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Abstract: The highly variable SARS-CoV-2 virus responsible for the COVID-19 pandemic frequently
undergoes mutations, leading to the emergence of new variants that present novel threats to public
health. The determination of these variants often relies on manual definition based on local sequence
characteristics, resulting in delays in their detection relative to their actual emergence. In this
study, we propose an algorithm for the automatic identification of novel variants. By leveraging
the optimal natural metric for viruses based on an alignment-free perspective to measure distances
between sequences, we devise a hypothesis testing framework to determine whether a given viral
sequence belongs to a novel variant. Our method demonstrates high accuracy, achieving nearly 100%
precision in identifying new variants of SARS-CoV-2 and HIV-1 as well as in detecting novel genera
in Orthocoronavirinae. This approach holds promise for timely surveillance and management of
emerging viral threats in the field of public health.

Keywords: new virus detection; optimal metric; natural vectors; SARS-CoV-2

1. Introduction

Viruses are microorganisms that depend on host cells for replication, and are charac-
terized by their high variability [1]. This trait is especially evident in RNA viruses such as
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and Human Immunod-
eficiency Virus-1 (HIV-1) [2,3]. The rapid mutation rates of these viruses frequently lead
to the emergence of new variants with distinct pathogenicity or transmissibility, posing
significant challenges to public health efforts, as evidenced by the COVID-19 pandemic [4].

Therefore, the timely identification of new variants has become a crucial issue in
biology. However, current processes for discovering and defining new variants often
require manual intervention. After a new sequence is obtained, it is aligned with known
sequences at biologically significant regions (e.g., segments corresponding to the spike
protein) in order to identify mutation sites [5]. Subsequently, official organizations such
as the World Health Organization (WHO) define variants based on key mutations [6,7].
For example, the Omicron variant of SARS-CoV-2 is characterized by a series of key
mutations such as K417N, T478K, and N501Y [8]. This system proved vital during the
COVID-19 pandemic; however, developing a more automated variant identification system
remains a valuable goal.

Our theoretical framework differs from the aforementioned approaches. It is rooted
in alignment-free principles, meaning that manual identification of important segments
is not required and that there is no need to spend time on sequence alignment in order
to pinpoint mutations. Instead, we assess whether a new sequence differs from known
variants by analyzing its statistical characteristics. As sequencing technologies advance,
the pool of known sequences is expanding, amplifying the importance of more efficient
alignment-free methods [9–11].
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Among the current alignment-free methods, the natural vector approach stands out.
This approach utilizes statistical moments to transform sequences into feature vectors based
on different k-mers and moment orders, and has garnered widespread attention [12–14]. It
has demonstrated significant efficacy across such diverse fields as sequence classification,
phylogenetic analysis, and chromosome fusion detection [15–17]. The optimal natural met-
ric, an advancement of the natural vector method, fine tunes the integration of statistical
information from various k-mers and moment orders [18]. It identifies the optimal combi-
nation of features through training on real data, thereby naturally defining dissimilarities
between sequences. However, no previous applications of these metrics have addressed
the discovery of new categories that do not belong to the existing classification system.

In this paper, we employ the optimal natural metric to measure the distances between
sequences, then extend the metric to effectively assess the distances between individ-
ual sequences and known variants. We observe distinct distributional characteristics in
the distances from sequences to their non-affiliated variants, allowing us to determine
whether a sequence belongs to a given variant and if it originates from an unknown new
variant through hypothesis testing. We validate this method on two significant viruses,
SARS-CoV-2 and HIV-1, and further analyze different genera within the Orthocoronaviri-
nae family at a higher classification level. These numerical experiments show very promis-
ing results, with minimal Type I and Type II errors, confirming the effectiveness of our
method. This approach offers significant potential for the timely detection and management
of emerging viral threats in public health.

2. Materials and Methods
2.1. Materials

We utilized three types of datasets in this study. For all datasets, sequences containing
ambiguous letters and sequences with unidentified categories were removed. All sequences
along with their information are available in the Github repository https://github.com/
BobYHY/NewVariant (accessed on 29 June 2024).

