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where our improved upper bound is given above the best previous Contribution to Munuera’s Problem on the Main

upper bound. The bounds in parenthesg$’“are due to Klgve [1], Conijecture of Geometric Hyperelliptic MDS Codes
those in brackets[*|” are due to Chen, Fan, and Jin [16], and those in

braces { }” are due to Chen [15]. The blocks for difference triangle ~ Hao Chen and Stephen S.-T. Yegnior Member, IEEE
sets with the improved scopes are available from the authors.

Abstract—n coding theory, it is of great intererst to know the maximal
VI. CONCLUDING REMARKS length of MDS codes. In fact, the Main Conjecture says that the length of

One of the problems suggested by the results in Section Il is t?S codes overry is less than or equal tog + 1 (except for some special

L . . . cases). Munuera proposed a new way to attack the Main Conjecture on
determination of the asymptotic behavior of(n, k). Our results MDS codes for geometric codes. In particular, he proved the conjecture

show that forf(n) satisfyinglim sup,_ ., f(n)/n <1, we have for codes arising from curves of genus one or two when the cardinal
lim, —oe m(n, f(n))/n(f(n))*> = 1. It would be interesting to of the ground field is large enough. He also asked whether a similar
know what happens if (n) is allowed to grow at a faster rate. theorem can be proved for any hyperelliptic curve. The purpose of this

: : ecarrespondence is to give an affirmative answer. In fact, our method also
We h_ave also desgnbed algorithms that are used to con_struct di felves the Main Conjecture for geometric MDS codes forg = 2 if the
ence triangle sets with the best known scopes for many intermedigés of the hyperelliptic curve is eitherl, 2 or 3, and for ¢ = 3 if the

values ofn and k. genus of the curve isl.

Index Terms—Algebraic curves, algebraic-geometric codes, divisors,

REFERENCES hyperelliptic curves, zeta function.

[1] T. Klgve, “Bounds on the size of optimal difference set&EE Trans.
Inform. Theory vol. 34, pp. 355-361, 1988.
[2] ——, “Bounds and construction for difference triangle set§EE |. INTRODUCTION
Trans. Inform. Theoryvol. 35, pp. 879-886, 1989. _ Let F, be a finite field withg elements and{ be a nonsingular
[3] J. Abrham, “Perfect systems of difference sets—A survéys'Combin, projective curve defined ovef, with genusy. We shall writeX (F,)

4] B0|617£6g%$§ ngg’c%iﬁggi perfect systems of difference seBigcr to indicate the finite set o, -rational points onX. The function field

Math, vol. 135, pp. 287-301, 1994. of X over F; is denoted byF,(X). LetP = {P,,---, P,} be a set
[5] C. J. Colbourn, “Difference triangle sets,” iihe CRC Handbook of of n distinct rational points onX. By abusing notation, we also

Combinatorial DesignsC. J. Colbourn and J. H. Dinitz, Eds. Sangometimes identifyP as a divisor. LetG be a rational divisor with
Diego, CA: CRC Press, 1995, ch. 1V.14. support disjoint fromP

[6] A. Dollas, W. T. Rankin, and D. McCracken, “New algorithms for

Golomb ruler derivation and proof of the 19 mark ruler,” preprint. LG :={feF(X):(f/)+G>0}u{0} = H(X, [G])
[7] R. O. Davies, “On Langford’'s problem (Il),Math. Gaz, vol. 43, pp. -
253-255, 19509. where[G], the line bundle corresponding to the diviggy is a vector

