumulated natural vector.

2.1.2. Accumulated Natural Vector

Now we can build up the accumulated natural vector of the protein sequence S.
The first 20 dimensions describe the amount of 20 amino acids, the second 20 dimensions
describe the average positions of the 20 amino acids, and the third 20 dimensions de-
scribe the variances of the 20 amino acids. The final (20

2 ) = 190 dimensions describe the
covariances between each two amino acids. The total number of dimensions is 250.

(nA, nR, · · · , nV , ζA, ζR, · · · , ζV , DA, DR, · · · , DV ,

cov(A, R), cov(A, N), · · · , cov(Y, V))
(7)

For example, take the protein sequence S = (ARRNADCDCC) of length 10. The indi-
cator functions and the accumulated indicator functions are shown in Table 1 and Table 2,
respectively. Here, except for A, R, N, D, and C, the functions of 15 amino acids are all 0.

Table 1. The indicator functions of S.

Sequence S A R R N A D C D C C

Position(i) 1 2 3 4 5 6 7 8 9 10

IA(i) 1 0 0 0 1 0 0 0 0 0

IR(i) 0 1 1 0 0 0 0 0 0 0

IN(i) 0 0 0 1 0 0 0 0 0 0

ID(i) 0 0 0 0 0 1 0 1 0 0

IC(i) 0 0 0 0 0 0 1 0 1 1

Table 2. The accumulated indicator functions of S.

Sequence S A R R N A D C D C C

Position(i) 1 2 3 4 5 6 7 8 9 10

ĨA(i) 1 1 1 1 2 2 2 2 2 2

ĨR(i) 0 1 2 2 2 2 2 2 2 2

ĨN(i) 0 0 0 1 1 1 1 1 1 1

ĨD(i) 0 0 0 0 0 1 1 2 2 2

ĨC(i) 0 0 0 0 0 0 1 1 2 3

According to the tables, we calculate:

nA = ĨA(10) = 2 (8)

ζA =
∑10

i=1 ĨA(i)
nA

=
1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2

2
= 8

(9)
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Similarly, we can obtain nR = 2, nN = 1, nD = 2, nC = 3, ζR = 8.5, ζN = 7, ζD = 4, and
ζC = 2.333.

Next, we calculate the variance and covariance.

θA =
∑10

i=1 ĨA(i)
10

=
1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2

10
= 1.6

(10)

DA =
10

∑
i=1

( ĨA(i)− θA)
2

n2
A

=
4× (1− 1.6)2 + 6× (2− 1.6)2

22

= 0.6

(11)

Similarly, we can obtain DR = 1.025, DN = 2.1, DD = 1.9, and DC = 1.122

cov(A, R) =
10

∑
i=1

( ĨA(i)− θA)× ( ĨR(i)− θR)

nA × nR

=
1

2× 2
((1− 1.6)× (0− 1.7)+

(1− 1.6)× (1− 1.7) + (1− 1.6)× (2− 1.7)

× 2 + (2− 1.6)× (2− 1.7)× 6)

= 0.45

(12)

As well as cov(A, N) = 0.9, cov(A, D) = 0.8, cov(A, C) = 0.467, cov(R, N) = 1.05,
cov(R, D) = 0.6, cov(R, C) = 0.35, cov(N, D) = 1.2, cov(N, C) = 0.7, and cov(D, C) = 1.233.

Finally, the accumulated natural vector of S is (2, 2, 1, 2, 3, 0, · · · , 0, 8, 8.5, 7, 4, 2.333, 0, · · · ,
0, 0.6, 1.025, 2.1, 1.9, 1.122, 0, · · · , 0, 0.45, 0.9, 0.8, 0.467, 0, · · · , 0, 1.05, 0.6, 0.35, 0, · · · , 0, 1.2, 0.7,
0, · · · , 0, 1.233, 0, · · · , 0).

2.2. Convex Hull Method

In the previous section, we introduce how a protein sequence is represented by a
250-dimensional vector. Therefore, the distance between two vectors represents the biolog-
ical distance of the corresponding two protein sequences. The convex hull principle for
protein states that convex hulls corresponding to different families are disjoint with each
other [15,18]. The relationship among point sets can be better observed by constructing
their convex hulls.

Given a finite point set A = {a1, a2, · · · , an} in Rk space, we define the convex hull of
A as:

C(A) = {p|p =
n

∑
i=1

λiai,
n

∑
i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ n} (13)

Generally speaking, the convex hull of a given point set is the smallest convex set that
contains this point set.

