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where our improved upper bound is given above the best previous
upper bound. The bounds in parentheses “( )” are due to Kløve [1],
those in brackets “[ ]” are due to Chen, Fan, and Jin [16], and those in
braces “f g” are due to Chen [15]. The blocks for difference triangle
sets with the improved scopes are available from the authors.

VI. CONCLUDING REMARKS

One of the problems suggested by the results in Section II is the
determination of the asymptotic behavior ofm(n; k): Our results
show that forf(n) satisfying lim sup

n!1
f(n)=n< 1; we have

limn!1 m(n; f(n))=n(f(n))2 = 1: It would be interesting to
know what happens iff(n) is allowed to grow at a faster rate.

We have also described algorithms that are used to construct differ-
ence triangle sets with the best known scopes for many intermediate
values ofn and k:
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Contribution to Munuera’s Problem on the Main
Conjecture of Geometric Hyperelliptic MDS Codes

Hao Chen and Stephen S.-T. Yau,Senior Member, IEEE

Abstract—In coding theory, it is of great intererst to know the maximal
length of MDS codes. In fact, the Main Conjecture says that the length of
MDS codes overFq is less than or equal toq+1 (except for some special
cases). Munuera proposed a new way to attack the Main Conjecture on
MDS codes for geometric codes. In particular, he proved the conjecture
for codes arising from curves of genus one or two when the cardinal
of the ground field is large enough. He also asked whether a similar
theorem can be proved for any hyperelliptic curve. The purpose of this
correspondence is to give an affirmative answer. In fact, our method also
proves the Main Conjecture for geometric MDS codes forq = 2 if the
genus of the hyperelliptic curve is either1, 2 or 3, and for q = 3 if the
genus of the curve is1.

Index Terms—Algebraic curves, algebraic-geometric codes, divisors,
hyperelliptic curves, zeta function.

I. INTRODUCTION

Let Fq be a finite field withq elements andX be a nonsingular
projective curve defined overFq with genusg. We shall writeX(Fq)

to indicate the finite set ofFq-rational points onX. The function field
of X overFq is denoted byFq(X). Let P = fP1; � � � ; Png be a set
of n distinct rational points onX. By abusing notation, we also
sometimes identifyP as a divisor. LetG be a rational divisor with
support disjoint fromP.

L(G) := ff 2 Fq(X) : (f) +G � 0g [ f0g = H
0(X; [G])

where[G], the line bundle corresponding to the divisorG, is a vector
space, and we denote`(G) its dimension. The complete linear system
associated toG, denoted byjGj, is

ff 2 Fq(X) : (f) +G � 0g=F �

q :

Definition: The algebraic geometry codeC(X;P; G) associated
to the pair(P;G) is the linear code of lengthn defined as the image
of the linear map

� : L(G) ! F
n

q

f ! (f(P1); � � � ; f(Pn)):

We shall let k denote the dimension of this linear code. Then
k = `(G) � `(G � P). In what follows, we shall always assume
that

2g � 2 < deg G < n: (1.1)

It is well known that the dimensionk and the minimum distance
d of the algebraic geometric codeC(X;P; G) satisfy the following
relations [11]:

k = `(G) = deg G+ 1� g (1.2)

d � n� deg G: (1.3)
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For any linear code of lengthn, dimensionk, and minimum
distanced, we have the following well-known singleton bound [5]:

d � n� k + 1: (1.4)

Codes reaching this upper bound are calledmaximum-distance-
separable(MDS) codes. From now on, the codeC(X;P; G) is
always supposed to be MDS and nontrivial, that is,1 < k < n� 1.

Main Conjecture for MDS Codes:For every linear[n; k; d] MDS
code overFq, if 1 < k < q, thenn � q + 1, except whenq is even
andk = 3 or k = q � 1 in which casesn � q + 2.