[8] T. Skolem, “On certain distribution of integers into pairs with giVenspace’ and we deno[eG) its dimension. The Comp|ete linear system

differences,”Math. Scand.vol. 5, pp. 57-68, 1957. ; ;
[9] A. Kotzig and J. M. Turgeon, “Perfect systems of difference sets ana(‘l]ssocmlted td, denoted by|G|, is

additive sequences of permutations,”®noc. 10th Southeastern Conf. {(FEF(X): (f)+G> 0}/]:;_
on Combinatorics, Graph Theory, and Computii@79, pp. 629-636.
[10] D.G. Rogers, “Addition theorems for perfect systems of difference sets,” Definition: The algebraic geometry codg(X, P, ) associated
J. London Math. Sogvol. 23, pp. 385-395, 1981. _to the pair(P, G) is the linear code of length defined as the image
[11] J.-C. Bermond, “Graceful graphs, radio antennae, and Frence W|r51r the linear map
mills,” in Graph Theory and Combinatoricsol. 34 of Research Notes

in Mathematics London, U.K.: Pittman, 1979, pp. 18-37. a: L(G) — Fr
[12] J.-H. Huang and S. S. Skiena, “Gracefully labelling prismays o ) B )
Combin, vol. 38, pp. 225-242, 1994. = (f(P),--, f(Pu))-

[13] J.-C. Bermond, A. Kotzig, and J. Turgeon, “On a combinatorial proble . . L
of antennas in radioastronomy,” Rroceedings of 18th Hungarian Com_'\We shall letk# denote the dimension of this linear code. Then

binatorial Colloquim Amsterdam, The Netherlands: North-Holland,k = €(G) — {(G — P). In what follows, we shall always assume

1976, pp. 135-149. that

[14] P. J. Laufer, “Regular perfect systems of difference sets of size 4 and .
extremal systems of size 3&nn. Discr. Math, vol. 12, pp. 193-201, 29— 2< deg G <. (1.1)
1982. . . . L .

[15] Z. Chen, “Further results on difference triangle SeEEE Trans. It is well knovyn that the_dlmensmh and the minimum dlste_mce
Inform. Theory vol. 40, pp. 1268-1270, 1994. d of the algebraic geometric code(X, P, ) satisfy the following

[16] Z. Chen, P. Fan, and F. Jin, “Disjoint difference sets, difference triangtelations [11]:
sets, and related codes|EEE Trans. Inform. Theoryvol. 38, pp.
518-522, 1992. k=0G)=deg G+1—y (1.2)
[17] J Singer, “A theorem in finite projective geometry and some applica- d>n— deg G. (1.3)
tions to number theory,Trans. Amer. Math. Sacvol. 43, pp. 377-385,

1938. Manuscript received July 12, 1996; revised February 3, 1997. The work
[18] M. J. Colbourn and C. J. Colbourn, “Recursive constructions for cycliéf H. Chen was supported by the NSF of China and by the Guangdong

block designs,’J. Statist. Plann. Infer.vol. 10, pp. 97-103, 1984, Provincial NSF of China. The work of S. S.-T. Yau was supported in part by
[19] D. R. Heath-Brown and H. Iwaniec, “On the difference betweeARO DAAH04-1-0530 and NSF DMS 9321262.

consecutive primes,Invent. Math, vol. 55, pp. 49-69, 1979. H. Chen is with the Department of Mathematics, Zhongshan University,
[20] W. A. Wythoff, “A modification of the game of Nim,Nieuw Arch. Guangzhou, Guangdong 510275, P.R. China. _ o
Wisk (2) vol. 7, pp. 199-202, 1907. S. S.-T. Yau is with the Department of Mathematics, Statistics, and

[21] 1. G. Connell, “A generalization of Wythoff's gameCanad. Math. Computer Science, University of lllinois at Chicago, Chicago, IL 60607-7045
Bull., vol. 2, pp. 181-190, 1959. USA. 3
Publisher Item Identifier S 0018-9448(97)03868-6.

0018-9448/97$10.00 1997 IEEE



1350 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

For any linear code of lengtlh, dimensionk, and minimum Lemma 2.11f C(X,P, @) is an MDS code, theli (G—P(k—1))
distanced, we have the following well-known singleton bound [5]: produces all codewords of minimal weighiocating exactly outside
d<n—k+1. (1.4) P(k — 1). In particular
. . . . dimL(G—-Pk—-1))=1
Codes reaching this upper bound are call®dximum-distance-
separable(MDS) codes. From now on, the cod8(X,P,G) is
always supposed to be MDS and nontrivial, thatlisg k < n — 1. L(G=P(k)) = L(G-P)=0.