There are many ways to judge whether two convex hulls intersect. Considering
that the construction of a convex hull in a high-dimensional space is computationally
intensive and time-consuming, we do not directly consider two convex hulls here. Instead,
we consider two point sets to determine whether the convex hull formed by them intersects.

Given two finite point sets in the Rk spaces A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm},
we want to determine whether the convex hulls of A and B intersect. From the definition
given in (13), if some sets of coefficients satisfy:
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n

∑
i=1

λiai =
m

∑
j=1

µjbj,

n

∑
i=1

λi = 1,

m

∑
j=1

µj = 1,

0 ≤ λi, µj ≤ 1,

1 ≤ i ≤ n, 1 ≤ j ≤ m,

(14)

Then the two convex hulls of A and B intersect; otherwise, the two convex hulls are
disjoint [18].

2.3. Convex Hull Distance

The distance between the two sequences we have defined is the Euclidean distance
between their corresponding natural vectors. Then, the distance between two convex hulls
corresponding to the two families is the Euclidean distance between the centers of the
two convex hulls constructed by these natural vectors.

distance = ‖meanvector(A)−meanvector(B)‖ (15)

A, B are the two sets of 250-dimensional accumulated natural vectors of the two
families. Here, meanvector(A) represents the center of the convex hull composed of set A.
The expression of meanvector(A) is:

meanvector(A) =
1
n

n

∑
i=1

Ai (16)

where n is the number of vectors in set A, Ai is a vector in set A. With this convex hull
distance definition, it is easy to calculate the distance of two convex hulls if we know their
point sets.

2.4. Linear Discriminant Analysis

With the help of the accumulated natural vector and the convex hull method, we can
construct convex hulls and study their intersection in a 250-dimensional space. When we
want to visualize convex hulls and research their properties in a lower-dimensional space,
especially in a 2-dimensional space, the dimensional reduction method in cluster analysis
is indispensable. First, we introduce linear discriminant analysis, which is the widely
known method.

We define Xj(j = 0, 1) as the set of samples in Class j. In our experiment, the two sets
of samples are two point sets of the convex hulls whose intersection is our study subject.

Our goal is to find the projection direction ω that maximizes the sample distance
between the two projected categories (0,1).

We define Nj(j = 0, 1) as the number of samples in Class j, µj(j = 0, 1) as the mean
value of the samples in Class j, and ∑j as the covariance matrix of the samples in Class j.
µj(j = 0, 1) can be calculated by:

µj =
1
Nj

∑
x∈Xj

x(j = 0, 1) (17)

∑j can be calculated by:

∑
j
= ∑

x∈Xj

(x− µj)(x− µj)
T(j = 0, 1) (18)
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As previously mentioned, the LDA (short for linear discriminant analysis) algorithm
should make two projected classes of datasets (X1, X2) in the projection direction ω as far
as possible, so we need to maximize ‖ωTµ0 −ωTµ1‖

2
2 (using the Euclidean distance here)

and minimize the within-group covariance in the meantime.
The within-class scatter matrix Sω is defined as:

Sω = ∑
0
+∑

1
= ∑

x∈X0

(x− µ0)(x− µ0)
T = ∑

x∈X1

(x− µ1)(x− µ1)
T (19)

The between-class scatter matrix Sb is defined as:

Sb = (µ0 − µ1)(µ0 − µ1)
T (20)

Then, the two-class LDA can be formulated as an optimization problem to find a set
of linear combinations with the coefficient ω.

argmaxJ(ω) =
ωTSbω

ωTSωω
(21)

The expression is the Rayleigh Quotient R(A,x). The solution ω to the above opti-
mization function J(ω) is the eigenvector corresponding to the maximum eigenvalue of
the matrix S−1

ω Sb. In the case of projecting to two dimensions, we need to calculate the
two eigenvectors that correspond to the two largest eigenvalues of the matrix S−1

ω Sb. This
step can be accomplished by MATLAB programming or another program.

2.5. Maximum Margin Criterion

When we use LDA to complete the dimensionality reduction, we may meet the small
sample size problem [19], which is caused by the singular Sω. The maximum margin
criterion (MMC) is proposed to avoid the small sample size problem and calculate the most
discriminant vectors. The MMC method is simple, efficient, and stable compared to the
PCA+LDA method [20].