SARS-CoV-2 Dataset: The first dataset was from GISAID (https://gisaid.org accessed
on 30 June 2022), encompassing SARS-CoV-2 sequences up to 30 June 2022. We included
sequences categorized as variants of concern (VOC) and variants of interest (VOI). Due to
the imbalance in the number of sequences for different variants (e.g., 99,955 sequences for
Omicron and only 3 for Theta), we excluded variants with fewer than ten sequences and
randomly sampled 500 sequences for variants with more than 500 sequences. This resulted
in a final dataset of 4917 sequences from twelve variants.

HIV-1 Dataset: The second dataset was sourced from the HIV Database (https://
www.hiv.lanl.gov accessed on 8 April 2022), containing HIV-1 sequences up to 8 April
2022. Initially, we considered all non-recombinant subtype cDNA sequences available in
the database and excluded subtypes with fewer than ten sequences, resulting in a dataset
of 5549 sequences from six subtypes. Additionally, we included 117 recombinant viruses
belonging to combinations of A+B, A+C, and B+C to further explore our method.

Orthocoronavirinae Dataset: The third dataset was sourced from NCBI (https://www.
ncbi.nlm.nih.gov/ accessed on 17 November 2022), comprising Orthocoronavirinae se-
quences available up to 17 November 2022. Except for SARS-CoV-2, where we randomly
selected 500 sequences due to the high number of available sequences, all Orthocoronaviri-
nae sequences with lengths between 25,000 and 35,000 bases were included. This process
resulted in a final dataset of 3169 sequences from four genera.

2.2. The Optimal Natural Metric

The optimal natural metric is used to measure the dissimilarity between sequences
based on natural vectors. It leverages statistical moments to extract features from se-
quences, followed by training of the best weighted scheme for these features based on
actual datasets [18].

https://github.com/BobYHY/NewVariant
https://github.com/BobYHY/NewVariant
https://gisaid.org
https://www.hiv.lanl.gov
https://www.hiv.lanl.gov
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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The natural vector method is an alignment-free approach that transforms DNA se-
quences into vectors of moments [12]. Consider the sequence S = s1s2 . . . sn, where
si, α ∈ {A, T, C, G}; we can define

wα(si) =

{
1, si = α

0, otherwise.
(1)

Then, the j-th ordered element Dα
j of the natural vector can be defined as

Dα
0 = nα =

n
∑

i=1
wα(si)

Dα
1 = µα =

n
∑

i=1

i
nα

wα(si)

Dα
j =

n
∑

i=1

(i − µα)j

nj−1
α nj−1

wα(si) (j = 2, 3, 4, . . . ),

(2)

where n = nA + nT + nC + nG. The distance between j-th ordered elements of two natural
vectors refers to the distance between their corresponding (DA

j , DT
j , DC

j , DG
j ).

The k-mer natural vector method extends the natural vector method [13]. A k-mer is
a string composed of k nucleotides, resulting in 4k possible k-mers, denoted as l1, . . . , l4k .
For a sequence S = s1s2 . . . sn, we can view it as a sequence consisting of n − k + 1 k-mers,
i.e., (s1 . . . sk) . . . (sn−k+1 . . . sn). We can define the j-th ordered moments of k-mers similar
to those of nucleotides, and thereby define the k-mer natural vector (if Dli

0 = 0, then we set
Dli

1 = Dli
2 = . . . = 0).

Given two DNA sequences a and b, the Euclidean distance between the j-th ordered
elements of their k-mer natural vectors is defined as diskj(a, b). With an arbitrarily chosen
weight matrix wkj, we can define a weighting metric as

Disw(a, b) =
K

∑
k=1

J

∑
j=0

wkjdiskj(a, b). (3)

In this metric, different diskj are used to capture differences in various types of in-
formation within sequences. By integrating them, a more comprehensive measurement
between sequences can be obtained. We aim to achieve the best classification performance
of the metric under a set of weights, where the performance is measured by the 1NN
accuracy [19]. Specifically, we seek to ensure that sequences and their nearest neighbors
belong to the same class under the chosen metric. We can smooth the 1NN accuracy and use
a gradient-based algorithm to calculate the optimal weights. In applications, we set K = 9
and J = 2, and train these weights based on all complete virus reference sequences [18].
The specific optimal weight matrix are shown in the Table 1. In the subsequent text, we
refer to the metric corresponding to these weights as Dis.