Main Conjegture for MDS CodesFor every lineatn, , d.] MDS Proof: Codewords obtained froth(G —P(k—1)) have weight
code overF,, if 1 < k < 2 the.nn < g+ 1, except wheny is even atmosti— (k—1) = n+1—k = d becaus@ﬁ(X,P,G‘) is an MDS.
an_lc_if_ =3 c.’”i —4a= Lin ;\/hl%h Cisﬁl §1¢q:52.f the vi Hence, the codewords obtained frabiG — P(k — 1)) are either

IS conjecture Is proved when = or = = o from the view- % or of minimal weight. The location of the nonzero coordinates

and

point of finite geometries [5]. In [6], Munuera introduced a beautifu f such codewords are clearly locating exactly outwide: — 1).
new idea. He translated the conjecture for algebraic geometry co &% fi, f2 € L(G — P(k — 1)) such thata(f,) anda(f.) are of

to another problem concerning the arithmetic of the culveHe minimal weight. Since the nonzero coordinatesa6ff) and a( f2)

Eroved It for clodes ar:j&gg Eom curvest\_/th; genUSV\éhICh gad have the same location, a linear combinatiom6f; ) anda( f2), say
een previously proved by Katsman and Tsfasman [3], an Curva(,alsoz(fl)—i-am(,fz), will create a codeword with weight less thdn

of genus2 wheng¢ > 83. Munuera then asked whether a similar.l.his is possible only ifiya(f1) + aza( f2) = 0. This simply means

theorem can be proved for any hyperelliptic curve. The purpose t?lfat a1 fi +asfs € L(G — P). In particular

this correspondence is to give an affirmative answer to Munuera’s

Main Theorem: The Main Conjecture on MDS codes is true for Clearly, L(G — P(k)) D L(G — P). Suppose that there exists
codes arising from hyperelliptic curves of genu$ 2 if feL(G=Pk)—L(G-P). Then the codeword obtained frofn
qg>8¢° +49+8+8g\/g2 +g+2 has weight at most — & = d — 1 < d which is not possible. Hence
or L(G-P(k))=L(G-P). O
¢ <8¢ +4g+8-89\/> +g+2 Lemma 2.2: If C(X,P,G) is an MDS code, then
whereg is the cardinality of the finite field,. dmL(G—-Plk—e)) =e

Remark: 1) We observe that if the genus is equal to two, then tl}%r
Main Conjecture on MDS codes is true as longyas 94. We deduce : .
) gas Proof: Assuming the statement is true farwe shall prove that

Munuera’s result wheg > 94 as a corollary of our theorem above. . . . .
9= y the statement is true far + 1. Consider the following diagram of

2) We also observe that the Main Conjecture on MDS codes is trgeact Sequences
for ¢ = 2 if the genus of the hyperelliptic curve is either one, two, x qu

alo <e < k.

or three, and foy; = 3 if the genus of the curve is one. 0 - L(G) — Fqk =0
3) In [2], De Boer proves the above theorem for C'(g!). Since al [ !

¢ has to grow exponentially with, his result is much weaker than 0— LG@-PF) —LG—- F7° -0
ours. In fact, the constart is not explicitly computed. n| l !

0— L(G-=Pk—e) —LG— FF° —o0
Il. PRELIMINARIES a] | l

In this section, we shall recall some of the standard results thatwe 0 — L(G = P(k — ¢~ 1)) = L(G) — F;~""".
need later in order to prove the Main Theorem stated in Section We claim that
Given P,G as in Section | we can define another algebraic

13 1_ r 1. — e — > > .
geometry code in the following manner. For a divisBr denote dim L(G = Plk—e—1)) 2 e+1

Q(F) := {w : w rational differential form with(w) > E} U {0}. Otherwise, we have

. Definition 2.1:_The alg.ebraic geometry code” (X, P, G? asso- dim L(G — Pk —e—1)) < e = dim L(G — P(k — ¢)).
ciated to the pai(P, G) is the linear code of length defined as
the image of the linear map On the other hand,

" UG -P) — Iy L(G—P(k—e—1)) D L(G—-P(k—e¢)).
n- _> (Resz. (77)1 Tt >.Res_’n(7])) So we have

where Res, () is the residue of; at the pointP;. Let k™ be the ) )
dimension of image of*. dimL(G - Pk —e—1))=e=dim L(G — P(k — ¢e)).