Consider a linear mapping W ∈ RD×d, where D and d are the dimensionalities of the
data before and after the projection. The MMC introduces a new objective function:

J(ω) = tr(ωT(Sb − Sω)ω) (22)

We can suppose that ωTω = 1 because ω can be multiplied by any constant to make it
be the unit vector. Then, we just need to solve the following constrained optimization:

d

∑
k=1

ωT(Sb − Sω)ω, (23)

subject to ωT
k ωk = 1, k = 1, · · · , d (24)

The small sample size problem is avoided by the formation Sb − Sω instead of S−1
ω Sb

of the LDA.

2.6. Knn Classification

The classification performance of the 250-dimensional accumulated natural vector is
also required in this paper. The K-nearest neighbor is a simple classification method and
has been developed successfully in real applications [21]. The choice of the k-value has a
huge impact on the final classification results. In practical applications, cross-checking is
usually required to select the optimal k-value [22]. In particular, we achieved good results
when we chose k = 1 in our work.

Suppose the training set contains N samples {x1, x2, · · · , xN}, which belong to t
classes {A1, A2, · · · , At}. Define the Euclidean distance from the unclassified sample x to
the training set sample xi as d(x, xi), if:
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d(x, xk) = mini=1,2,··· ,N(d(x, xi)), xk ∈ Aj

Then, the nearest neighbor classification decision is: x ∈ Aj.

3. Results and Discussion
3.1. Convex Hull Analysis of Bacterial Families

Bacteria are almost everywhere on earth and play an important role in many re-
search fields [23]. The number of bacteria-related protein sequences is enormous and
still rising. As of May 2020, the Reference Sequence Database (RefSeq) on NCBI had
a total of 140 million bacterial protein sequences. Therefore, we selected 117 bacterial
families from 13 different phyla and 150 protein sequences per these families for a to-
tal of 117× 150 = 17, 550 protein sequences. Table S1 provides the complete list of the
117 bacterial families.

For each protein sequence, we calculated the 250-dimensional accumulated natural
vector. Thus, each protein sequence corresponded to a point in a 250-dimensional space,
and 117 different bacteria families corresponded to 117 finite point sets in a 250-dimensional
space. We considered the convex hull of these 117 finite point sets and verified whether
they intersect in pairs. There were (117

2 ) = 6786 pairs of convex hulls. No intersection
was observed using the method in Section 2.2. We were not surprised because the convex
hull method had similar results when applied to other datasets in previous work [15].
We applied the linear discriminant analysis method to visualize the results. For example,
Figure 1 shows that the Acetobacteraceae family disjoints the Acidiferrobacteraceae family.

-1 0 1 2 3 4 5 6

The x-axis projection direction by LDA method
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Convex hull of Acetobacteraceae
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Figure 1. Convex hulls of bacterial family Acetobacteraceae and bacterial family Acidiferrobacter-
aceae after dimension reduction by LDA(Linear Discriminant Analysis) method.

This result shows that our proposed 250-dimensional accumulated natural vector is
very effective when applied to protein sequences. The disjointness property reveals that our
method accurately clusters protein sequences from the same family. It is worth noting that
the advantage of using the convex hull method is that even if two points are closer together,
it does not prevent them from being in different convex hulls. We can suppose that the
convex hulls of the different bacterial families are pairwise disjoint. For a new, unclassified
protein sequence, we can calculate its 250-dimensional accumulated natural vector in the
same way and then analyze in which convex hull the point is located. Subsequently, this
new protein is classified into the corresponding family. This is the most intuitive application
of our method.
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3.2. Classification of Protein Enzyme Classes

We performed a classification analysis on protein enzyme classes using the accumu-
lated natural vector. Four datasets were selected from UniProt. According to UniProt,
each dataset is composed of seven enzyme classes: Oxidoreductases, Transferases, Hydro-
lases, Lyases, Isomerases, Ligases, and Translocases. We used the one-nearest neighbor
classification method mentioned in Section 2.6 to divide these protein sequences into the
seven enzyme classes. All protein sequences appeared in the training set and the test set.
By predicting the enzyme classes in the test set and comparing these with the training set,
we calculated the accuracy of our classification method.

E. coli (Escherichia coli) is a type of bacteria closely related to human life [24]. The
E. coli dataset contained 12284 protein sequences. A total of 11788 protein sequences are
classified accurately, and the total accuracy is 11,782/12,284(95.9%). The detailed results of
this classification are shown in Table 3.

Table 3. Classification results of the E. coli dataset.