Table 1. The optimal weight matrix for viruses.

k-mer/Order 0 1 2

1 3.5 × 10−2 3.9 × 10−2 3.0 × 10−1

2 3.1 × 10−2 1.4 × 10−2 8.5 × 10−2

3 2.1 × 10−1 9.7 × 10−3 3.7 × 10−2

4 4.9 × 10−1 1.8 × 10−3 2.6 × 10−3

5 7.6 × 10−1 1.3 × 10−3 5.4 × 10−3

6 1.0 × 10−0 1.8 × 10−3 1.6 × 10−3

7 8.4 × 10−1 1.1 × 10−3 1.1 × 10−4

8 7.1 × 10−1 1.0 × 10−3 9.3 × 10−4

9 1.8 × 10−1 8.1 × 10−4 5.1 × 10−6



Genes 2024, 15, 891 4 of 12

2.3. New Virus Detection Method

In the preceding section, we have defined the metric Dis between individual sequences.
In the subsequent discussion, we extend this definition to encompass the distance from a
single sequence to a set of sequences.

Considering that the known classification data of sequences may occasionally contain
errors, we have devised a robust distance measure DisR by computing the distance from
a sequence to its R-th nearest neighbor in the set, which serves as the distance from the
sequence to the set of sequences.

Assuming that all sequences can be divided into M categories, denoted as A1, . . . ,AM,
we can define the following sets of numbers:

Iout(Ai, Aj) :={DisR(ai, Aj)|ai ∈ Ai} (i ̸= j)

Iin(Ai) :={DisR(ai, Ai \ {ai})|ai ∈ Ai}
Iout :=

⋃
i ̸=j

Iout(Ai, Aj)

Iin :=
M⋃

i=1

Iin(Ai)

(4)

where Iout(Ai, Aj) reflects the distribution of DisR from sequences in Ai to the set Aj
and its union Iout reflects the distance characteristics when sequences are not within a
certain category.

Moreover, Iin(Ai) reflects the distribution of DisR from sequences in Ai to the set
composed of other sequences within the same category, while its union Iin reflects the
distance characteristics when sequences are within a certain category.

In practical applications, significant differences are observed between the two sets
of numbers Iin and Iout. Specifically, they can be separated by a certain threshold B.
Suppose that a new sequence a appears; if DisR(a, Ai) > B, then a can be considered to
not belonging to Ai. If mini=1,... ,M DisR(a, Ai) > B, then a does not belong to any known
category, indicating that it belongs to a new category.

A straightforward choice for B is B = max Iin; however, we aim for greater robustness
of the algorithm to the data. Therefore, we consider the 99% quantile of Iin, i.e., we select B
such that B is just greater than 99% of values in Iin.

The requirement for robustness is positively correlated with the amount of errors in
the dataset. Therefore, for the selection of R, we associate it with the number of sequences
in the largest category. We define R := 1 + maxi⌊ card(Ai)

1000 ⌋, where card(Ai) denotes the
number of sequences in class Ai and ⌊x⌋ means the nearest smaller integer for x.

We summarize our method in Algorithm 1. The first four steps can be performed in
advance before the arrival of a new sequence, and these calculations need to be performed
only once with multiple query sequences, ensuring high efficiency. The code can be
found in both the Supplementary Materials and the Github repository https://github.com/
BobYHY/NewVariant (accessed on 29 June 2024). In Figure 1, we present a flowchart to
assist in understanding how we obtained our results from the original data.

We evaluate the performance of the algorithm from two perspectives. In statistical
terms, hypothesis testing errors are divided into Type I errors and Type II errors [20]. Here,
a Type I error refers to failing to identify sequences from a new category, while a Type II
error refers to misidentifying sequences from an existing category as sequences from a new
category. For a given dataset, we follow the leave-one-out approach to test the algorithm’s
error rate. When assessing the Type I error rate, we examine each sequence vi in succession
as a new sequence. Here, all sequences except those in the same category as vi are regarded
as known sequences, and the probability of failing to detect the new virus is calculated.
In evaluating the Type II error rate, we again consider each sequence in sequence as a new
sequence. This time, all other known sequences, including those in the same category as

https://github.com/BobYHY/NewVariant
https://github.com/BobYHY/NewVariant


Genes 2024, 15, 891 5 of 12

vi, are considered known, and the probability of incorrectly categorizing the sequence as
belonging to a new category is computed.