Let K be a canonical divisor ok'. Thenk™ = (K —G+P) and Tpe algebraic geometry cod&( X, P(k—c—1), &) is of dimension
C(X,P.G) andC™(X, P, ) are dual to each other. Furthermorey, _ . Byt from the bottom row of the above diagrafi( X, P(k —
d” := minimal distance of." (X, P, G) > deg G + 2 — 2g. e — 1),G) is embeddable intd” ', which is impossible. This

Definition 2.2: We denoteP(e) a generic effective divisor of proves our claim.
degreee such thatP(¢) < P (i.e., P(e) = P;; +--- + P;. where Observe that
P, # B, forr # s). .

Let N, := |X(F,r)|, the number ofF,--rational points ofX. dim L(G = P(k —e —1))/L(G = P(k —¢)) < 1.
One has|N, — ¢" — 1| < QQQT/Z. which is called the Hasse-Weil By induction, we deduce immediately that
E)hoeur;i.rxpgzldylegigfj the following information in the remainder of dmL(G =Pk —c—1)) < e +1,

|P'(Fyr)l =¢" +1 Hence
N :=|X(F,)] <N <1+4+q+29/q. dmL(G—Pk—e—-1))=e+1. |
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Proposition 2.3: Given a geometric MDS cod€'(X, P, G). Let opposite,P; + E; = P; + E; for some: # j. This is possible only
a andb be integers such th&, («)+7P-(b) = P. Then the projection when there exists an effective divisér such that
F} — F onto the positions?; () induces and defines
P+ E, =P, +E;,=P+P,+FE.
0—C0) —C(X,P,G)— Qa) — 0 ) S
Take anothe’ (k — 2) in the same clasiD] which is disjoint from
whereC'(b) consists of those codewords with support™n(b) and both P, and P;. Then
Q)(a) is the image ofC(X,P,G) under the projectiorfy — Fy.

.
By discarding the zero positions, we get a code which is still denoted G-P(k=2)~Pi+P+E

by C'(b). Then ie.,
i) G-P((k-2)-P, - P ~FE.
Q(a) = C(X,Pi(a). G) So there is a nonzero element (G — P(k)). This contradicts
C(b) = L(G = Pi(a))/L(G = P). Lemma 2.2.
SinceP;+E;,i = 1,---,n are pairwise distinct ifiG— P (k—2)],
i) For 2 < a < n, C(b) = 0, and Q(a) has parameters we haven < ¢ + 1. O
[a, k,a — k + 1].

i) For 0 < a < k-1, Q(a) is the trivial code[a, a, 1], and

Ill. PROOF OF THEMAIN THEOREM
C'(b) has parameter®, k — a,d] and

Recall that for a divisoD, the complete linear systef®| is the
C(b) = C(X,P2(b),G — Pi(a)). collection of all effective divisors which are linearly equivalent/io

. , , . It is the projective space associatedt0D). So the dimension of
In particular, theZ'(b)'s and theQ(«)’s are all geometric MDS codes. ;4 |inear system ig(D) — 1. A base point of the linear systehd|

Let us consider only the geometric case of Main Conjecture in this 5 point that is contained in each effective divisor in the system.
correspondence. If there exists a code with ¢+2, we can always, a divisor D has no base points if and only if for any poipt
by using Proposition 2.3, truncate the lengthyte 2 without altering ¢D - p) = (D) — 1. By Riemann—Roch, every divisa® with
k. Therefore, if the Main Conjecture failed for algebraic geometri&egD > 24 has no base points. But if > 2, the canonical divisor
MDS code, then there would exist an algebraic geometric MDS cogke, which is of degre€g — 2, has no base points. Forto be a base
with n = ¢+ 2. Since a dual code of Algebraic Geometric MDS codg int of D], it will mean ¢(D — p) = ¢(D).