Enzyme Class Total Number Correct Number Accuracy

Oxidoreductases 1829 1720 0.940404
Transferases 4054 3905 0.963246
Hydrolases 2783 2632 0.945742

Lyases 1387 1354 0.976208
Isomerases 823 788 0.957473

Ligases 906 893 0.985651
Translocases 502 490 0.976096

Total 12,284 11,782 0.959134

This method was also applied to the other three bacterial family datasets. The total
accuracies were 6652/6890(96.5%), 3940/4017(98.1%), and 4511/4655(96.7%), respectively.
Tables S2–S4 show the detailed results of classification.

Using the one-nearest neighbor classification method, one sequence is incorporated
into its nearest convex hull, which represents one bacterial family. The high accuracy
rate results indicate that our method combined with the one-nearest neighbor algorithm
performed robustly in the classification of protein enzyme classes. Although the accuracy
cannot reach 100%, it is still a good result. We must admit that our dataset does not
guarantee that every point with the nearest distance is put into the correct convex hull,
which is equivalent to saying that two points that are close together can be in different
convex hulls. This non-ideal situation is possible but at a low frequency. This is also another
piece of evidence to support the notion that accumulated natural vectors provide a good
representation of protein space.

3.3. Convex Hull Analysis of Virus Families
3.3.1. Intersection of Virus Families in a 250-Dimensional Space

We chose 73 virus families and downloaded all of their reviewed protein sequences.
Detailed information about the dataset is shown in Table S5. Then, we obtained the accu-
mulated natural vector of each protein sequence in a 250-dimensional space. These vectors
of different families constituted the different vector sets. We wanted to determine whether
the convex hulls of these vectors intersected in 250 dimensions. Here, we introduce the
Baltimore virus taxonomy, which divides viruses into seven categories based on differences
in the gene expressions of different viruses.

Our expected result was that all virus families under the same Baltimore virus cate-
gory would be disjoint.

For one Baltimore classification, we tested the intersection of the convex hulls under
each Baltimore classification. The test method follows the theorem in Section 2.2; the input
was the two “point set” (vector set), and the output was the intersection of the convex
hull pairs.



Genes 2022, 13, 1744 9 of 12

The intersection results of the 73 virus families are shown in Table 4. A total of
738 pairs of convex hull pairs were counted. Among these, 727 pairs were disjoint in
250 dimensions, and 11 pairs intersected in 250 dimensions. The disjoint convex hull pairs
accounted for 0.9851 of all convex hull pairs.

Table 4. Baltimore virus taxonomy.

Virus Classification Samples Number of Virus Families

dsDNA virus Herelleviridae 23
ssDNA virus Microviridae 7
dsRNA virus Totiviridae 8

ssRNA(+) virus Alphatetraviridae 30
ssRNA(-) virus Bornaviridae 1

ssRNA-RT virus Metaviridae 1
dsDNA-RT virus Caulimoviridae 2

Among the seven Baltimore taxonomies, several convex hulls intersect under the
dsDNA Baltimore taxonomy, and all convex hulls disjoint under the other six Baltimore
taxonomies. There are 11 intersecting dsDNA virus family pairs in the 250-dimensional
space, as shown in Table S6.

Then, we used the distances of the convex hulls corresponding to these 11 virus family
pairs to perform a cluster analysis. The convex hull distances calculated here were the
Euclidean distance between the two centers of the two convex hulls defined in Section 2.3.
The result of our cluster analysis is in Figure 2.

Myoviridae

Iridoviridae

Podoviridae

Mimiviridae

Poxviridae

Herpesviridae

Siphoviridae

Reoviridae

Tree scale: 10

Figure 2. Phylogenetic tree of eight virus families by NJ method: Reoviridae, Herpesviridae, Mimiviridae,
Iridoviridae, Poxviridae, Myoviridae, Siphoviridae, Podoviridae.

From Figure 2, we can see that the three nearest virus families are Podoviridae, Siphoviridae
and Myoviridae, which all belong to Caudovirales and are parasitic in bacteria. Their convex
hulls have closer distances, so we deduce that these three families have closer evolution-
ary distances.

Similarly, we performed a cluster analysis of all virus families in the dataset by
calculating the distance matrix of their convex hulls. The result is that all virus families
are divided into three clusters. Cluster 2 includes Togaviridae, Tobaniviridae, Secoviridae,
Potyviridae, Picornaviridae and Hypoviridae. Cluster 3 includes Iflaviridae and Flaviviridae.
To visualize the result of the cluster analysis, we represent each virus family by the mean
vector of its corresponding convex hull, and we project these points onto a 2-dimensional
plane. The result is shown in Figure 3.

As shown in Figure 3, we can see that all virus families are divided into three clusters
in a 2-dimensional space, and the virus families in each cluster remain consistent with those
in a 250-dimensional space.