Algorithm 1 New variant detection method

Require: Sequences from M known categories A1, . . . , AM. New sequence v.
1: Compute pairwise distances for known sequences using the optimal natural metric.
2: Determine R := 1 + maxi⌊ card(Ai)

1000 ⌋.
3: Compute DisR for all sequences with respect to their respective categories to obtain Iin.
4: Determine B based on the 99% quantile of Iin.
5: Given a new sequence v, calculate d = mini=1,... ,M DisR(v, Ai).
6: if d > B then
7: Claim that v belongs to a new category.
8: else
9: Assert that v does not belong to a new category and its classification result can be

obtained from its nearest neighbors.
10: end if

Establish the 𝑘-mer
natural vector 

database based on the 
fasta file containing 

sequences with known 
variants.

Compute 𝐷𝑖𝑠𝑅 from 
each sequence to its 

respective variant 
under the optimal 

metric, and calculate 
the threshold value 𝐵.

For each new sequence 
v, calculate its 𝐷𝑖𝑠𝑅

from all known variants.

If 𝐷𝑖𝑠 (𝑣, . )
from all known 

variants is 
larger than B

𝑣 belongs to a new 
variant.

𝑣 does not belong to a 
new variant.

Identify the next 
sequence.

Y N

Figure 1. Flowchart of Algorithm 1.

3. Results
3.1. SARS-CoV-2

The most significant variants of SARS-CoV-2 belong to the category of variants of
concern (VOC), which includes Alpha, Beta, Gamma, Delta, and Omicron. Additionally,
there are variants of interest (VOI) that are also noteworthy. After removing variants with
insufficient sequence counts, seven VOIs remain: Epsilon, Zeta, Eta, Iota, Kappa, Lambda,
and Mu. These twelve variants comprise the 4917 sequences that we analyze.
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To begin with, we use the optimal natural metric to classify sequences by the 1NN
algorithm with the leave-one-out strategy, achieving an accuracy of 99.9%. This high
accuracy demonstrates that the optimal natural metric effectively reflects the relationships
between SARS-CoV-2 RNA sequences.

Next, we illustrate that the optimal natural metric is a viable approach for detecting
new variants. In Figure 2, we use kernel density estimation to show the distribution
differences between Iin(Alpha) and Iout(·, Alpha) [21]. It is evident that the distribution
of DisR(·, Alpha) for sequences within variant Alpha falls within the threshold, forming
a unimodal distribution. In contrast, DisR(·, Alpha) for sequences from other variants are
outside this threshold. Figure 3 further illustrates the distributional differences between
Iin and Iout. The distinct separation between these two distributions indicates that our
threshold can effectively distinguish whether a sequence belongs to a specific variant class.
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Figure 2. Distribution of Iin(Alpha) and Iout(·, Alpha) (SARS-CoV-2).
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Figure 3. Distribution of Iin and Iout (SARS-CoV-2).

We test Algorithm 1 for various SARS-CoV-2 variants using the previously described
strategies for evaluating Type I and Type II errors. In the Type I error test, we assume that
sequences from a given variant have never been discovered before and assess whether
a newly appearing sequence from that variant can be correctly identified as new. In the
Type II error test, we evaluate whether a sequence from known variants can be mistakenly
identified as a new variant. As shown in Table 2, both types of errors are kept below
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1%, which indicates a low rate of false positives and false negatives, yielding highly
satisfactory results.

Table 2. Two error rates for Algorithm 1 for three datasets.

Dataset Type I Error Type II Error

SARS-CoV-2 0.94% 0.96%
HIV-1 0.94% 0.87%

Orthocoronavirinae 0.03% 0.98%

3.2. HIV-1

HIV-1 is categorized into a major group (M) and three minor groups (O, N, P). The ma-
jor group is further subdivided into subtypes: A, B, C, D, E, F, G, H, I, J, K, L [22–26].
After excluding subtypes with insufficient sequence counts, six subtypes remain: A, B, C,
D, F, G. These six variants comprise the 5549 sequences that we analyze.