is also an Algebraic Geometric MDS code, we deduce the following In case thalD| has no base point, there is a natural map
reduction proposition. .
Proposition 2.4: In order to prove the Main Conjecture for alge- X - , P ; k=(D)-1
braic geometric MDS code, it is sufficient to produce a contradiction, » — (fo(p): fi(p) -~ fe(p))
wheng > 13 in the presence of an algebraic geometry MDS code %here for f1,++ -, f« form a basis off.(D). Whenk = 1, the degree
parameter$n, k, d] wheren = ¢+2 and6 < k < n/2 (in particular of this m/ép/ is t;le degree of the divisor '
B S q—4) . . . Definition 3.1: By a g;; we mean the linear system of effective
We now recall a beautiful observation due to Munuera [6]. Give wisors linearly equivalent to a given divisdd (i.e., P(L(D)))
X, P, and G as in the Introduction, satisfying (1.1), foIIowingWith F+1 = (D) andd = deg (D) ) ,

Munuera, we shall consider the set of divisors Definition 3.2: A curve X of genusg > 2 is calledhyperelliptic
C.(P) = {P(t) : all subdivisors ofP of degreet}. if its function field has an involutiod such that the fixed field of
is isomorphic tok(z), the field of rational functions. Equivalently, if
Recall thatP(t) = P,, +---+P,,, P, € PandP;. # P,, if r # 5. there is a morphism of degree two oniJ.
Let ~ be the linear equivalence among divisors. We shall considerOn a hyperelliptic curve there is a uniggewhich is the pull-back
the following hypothesis. of the uniqueg; on P, i.e., the linear system of divisoi® + P,
C[X.P,t]: There exists a class ifv(P)/ ~ such that for any two where P, P' are two points with the same image under the map
points R and S in P, there is a representative in that class which isf our curve toP'. Every effective canonical divisor is a sum of
disjoint from bothR and S. g — 1 divisors from this systengs. An effective divisor ing3 will
The following proposition use the condition (1.1) that>- deg G. be denoted byJ.
Proposition 2.5 (Munuera):Suppose (1.1) holds and the hypoth- Lemma 3.1: SupposeX is a hyperelliptic curve of genug > 2
esisC[X,P,t] is true forl <t < 5 —2,if n > ¢ + 1, then there defined over an algebraically closed field or a finite field. Iebe
is no geometric MDS code arising frof for 3 < k < ¢, except an effective divisor ing3, the unique linear system of degr2eand
perhaps fork = ¢ — 1 andn = ¢ + 2. dimension1 defining the degree 2 maf — P'. Then

Proof: Suppose that’(X, P, G) is an[n, k. d] MDS code with 1) There are at mos(g + 1) pointsT in X such thaT ~ J.
3 <kandn > g+ 1. Ifthis code is not dg +2,¢ —1,d] code, then 2y For every pointP, there is a unique point) such that

we can assum8 < k < n/2 because the dual of geometric MDS P+Q ~ J.

code is again a geometric MDS code. 3) LetD=P+---+P,_yandD' = Qi +---+Q,_1 be two
Since hypothesi€[X, P, k — 2] holds, we choose a clagB] as in effective divisors of degreg — 1. Suppose no twd” and P;

the hypothesis. For eadh(k — 2) € [D], (G — P(k —2)) = 2 by with the property that?; + P; ~ .J. ThenD ~ D’ implies

Lemma 2.2. Thereford(G — P(k — 2)| hasq + 1 elements. On the D =D,

other hand, lef’; € P, then there is an effective divis@; of degree Proposition 3.2:

degG— (k—2)—1=degG—k+1=g 1) LetD = P, +--- + P41 be an effective divisors of degree
g + 1 and the dimension of the complete linear systdm be one.
such thatG — P(k — 2) ~ P; + E; in view of (1.2) and Lemma Then for|D| to have a base point, it is necessary and sufficient that
2.2. Now the claim is that all thé; + E; are distinct. Suppose the P, + P; ~ J for someP;, P;.
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2) LetC(X,P,G) be a geometric MDS code with condition (1.1).The roots of the left-hand side of (3.4) are given by

Then the complete linear systel@ — P(k — 2)| either has no base

points or it is linearly equivalent td 4+ E for some effective divisor
E.
Proof:
1) Suppose thaPf; + P, ~ .J. Since

|Pi + P| C|Pi+ P+ + Pyyi]
by the dimension consideration, we conclude that
|Pi+ P =|Pi+ P+ + Pyyal.