This conjecture is proved whenq � 11 or k � 5 from the view-
point of finite geometries [5]. In [6], Munuera introduced a beautiful
new idea. He translated the conjecture for algebraic geometry codes
to another problem concerning the arithmetic of the curveX. He
proved it for codes arising from curves with genus1, which had
been previously proved by Katsman and Tsfasman [3], and curves
of genus2 when q > 83. Munuera then asked whether a similar
theorem can be proved for any hyperelliptic curve. The purpose of
this correspondence is to give an affirmative answer to Munuera’s
question.

Main Theorem: The Main Conjecture on MDS codes is true for
codes arising from hyperelliptic curves of genusg � 2 if

q > 8g
2
+ 4g + 8 + 8g g2 + g + 2

or

q < 8g
2
+ 4g + 8� 8g g2 + g + 2

whereq is the cardinality of the finite fieldFq.
Remark: 1) We observe that if the genus is equal to two, then the

Main Conjecture on MDS codes is true as long asq � 94. We deduce
Munuera’s result whenq � 94 as a corollary of our theorem above.

2) We also observe that the Main Conjecture on MDS codes is true
for q = 2 if the genus of the hyperelliptic curve is either one, two,
or three, and forq = 3 if the genus of the curve is one.

3) In [2], De Boer proves the above theorem forq > C(g!). Since
q has to grow exponentially withg, his result is much weaker than
ours. In fact, the constantC is not explicitly computed.

II. PRELIMINARIES

In this section, we shall recall some of the standard results that we
need later in order to prove the Main Theorem stated in Section I.

Given P; G as in Section I we can define another algebraic
geometry code in the following manner. For a divisorE, denote

(E) := f! : ! rational differential form with(!) � Eg [ f0g.

Definition 2.1: The algebraic geometry codeC�(X;P; G) asso-
ciated to the pair(P; G) is the linear code of lengthn defined as
the image of the linear map

�� : 
(G�P) ! Fn
q

� ! (ResP (�); � � � ;ResP (�))

where ResP (�) is the residue of� at the pointPi. Let k� be the
dimension of image of��.

Let K be a canonical divisor ofX. Thenk� = `(K�G+P) and
C(X;P; G) andC�(X;P; G) are dual to each other. Furthermore,
d� := minimal distance ofC�(X;P; G) � deg G + 2� 2g.

Definition 2.2: We denoteP(e) a generic effective divisor of
degreee such thatP(e) � P (i.e., P(e) = Pi + � � � + Pi where
Pi 6= Pi for r 6= s).

Let Nr := jX(Fqr)j, the number ofFq -rational points ofX.
One hasjNr � qr � 1j � 2gqr=2 which is called the Hasse–Weil
bound. We only need the following information in the remainder of
the correspondence:

jPPP 1
(Fq )j = q

r
+ 1

N := jX(Fq)j � N1 � 1 + q + 2g
p
q:

Lemma 2.1 If C(X;P; G) is an MDS code, thenL(G�P(k�1))

produces all codewords of minimal weightd locating exactly outside
P(k � 1). In particular

dimL(G� P(k� 1)) = 1

and

L(G�P(k)) = L(G�P) = 0:

Proof: Codewords obtained fromL(G�P(k�1)) have weight
at mostn�(k�1) = n+1�k = d becauseC(X;P; G) is an MDS.
Hence, the codewords obtained fromL(G � P(k � 1)) are either
0, or of minimal weight. The location of the nonzero coordinates
of such codewords are clearly locating exactly outwideP(k � 1).
Let f1, f2 2 L(G � P(k � 1)) such that�(f1) and�(f2) are of
minimal weight. Since the nonzero coordinates of�(f1) and�(f2)
have the same location, a linear combination of�(f1) and�(f2), say
a1�(f1) + a2�(f2), will create a codeword with weight less thand.
This is possible only ifa1�(f1) + a2�(f2) = 0. This simply means
that a1f1 + a2f2 2 L(G � P). In particular

dimL(G� P(k � 1))=L(G�P) = 1:

Clearly, L(G � P(k)) � L(G � P). Suppose that there exists
f 2 L(G�P(k))�L(G�P). Then the codeword obtained fromf
has weight at mostn� k = d� 1 < d which is not possible. Hence