We repeat the aforementioned analysis for the HIV-1 virus. Initially, we determine that
the 1NN classification accuracy using the optimal natural metric is 99.8%, demonstrating
a remarkably high level of accuracy. In Figure A1, significant disparities can be observed
between Iin and Iout, consistent with our previous findings. Subsequently, we evaluate
Algorithm 1, recording Type I and Type II errors at 0.94% and 0.87%, respectively. These
results indicate promising performance of the algorithm in classifying HIV-1 variants.

One notable characteristic of HIV-1 is the significant attention given to recombinant
viruses, which exhibit properties of multiple subtypes without any single subtype being
dominant (if one subtype is dominant, then it is classified as pure) [27]. We aim to investi-
gate how these recombinant viruses perform with our algorithm. Specifically, we consider
three combinations: A+B, A+C, and B+C, comprising 10, 38, and 69 sequences, respectively.

Generally speaking, for recombinant viruses of the X+Y type, there are four potential
identification outcomes. The first outcome is when the virus is identified as either X or
Y, indicating a closer similarity to one of the recombinant parents. This suggests that the
virus should be assigned to the closer category. The second outcome occurs when the virus
is recognized as within both X and Y, with distances to both variants falling within the
boundary. This suggests similarly short distances to both parents. The third outcome is
when the virus is identified as a new variant, with distances to all known variants falling
outside the boundary. This indicates significant differences between the virus and both
of its parents, suggesting that it should be regarded as a new variant instead of solely a
recombinant. The fourth outcome occurs when none of the above three scenarios apply,
such as being classified as Z type or X+Z type. Only this fourth scenario implies an error,
as it contradicts the actual situation.

Out of the 117 recombinant sequences we analyzed, only three fell into the fourth
category, representing misclassifications, with the remaining sequences providing valuable
biological classification suggestions. This underscores the overall effectiveness of our
method. In the following parts, we illustrate the assistance that our method can provide
using specific examples.

For the A+B recombinant sequences, those identified as new sequences all belong to
subtype A1B, while another subtype, 03_A6B, is mostly identified as belonging to both A
and B. In Figure 4, we further illustrate this result using the points (DisR(·, A), DisR(·, B))
for different subtypes. This suggests that A1B is more distantly related compared to our
given dataset. For the A+C recombinant sequences, A2C is consistently recognized as
a new variant, whereas A1C shows inconsistent results, indicating that A2C is a more
internally homogeneous subtype and is more distantly related to its parent variants. For the
B+C recombinant sequences, six out of eight subtypes are consistently recognized as C,
implying that these subtypes are more similar to variant C. These results can provide
valuable insights into different subtypes within a recombinant group.
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Figure 4. Scatter plot of DisR distribution for four types of viruses: A, B, A1B, 03_A6B.

3.3. Orthocoronavirinae

Coronaviridae is a family of positive-sense single-stranded RNA viruses that cause
diseases in mammals and birds [28]. They are named for their characteristic crown-like
appearance, attributed to the presence of spike proteins on their surface [29]. Within the
Coronaviridae family, the Orthocoronavirinae subfamily represents the vast majority, com-
prising four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Delta-
coronavirus [30].

In our previous analyses, we have concentrated on detecting new variants of specific
viruses. Now, we expand our focus to include the identification of new genera. Initially,
we calculate the 1NN classification accuracy at the genus level using the optimal natural
metric, achieving a perfect score of 99.9%. In Figure A2, it can be noted that Iin and Iout
display even greater disparities compared to the previous analysis at the variant level. This
is easily comprehensible, as the discrepancies between genera are more pronounced than
those between variants.

Subsequently, we assess Algorithm 1, recording Type I and Type II errors at 0.03% and
0.98%, respectively. This outcome slightly surpasses the previous viral analyses, signifying
the efficacy of our method at higher classification levels.