So all P5,--- P,;, are base points dfD|.
Conversely, let us assunid is a base point ofD|. Then

(D-P)=0D)=2=(K-D+P)+1

by Riemann—Roch theorem, whei® is an effective canonical
divisor. Hence!(K — D + P;) = 1. We get an effective divisor
E, whose degree ig —2 — (¢ + 1)+ 1 g — 2, such that

G=80"+4g+8£8g\ /2 +g+2.

Hence (3.3) holds if and only if > go or ¢ < ¢1. O
Proposition 3.4: Let X be a hyperelliptic curve defined over a

finite field F,. Let C'(X, P, G) be a geometric MDS code with word

lengthn > ¢ 4+ 1, dimensionk < 7, anddeg P = n > deg GG. Let

G0 =80 +49+84+89\/s> +g+2
=8¢ +4g+8—-89 /2 +g+2.

Supposek is odd and
Pk=3)=Pi+Po+4 -+ P 3

and

consists of pairs

PP+Po~Ps+ Py~ o~ Py + Peg~J

K ~ Py + -+ + P4y + E. Recall that every effective canonical Then

divisor is a sum ofg — 1 divisors from g3. Some couple of the
P,
to J.

2) It follows directly from 1) above and Lemma 2.2. O

-, P,41 must pair up so that their sum is linearly equivalent

1) For any @ € P\P(k — 3), the complete linear system
|G — P(k — 3) — Q| has no base point for > qo, 0r ¢ < qi.

2) The complete linear systef& — P(k — 3)| has no base point
for ¢ > qv, Oor ¢ < q.

Proposition 3.3: Let X be a hyperelliptic curve defined over a 3) The complete linear systeftr — P (k — 5)| has no base point

finite field F,. Let C(X,P,G) be a geometric MDS code with

deg? = n > degG. Let

G0 =8¢ +49+8+89V/s? +g+2
G =80 +49+8—89/ +g+2.

Suppose: > ¢ + 1. Then there exist at leaf§] + 3 pairs of points
(P, P") in P such thatP + P’ ~ .J providedgq > qo or ¢ < ¢1.

and

for ¢ > go or ¢ < ¢1 whereP(k—-5) =P +---+ Pi_5
consists of pairs

PP+P~P3s+ P~ -~Po g+ Pis~J.

Proof:

1) In view of Proposition 3.3, there are = [2] 4 3 pairs of
{Q:, Q:} such that; + Q. ~ J. For any@ € P\P(k — 3), if the
complete linear systerfG — P(k — 3) — (| has a base point, then
by 2) of Proposition 3.2, we have

Proof: The process of seeking, such a pair is given in 2) of

Lemma 3.1, sinceX is hyperelliptic. Excluding the possibi g+ 1)

points of the type in 1) of Lemma 3.1, suppose we can gather at m(fjost

[2] + 2 pairs. Then for each of the remaining
‘ — n
n_2w+1)2(h]+@
points P in P its counterpartl’ is outsideP. This gives
n -
n—2@+&)—2q1}+2)gﬂ-—n 3.1)
whereN is the numbetX (F,)|. Equation (3.1) is equivalent to

2 — 2[%] —2(g+1)—4<N.

Usingn» > ¢ + 2 and the Hasse-Weil boundl < 1 + ¢ + 2¢./4,
we deduce from (3.1)

3
L+q+29/q> 577—2(.(14-1)—4
3
> §(q+2)—2(y+1)—4

which is equivalent to

494 +4(g+2) > ¢ (3.2)
Therefore, if X is over a finite fieldF, with
q>4g9y/q+4(g+2) (3.3)

then we will get a contradiction. It is easy to see that (3.3) holds

and only if

@ —8¢(29° + g+ 2) + 16(¢+2)* > 0. (3.4)

G-Pk=3)-Q~J+E

r some effective diviso. Since

k-3

2
we can take one pair ofQ;,Q;}, which is disjoint from both
P(k—3) andQ, to represent/. From this we get: — P(k) ~ E for
someP(k), which contradicts Lemma 2.2. So we have shown that for
any@ € P\P(k—3), the complete linear systef& —P(k—3)— Q|
has no base point.