L(G�P(k)) = L(G�P):

Lemma 2.2: If C(X;P; G) is an MDS code, then

dimL(G� P(k� e)) = e

for all 0 � e � k.
Proof: Assuming the statement is true fore, we shall prove that

the statement is true fore + 1. Consider the following diagram of
exact sequences

0 ! L(G) ! F k
q ! 0

\j k #
0 ! L(G� P(k)) ! L(G) ! F k�e

q ! 0

\j k #
0 ! L(G� P(k � e)) ! L(G) ! F k�e

q ! 0

\j k #
0 ! L(G� P(k� e� 1))! L(G) ! F k�e�1

q :

We claim that

dimL(G� P(k � e� 1)) � e+ 1:

Otherwise, we have

dimL(G� P(k� e� 1)) � e = dimL(G�P(k � e)):

On the other hand,

L(G� P(k � e� 1)) � L(G� P(k� e)):

So we have

dimL(G� P(k� e� 1)) = e = dimL(G�P(k � e)):

The algebraic geometry codeC(X;P(k�e�1); G) is of dimension
k� e. But from the bottom row of the above diagram,C(X;P(k�
e � 1);G) is embeddable intoF k�e�1

q , which is impossible. This
proves our claim.

Observe that

dimL(G� P(k � e� 1))=L(G� P(k� e)) � 1:

By induction, we deduce immediately that

dimL(G�P(k � e� 1)) � e+ 1;

Hence

dimL(G� P(k � e� 1)) = e+ 1:
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Proposition 2.3: Given a geometric MDS codeC(X;P; G). Let
a andb be integers such thatP1(a)+P2(b) = P. Then the projection
Fn
q ! F a

q onto the positionsP1(a) induces and defines

0! C(b)! C(X;P; G)! Q(a)! 0

whereC(b) consists of those codewords with support onP2(b) and
Q(a) is the image ofC(X;P; G) under the projectionFn

q ! F a
q .

By discarding the zero positions, we get a code which is still denoted
by C(b). Then

i)

Q(a) � C(X;P1(a);G)

C(b) � L(G� P1(a))=L(G� P):

ii) For k � a � n; C(b) = 0, and Q(a) has parameters
[a; k; a � k + 1].

iii) For 0 � a � k � 1; Q(a) is the trivial code[a; a; 1], and
C(b) has parameters[b; k � a; d] and

C(b) � C(X;P2(b);G�P1(a)):

In particular, theC(b)’s and theQ(a)’s are all geometric MDS codes.
Let us consider only the geometric case of Main Conjecture in this

correspondence. If there exists a code withn > q+2, we can always,
by using Proposition 2.3, truncate the length toq+2 without altering
k. Therefore, if the Main Conjecture failed for algebraic geometric
MDS code, then there would exist an algebraic geometric MDS code
with n = q+2. Since a dual code of Algebraic Geometric MDS code
is also an Algebraic Geometric MDS code, we deduce the following
reduction proposition.

Proposition 2.4: In order to prove the Main Conjecture for alge-
braic geometric MDS code, it is sufficient to produce a contradiction,
whenq � 13 in the presence of an algebraic geometry MDS code of
parameters[n; k; d] wheren = q+2 and6 � k � n=2 (in particular
k � q � 4).

We now recall a beautiful observation due to Munuera [6]. Given
X, P, and G as in the Introduction, satisfying (1.1), following
Munuera, we shall consider the set of divisors

Ct(P) = fP(t) : all subdivisors ofP of degreetg:

Recall thatP(t) = Pi + � � �+Pi ; Pi 2 P andPi 6= Pi if r 6= s.
Let � be the linear equivalence among divisors. We shall consider
the following hypothesis.
C[X;P; t]: There exists a class inCt(P)= � such that for any two

pointsR andS in P, there is a representative in that class which is
disjoint from bothR and S.