3.4. Time Complexity Analysis

Our approach incorporates an alignment-free perspective, significantly reducing its time
complexity. We assume a total of N sequences with known labels, each with a length of
O(L), along with M known variants, where each variant comprises O(N/M) sequences
alongside V new sequences with unknown labels. Given that the computational complex-
ity of a single k-mer natural vector is O(L), the overall time complexity of the algorithm is
O(NL+ N2/M+V(L+ N)), with three terms corresponding to calculating the natural vectors,
calculating the boundary, and computation upon the arrival of new sequences, respectively.
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When using the alignment method, although search algorithms such as BLAST can
quickly identify candidate similar sequences, calculating the actual distance necessitates
algorithms with a time complexity of O(L2) [31,32]. Moreover, the distance must be com-
puted between every pair of sequences, while the alignment-free approach requires only a
single embedding per sequence. Therefore, if the distance calculation component of our
method were replaced with the alignment method, the overall algorithmic complexity
would increase to O(N2L2/M + VNL2), with two terms representing the boundary calcu-
lation and computation upon the arrival of new sequences, respectively. This is is much
slower than alignment-free approaches.

To conduct a further comparison using a small sample, we randomly selected thirty
sequences from each of the five variants within the VOC of SARS-CoV-2, compiling a
dataset of 150 sequences. We then applied both the original method and the alignment-
based approach to perform the same leave-one-out test as mentioned earlier. The time
expenditure of the original method on a standard PC with CPU 2.3 GHz was 2 min and
15 s, and the Type I error and Type II error of the test were 2.00% and 1.33%, respectively.
However, using the alignment-based method (employing the default parameters for global
alignment in the Align.PairwiseAligner function from Biopython (version 1.7.9), with the
additive inverse of the match score as the similarity metric) takes 12 h and 37 min, and the
Type I error reaches 97%, indicating that the method is completely ineffective. It is worth
noting that alignment methods offer various parameter options, and there may be certain
configurations that can potentially make the method work. In terms of time efficiency
alone, however, it is nearly impossible to process large datasets using this approach.

4. Discussion

In this paper, we have employed the optimal natural metric, which demonstrated
exceptional performance across three distinct datasets, to measure the similarity between
sequences. Using this metric, we have developed a hypothesis testing-based algorithm
capable of quickly determining whether a sequence belongs to an unknown category. Our
approach achieves nearly 100% accuracy in detecting new variants of SARS-CoV-2, new
variants of HIV-1, and new genera within Orthocoronavirinae. Additionally, for HIV-1 our
approach provides deeper insights into recombinant viruses by evaluating their relation-
ships with their parental strains.

The significance of our method lies in two main aspects. First, in an era where pan-
demics are of increasing concern, the ability to rapidly detect new variants is crucial.
Current methods for defining new variants rely heavily on manual selection, requiring the
identification of key regions for alignment and specific mutations. Our method offers an
automated approach to identifying new variants, reducing dependence on labor-intensive
processes. In the process of infectious disease control and management, even after defining
the known variants, there is always concern about the potential emergence of new threaten-
ing variants. Our method allows for the efficient detection of new variants based purely on
sequence data, without the need to rely on biologists to identify critical regions of the virus.
This capability is of significant importance.

Second, our method advances alignment-free techniques. Alignment-free methods
which do not require time-consuming alignment processes and are not dependent on
conserved regions are becoming increasingly important in the era of big data. Previous
research has proposed various methods for extracting and comparing sequence features,
with the optimal natural metric being one of the most effective. However, these methods
typically only classify sequences when all categories are known, failing to address the
presence of new categories. Our approach fills this gap by enabling the identification of
sequences from previously unknown categories.

Certainly, our method has limitations that require further investigation in future studies.
A primary issue is that our approach handles relatively complete sequences, and cannot de-
termine whether a shorter unknown segment of a virus belongs to a new category. Therefore,
while our method is very useful for disease control and management where complete sequences
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can be obtained, it is currently less effective in areas where complete sequences are not available.
For example, the study of meta-viromes must often deal with a large number of mixed short
sequences from different pathogens. If future research could extend our algorithm to make it
effective on fragment sequences as well, this would be highly beneficial.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes15070891/s1, Data S1: SARSCoV2.csv; Data S2:
SARSCoV2.fasta; Data S3: HIV1.csv; Data S4: HIV1.fasta ; Data S5: Orthocoronavirinae.csv; Data S6:
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Figure A1. Distribution of Iin and Iout (HIV-1).
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Figure A2. Distribution of Iin and Iout (Orthocoronavirinae).
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