2) Observe that ifA and B are two divisors such that = B+ C
for some effective diviso€' > 0, then|B| C |A]|. If p is a base point
of |A|, then it either appears i@, or is a base point dfB|. For any
Q € P\P(k—3),we consideG—-P(k—3) = G=P(k—3)—Q+Q.

If |G — P(k — 3)| has base points, thef must be a base point of
|G —P(k—23)|. But this is true for any) € P\P(k— 3). Therefore,

n—(k—3)=deg(P\P(k—3)) <deg(G—P(k-3))
=degG — (k—3)

+1§%+2<t

which contradicts to our hypothesis > deg G.
3)
G —P(k—-5)
=(G—-—Pk—=5)— Po—s — Pr_3)+ (Peca+ Pr_3)
=(G—=Pk—3))+ (Pi—sa+ Pr_3).
I!{ecall that (G—P(k—3)) = 3. SoG—P(k—3) is alinear equivalent

to an effective divisor. Sincgr —P(k—3)| and|Pr._a+ Pi—s| = | J|
have no base point; — P(k — 5) has no base point. |
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Theorem 3.5:Let X be a hyperelliptic curve of genus defined Lemma 3.7: Let S be a set ofy+2 rational points in the projective

over F; with spaceP* over F, whereq is even. Then there exists five distinct
7 9 7 points in S, lying on a hyperplane oP*.
4>8g +49+8+89Vg* +g+2 Theorem 3.8:Let X be a hyperelliptic curve of genus defined
or over F, with

2
7<8g"+49+8—-8gy/g*> +g+2. 0>85% +49+ 8489 /P T g+2
Let P andG be divisors with2g — 2 < deg G < n. If C(X,P,G) o
is a geometric MDS code, then its length< ¢ + 2. g <8 +4g9+8— ng-
Proof: By taking the dual code, we may assume that the code
is of dimension < n/2. By Proposition 3.3, there ate= [2] + 3 LetP andG be divisors with2g — 2 < deg G < n. If C(X, P, G)
pairs { P;, P!} such thatP; + P! ~ J. is a geometric MDS code, then< ¢ + 1 unlessq even andk = 3
or k = ¢ — 1 in which cases: < ¢ + 2.
Proof: By the argument of Proposition 2.4, we may assume that
[Dl =[P+ P+ + Py—syys+ Pl 0] the code is of dimensiofi < k < Z. In view of Proposition 3.3,
there aret = [2] + 3 pairs{ P, P/} such that?, + P/ ~ J.
Case i). k is even. The proof is the same as the proof of Theorem

Case i). k is even. Observe that the class

satisfies the hypothesi§ X, P, k — 2] since

[n]+3> k—2+3 3.5, case i).

4 - 2 ) Case ii). k is odd. By Proposition 2.4, we can certainly assume
By the proof of Proposition 2.5, we have< ¢ + 1. n=q+2

Case ii). k is odd. Consider the divisor a) k is odd andq is odd. Let
D=G-P-P/ - — P—zy/2 — P('k,;;)/z -Q Pk—3)=P + P +--- + Pi_3y2 +P(II,~—3)/'2
from some (k — 3)/2 pairs and a@Q € P not in where P, + P/ ~ J. Then{(G — P(k — 3)) = 3 and the
{Pi, P, -, Ple_sy2; Pli_3)/2}. D is a divisor of de- complete linear systefG — P(k — 3)| has no base point
gree by Proposition 3.4. Consider the map X — P? defined

by this complete linear system. Singés odd, Lemma 3.6,
we can find three distinct pointd, B, andC' € P such
thaté(A4), ¢(B), and¢(C) are on the linel in P?. Thus
there exists an effective divisdr such that

deg(G)—(k—=3)—1=degG—-k+2=9g+1

by (1.2). By Lemma 2.2/(D) = 2. In view of 2)
of Proposition 3.4, we know thatD| has no base

point. Hence the complete linear systém| defines a G-—Pk-3)~A+B+C+E.
morphism¢ : X — P'. This map is defined oveF,.