The following proposition use the condition (1.1) thatn > degG.
Proposition 2.5 (Munuera):Suppose (1.1) holds and the hypoth-

esisC[X;P; t] is true for1 < t � n

2
� 2, if n > q + 1, then there

is no geometric MDS code arising fromP for 3 < k < q, except
perhaps fork = q � 1 andn = q + 2.

Proof: Suppose thatC(X;P; G) is an[n; k; d] MDS code with
3 < k andn > q+1. If this code is not a[q+2; q�1; d] code, then
we can assume3 < k � n=2 because the dual of geometric MDS
code is again a geometric MDS code.

Since hypothesisC[X;P; k�2] holds, we choose a class[D] as in
the hypothesis. For eachP(k � 2) 2 [D]; `(G� P(k � 2)) = 2 by
Lemma 2.2. Therefore,jG � P(k � 2)j hasq + 1 elements. On the
other hand, letPi 2 P, then there is an effective divisorEi of degree

degG� (k � 2)� 1 = degG� k + 1 = g

such thatG � P(k � 2) � Pi + Ei in view of (1.2) and Lemma
2.2. Now the claim is that all thePi + Ei are distinct. Suppose the

opposite,Pi + Ei = Pj + Ej for somei 6= j. This is possible only
when there exists an effective divisorE such that

Pi +Ei = Pj + Ej = Pi + Pj + E:

Take anotherP 0(k� 2) in the same class[D] which is disjoint from
both Pi and Pj . Then

G� P
0(k� 2) � Pi + Pj +E

i.e.,

G�P
0(k � 2)� Pi � Pj � E:

So there is a nonzero element inL(G � P(k)). This contradicts
Lemma 2.2.

SincePi+Ei; i = 1; � � � ; n are pairwise distinct in[G�P(k�2)],
we haven � q + 1.

III. PROOF OF THEMAIN THEOREM

Recall that for a divisorD, the complete linear systemjDj is the
collection of all effective divisors which are linearly equivalent toD.
It is the projective space associated toL(D). So the dimension of
a linear system is̀(D)� 1. A base point of the linear systemjDj
is a point that is contained in each effective divisor in the system.
A divisor D has no base points if and only if for any pointp,
`(D � p) = `(D) � 1. By Riemann–Roch, every divisorD with
degD � 2g has no base points. But ifg � 2, the canonical divisor
K, which is of degree2g� 2, has no base points. Forp to be a base
point of jDj, it will mean `(D � p) = `(D).

In case thatjDj has no base point, there is a natural map

X ! PPP k k = `(D)� 1
p 7! (f0(p) : f1(p) : � � � : fk(p))

wheref0; f1; � � � ; fk form a basis ofL(D). Whenk = 1, the degree
of this map is the degree of the divisor.

Definition 3.1: By a grd we mean the linear system of effective
divisors linearly equivalent to a given divisorD (i.e., PPP (L(D)))
with r + 1 = `(D) and d = deg (D).

Definition 3.2: A curveX of genusg � 2 is calledhyperelliptic
if its function field has an involutionI such that the fixed field ofI
is isomorphic tok(x), the field of rational functions. Equivalently, if
there is a morphism of degree two ontoPPP 1.

On a hyperelliptic curve there is a uniqueg12 which is the pull-back
of the uniqueg11 on PPP 1, i.e., the linear system of divisorsP + P 0,
whereP , P 0 are two points with the same image under the map
of our curve toPPP 1. Every effective canonical divisor is a sum of
g � 1 divisors from this systemg12 . An effective divisor ing12 will
be denoted byJ .

Lemma 3.1: SupposeX is a hyperelliptic curve of genusg � 2
defined over an algebraically closed field or a finite field. LetJ be
an effective divisor ing12 , the unique linear system of degree2 and
dimension1 defining the degree 2 mapX ! PPP 1. Then

1) There are at most2(g + 1) pointsT in X such that2T � J .
2) For every pointP , there is a unique pointQ such that

P + Q � J .
3) LetD = P1+ � � �+Pg�1 andD0 = Q1+ � � �+Qg�1 be two

effective divisors of degreeg � 1. Suppose no twoPi andPj

with the property thatPi + Pj � J . ThenD � D0 implies
D = D0.