Above all, most of the convex hull pairs of the 73 virus families are disjoint in a
250-dimensional space. Those virus families whose convex hulls intersect with those of the
other families are all from the dsDNA Baltimore taxonomy. Although these virus families
have intersecting convex hulls with each other, their evolution relationships can also be
reflected by the convex hull distances.
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Figure 3. Cluster analysis of all virus families by shortest distance method: red, yellow and black
points represent different virus families in three clusters. x-axis and y-axis are the two coordinate
axes of the two-dimensional plane. Values on the axes are position coordinates.

3.3.2. Intersection of Virus Families in a 2-Dimensional Space

Visualization of the results of classification is very important. Convex hulls in a
2-dimensional space are much more intuitive than those in 250-dimensional space. Thus,
we project the convex hulls constructed above onto 2-dimensional space to observe their
intersection. The method used is the maximum margin criterion, instead of the traditional
method of linear discriminant analysis [25], to avoid the small sample size problem [22].
A part of the results of the classification is shown in Table 5, and the complete result is
shown in Table S7. Compared to our newly proposed 250-dimensional natural vector of
protein sequences, the intersection result of a 60-dimensional natural vector [26] is bad in
a 2-dimensional space. All convex hulls intersect in a 2-dimensional space. The detailed
results are shown in Table S8. This illustrates that the introduction of covariance between
the amino acids is an improvement for the intersection analysis.

Table 5. Partial results of the convex hull intersection: ‘Percentage’ in this Table is the percentage of
disjoint convex hull pairs of all convex hull pairs within one virus family of non-intersection.

Virus Family Percentage Virus Family Percentage

Adenoviridae 0.6667 Hepeviridae 0.9861
Alloherpesviridae 0.8472 Herelleviridae 0.8472
Alphaflexiviridae 0.8056 Herpesviridae 0.1389
Alphatetraviridae 1.0000 Hypoviridae 1.0000
Ampullaviridae 0.8472 Inoviridae 0.8056
Anelloviridae 0.9861 Iridoviridae 0.5333
Arteriviridae 0.9583 Kitaviridae 0.9861
Ascoviridae 0.9444 Lavidaviridae 0.9583
Astroviridae 1.0000 Leviviridae 0.9444

The percentage of non-intersecting convex hull pairs is nearly 0.85 for most of the
virus families, except for Adenoviridae, Herpesviridae, Iridoviridae, Mimiviridae, Myoviridae,
Podoviridae, Poxviridae, Reoviridae, and Siphoviridae.

We dropped the above nine families whose convex hulls intersect with the convex hulls
of other families in a 250-dimensional space, and then the percentage of non-intersecting
convex hull pairs is 0.9588.

In conclusion, most of the convex hulls of the virus families disjoint both in a 250-dimensional
space and a 2-dimensional space. The percentage of non-intersection of the virus families
may be improved by incorporating other elements in the accumulated natural vector;
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for example, we can incorporate higher-order moments of the 20 amino acids. Correspond-
ingly, the addition of more elements will add to the dimensions of the vectors and make
calculations more complicated.

4. Conclusions

In this paper, the 250-dimensional accumulated natural vector method is proposed by
describing the distribution of 20 amino acids within a protein sequence. Protein sequences
with similar properties correspond to closer points, so proteins in the same family tend to
cluster together. Our proposed method makes it easy to classify the protein sequences since
it avoids the high computational complexity associated with sequence alignment and takes
advantage of mathematical concepts only. Its applications to real datasets suggest that
the accumulated natural vector method is a powerful tool for the classification of protein
sequences. However, there is still a lot of room for improvement of this novel method by
incorporating other elements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101744/s1. Table S1: The bacterial families’ names in this
paper; Table S2: The classification result of Mycobacteriaceae dataset; Table S3: The classification result
of Xanthomonadaceae dataset; Table S4: The classification result of Vibrionaceae dataset; Table S5: The
virus families’ names and the number of their protein sequences in this paper, Table S6: 11 intersecting
dsDNA virus family pairs in a 250-dimensional space, Table S7: The results of convex hull intersection
in a 2-dimensional space: Percentage of non-intersection is the percentage of disjoint convex hull
pairs of all convex hull pairs under one virus family, Table S8. The results of convex hull intersection
in 2-dimension space based on 60-dimensional natural vector: Percentage of non-intersection is
the percentage of disjoint convex hull pairs of all convex hull pairs under one virus family. All
convex hulls intersect in 2-dimension space based on 60-dimensional natural vector. So some families
are omitted.
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