If n > ¢+ 3, then the mapy restricted onP\{Q} is Since

not one-to-one sinc®' has onlyg + 1 rational points. n k—3
Supposes(Q1) = #(Q-) for a distinct@: and Q- in [Z] +32 2 +3

P\{Q}. Then there is an effective divisor in the system

D] of the form(1 + Qs + F. whereE is an effective we can change appropriate pairs %k — 3) so that

all the P(k — 3), A, B, and C are distinct. Therefore,

divisor. Thus G — P(k) ~ E. Observe that

G~ P+ P+ 4 Pu_zyj2+ Plcsy e degE = deg(G — P(k —3)) — 3
+FQ+Q1+Q2+ E. =degG—k=g—-1>0

Since[n/4] + 3 > (k — 3)/2 + 3, we can replace those by (1.2). This gives a contradiction to Lemma 2.2.

pairs{P;, P/} which hitQ; or Q2. Given that situation, b) k is odd andq is even. Let

all the P’'s andQ’s are distinct and we have ) '
p(k_S):Pl+P1+"'+P(A~—5)/2+P(k_5)/2

G —P(k) ~ E.
where P, + P/ ~ J. Then((G — P(k — 5)) = 5 and
This contradicts Lemma 2.2. O the complete linear systefpd? — P(k — 5)| has no base
Lemma 3.6: Let S be a set of+2 rational points in the projective point by Proposition 3.4. Consider the map X — P*
plane P? over F,. Suppose thay is odd. Then there exist three defined by this complete linear system. By Lemma 3.7,
distinct points inS which are colinear. we can find five distinct pointsl,, - --, As € P such that
Proof: The observation is that for any point there are exactly #(A1), -+, 6(As) are lying on a hyperplandl in P*.
¢+ 1 lines passing this point. Suppose on the contrary that there are Thus there exists an effective divisér such that

no three distinct points i$ which are colinear. For an§ € S, each

line passing? must pass exactly one other point$ih{@} since no G=Pk=5)~dit- -+ A+ E

three points are colinear and there ar¢ 1 points inS\{Q@}. Thus Recall thatn = ¢ + 2 is an even number. So we have
points of S are coupled into pairs by lines. Henget 2 is an even " 1 n
number, which is impossible if is odd. O [ﬂ + B > 1
The following lemma was proved by finite geometry in [5, pt I,
pp. 326-328]. In fact, it is equivalent to the nonexistence of MDS and hence
[¢ + 2,5,¢9 — 2] linear code. (Foi; odd andq > 49, see [8]. Forg [ﬁ} 13> k=35 15
even andg > 7, see [10].) 4 = 2
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By Proposition 3.3, there are at leds] + 3 pairs of Surfaces and the Weight Distribution of a Family of Codes
points(P, P') is P such thatP + P’ ~ .J. We can change

appropriate pairs iP(k —5) so that all theP(k —5), M. van der Viugt
Ay, .-+, A5 are distinct. Thereforé7 —P (k) ~ E. Observe
that

Abstract—We derive the weight distribution of the binary trace codes
with words (Tr (a9t + ba® + cr)xgpz where a, b, ¢ € F 2 and Tr

deg E =deg(G—-P(k—-5))—5 is the trace map fromF > to Fa. The wqeights of these words determine
the exponential sums W?'uich were considered earlier by Moreno, Kumar,
=degG-k=9g-1>0 and Lahtonen. Results from the theory of quadratic forms play a role
but the decisive argument is of an algebraic-geometric nature, namely,
from the theory of surfaces.

by (1.2). This gives a contradiction to Lemma 2.2. O ) )
Index Terms—Exponential sum, quadratic form, surface, trace code,

weight distribution.
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