Proposition 3.2:
1) Let D = P1 + � � � + Pg+1 be an effective divisors of degree

g + 1 and the dimension of the complete linear systemjDj be one.
Then for jDj to have a base point, it is necessary and sufficient that
Pi + Pj � J for somePi, Pj .
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2) LetC(X;P; G) be a geometric MDS code with condition (1.1).
Then the complete linear systemjG � P(k � 2)j either has no base
points or it is linearly equivalent toJ +E for some effective divisor
E.

Proof:
1) Suppose thatP1 + P2 � J . Since

jP1 + P2j � jP1 + P2 + � � �+ Pg+1j
by the dimension consideration, we conclude that

jP1 + P2j = jP1 + P2 + � � �+ Pg+1j:
So all P3; � � �Pg+1 are base points ofjDj.

Conversely, let us assumeP1 is a base point ofjDj. Then

`(D� P1) = `(D) = 2 = `(K �D + P1) + 1

by Riemann–Roch theorem, whereK is an effective canonical
divisor. Hence`(K � D + P1) = 1. We get an effective divisor
E, whose degree is2g � 2 � (g + 1) + 1 = g � 2, such that
K � P2 + � � � + Pg+1 + E. Recall that every effective canonical
divisor is a sum ofg � 1 divisors from g12 . Some couple of the
P2; � � � ; Pg+1 must pair up so that their sum is linearly equivalent
to J .

2) It follows directly from 1) above and Lemma 2.2.
Proposition 3.3: Let X be a hyperelliptic curve defined over a

finite field Fq. Let C(X;P; G) be a geometric MDS code with
degP = n > degG. Let

q0 = 8g2 + 4g + 8 + 8g g2 + g + 2

and

q1 = 8g2 + 4g + 8� 8g g2 + g + 2:

Supposen > q + 1. Then there exist at least[n
4
] + 3 pairs of points

(P; P 0) in P such thatP + P 0 � J providedq > q0 or q < q1.
Proof: The process of seeking, such a pair is given in 2) of

Lemma 3.1, sinceX is hyperelliptic. Excluding the possible2(g+1)
points of the type in 1) of Lemma 3.1, suppose we can gather at most
[n
4
] + 2 pairs. Then for each of the remaining

n� 2(g + 1)� 2
n

4
+ 2

pointsP in P its counterpartP 0 is outsideP. This gives

n� 2(g + 1)� 2
n

4
+ 2 � N � n (3.1)

whereN is the numberjX(Fq)j. Equation (3.1) is equivalent to

2n� 2
n

4
� 2(g + 1)� 4 � N:

Using n � q + 2 and the Hasse–Weil boundN � 1 + q + 2g
p
q,

we deduce from (3.1)

1 + q + 2g
p
q � 3

2
n� 2(g + 1)� 4

� 3

2
(q + 2)� 2(g + 1)� 4

which is equivalent to

4g
p
q + 4(g + 2) � q: (3.2)

Therefore, ifX is over a finite fieldFq with

q > 4g
p
q + 4(g + 2) (3.3)

then we will get a contradiction. It is easy to see that (3.3) holds if
and only if

q
2 � 8q(2g2 + g + 2) + 16(q + 2)2 > 0: (3.4)

The roots of the left-hand side of (3.4) are given by

q = 8g2 + 4g + 8� 8g g2 + g + 2:

Hence (3.3) holds if and only ifq > q0 or q < q1.
Proposition 3.4: Let X be a hyperelliptic curve defined over a

finite fieldFq. LetC(X;P; G) be a geometric MDS code with word
lengthn > q + 1, dimensionk � n

2
, anddegP = n > degG. Let

q0 = 8g2 + 4g + 8 + 8g g2 + g + 2

and

q1 = 8g2 + 4g + 8� 8g g2 + g + 2:

Supposek is odd and

P(k� 3) = P1 + P2 + � � �+ Pk�3

consists of pairs

P1 + P2 � P3 + P4 � � � � � Pk�4 + Pk�3 � J:

Then

1) For any Q 2 PnP(k � 3), the complete linear system
jG �P(k� 3)�Qj has no base point forq > q0, or q < q1.

2) The complete linear systemjG�P(k� 3)j has no base point
for q > q0, or q < q1.

3) The complete linear systemjG�P(k� 5)j has no base point
for q > q0 or q < q1 whereP(k � 5) = P1 + � � � + Pk�5

consists of pairs

P1 + P2 � P3 + P4 � � � � � Pk�6 + Pd�5 � J:

Proof:
1) In view of Proposition 3.3, there aret = [n

4
] + 3 pairs of

fQi; Q
0

ig such thatQi +Q0

i � J . For anyQ 2 PnP(k� 3), if the
complete linear systemjG � P(k � 3)� Qj has a base point, then
by 2) of Proposition 3.2, we have

G�P(k � 3)�Q � J +E

for some effective divisorE. Since
k � 3

2
+ 1 � n

4
+ 2 < t

we can take one pair offQi;Q
0

ig, which is disjoint from both
P(k�3) andQ, to representJ . From this we getG�P(k) � E for
someP(k), which contradicts Lemma 2.2. So we have shown that for
anyQ 2 PnP(k�3), the complete linear systemjG�P(k�3)�Qj
has no base point.

2) Observe that ifA andB are two divisors such thatA = B+C

for some effective divisorC � 0, thenjBj � jAj. If p is a base point
of jAj, then it either appears inC, or is a base point ofjBj. For any
Q 2 PnP(k�3), we considerG�P(k�3) = G�P(k�3)�Q+Q.
If jG � P(k � 3)j has base points, thenQ must be a base point of
jG�P(k�3)j. But this is true for anyQ 2 PnP(k�3). Therefore,

n� (k � 3) = deg (PnP(k� 3)) � deg (G�P(k � 3))

= degG� (k � 3)

which contradicts to our hypothesisn > degG.
3)

G� P(k � 5)

= (G� P(k � 5)� Pk�4 � Pk�3) + (Pk�4 + Pk�3)

= (G� P(k � 3)) + (Pk�4 + Pk�3):

Recall that̀ (G�P(k�3)) = 3. SoG�P(k�3) is a linear equivalent
to an effective divisor. SincejG�P(k�3)j andjPk�4+Pk�3j = jJ j
have no base point,G� P(k � 5) has no base point.
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Theorem 3.5: Let X be a hyperelliptic curve of genusg defined
over Fq with

q > 8g
2
+ 4g + 8 + 8g g2 + g + 2

or

q < 8g
2
+ 4g + 8� 8g g2 + g + 2:

Let P andG be divisors with2g � 2 < degG < n. If C(X;P; G)

is a geometric MDS code, then its lengthn � q + 2.
Proof: By taking the dual code, we may assume that the code

is of dimensionk � n=2. By Proposition 3.3, there aret = [n
4
] + 3

pairs fPi; P 0

ig such thatPi + P 0

i � J .

Case i). k is even. Observe that the class

[D] = [P1 + P
0

1 + � � �+ P(k�2)=2 + P
0

(k�2)=2]

satisfies the hypothesisC[X;P; k � 2] since

[
n

4
] + 3 �

k � 2

2
+ 3:

By the proof of Proposition 2.5, we haven � q + 1.
Case ii). k is odd. Consider the divisor

D = G� P1 � P
0

1 � � � � � P(k�3)=2 � P
0

(k�3)=2 �Q

from some (k � 3)=2 pairs and aQ 2 P not in
fP1; P

0

1; � � � ; P(k�3)=2; P
0

(k�3)=2g. D is a divisor of de-
gree

deg (G)� (k � 3)� 1 = degG� k + 2 = g + 1

by (1.2). By Lemma 2.2,̀ (D) = 2. In view of 2)
of Proposition 3.4, we know thatjDj has no base
point. Hence the complete linear systemjDj defines a
morphism� : X ! P

1. This map is defined overFq.
If n � q + 3, then the map� restricted onPnfQg is
not one-to-one sincePPP 1 has onlyq + 1 rational points.
Suppose�(Q1) = �(Q2) for a distinctQ1 andQ2 in
PnfQg. Then there is an effective divisor in the system
jDj of the formQ1 +Q2 +E, whereE is an effective
divisor. Thus

G � P1 + P
0

1 + � � �+ P(k�3)=2 + P
0

(k�3)=2

+Q+Q1 +Q2 + E:

Since[n=4] + 3 � (k� 3)=2+ 3, we can replace those
pairsfPi; P 0

ig which hitQ1 or Q2. Given that situation,
all theP ’s andQ’s are distinct and we have

G�P(k) � E:

This contradicts Lemma 2.2.

Lemma 3.6: Let S be a set ofq+2 rational points in the projective
planePPP 2 over Fq. Suppose thatq is odd. Then there exist three
distinct points inS which are colinear.

Proof: The observation is that for any point there are exactly
q+1 lines passing this point. Suppose on the contrary that there are
no three distinct points inS which are colinear. For anyQ 2 S, each
line passingQ must pass exactly one other point inSnfQg since no
three points are colinear and there areq + 1 points inSnfQg. Thus
points ofS are coupled into pairs by lines. Henceq + 2 is an even
number, which is impossible ifq is odd.

The following lemma was proved by finite geometry in [5, pt I,
pp. 326–328]. In fact, it is equivalent to the nonexistence of MDS
[q + 2; 5; q � 2] linear code. (Forq odd andq > 49, see [8]. Forq
even andq > 7, see [10].)

Lemma 3.7: Let S be a set ofq+2 rational points in the projective
spacePPP 4 over Fq where q is even. Then there exists five distinct
points inS, lying on a hyperplane ofPPP 4.

Theorem 3.8: Let X be a hyperelliptic curve of genusg defined
over Fq with

q > 8g
2
+ 4g + 8 + 8g g2 + g + 2

or

q < 8g
2
+ 4g + 8� 8g g2 + g + 2:

Let P andG be divisors with2g � 2 < degG < n. If C(X;P; G)

is a geometric MDS code, thenn � q + 1 unlessq even andk = 3

or k = q � 1 in which casesn � q + 2.
Proof: By the argument of Proposition 2.4, we may assume that

the code is of dimension6 � k �
n
2

. In view of Proposition 3.3,
there aret = [n

4
] + 3 pairsfPi; P 0

ig such thatPi + P 0

i � J .

Case i). k is even. The proof is the same as the proof of Theorem
3.5, case i).

Case ii). k is odd. By Proposition 2.4, we can certainly assume
n = q + 2.

a) k is odd andq is odd. Let

P(k � 3) = P1 + P
0

1 + � � �+ P(k�3)=2 + P
0

(k�3)=2

wherePi + P 0

i � J . Then`(G� P(k � 3)) = 3 and the
complete linear systemjG�P(k� 3)j has no base point
by Proposition 3.4. Consider the map� : X ! PPP 2 defined
by this complete linear system. Sinceq is odd, Lemma 3.6,
we can find three distinct pointsA, B, andC 2 P such
that�(A), �(B), and�(C) are on the lineL in PPP 2. Thus
there exists an effective divisorE such that

G� P(k� 3) � A+B + C +E:

Since

[
n

4
] + 3 �

k � 3

2
+ 3

we can change appropriate pairs inP(k � 3) so that
all the P(k � 3), A, B, andC are distinct. Therefore,
G � P(k) � E. Observe that

degE = deg(G� P(k� 3))� 3

= degG� k = g � 1 > 0

by (1.2). This gives a contradiction to Lemma 2.2.
b) k is odd andq is even. Let

P(k � 5) = P1 + P
0

1 + � � �+ P(k�5)=2 + P
0

(k�5)=2

wherePi + P 0

i � J . Then `(G � P(k � 5)) = 5 and
the complete linear systemjG � P(k � 5)j has no base
point by Proposition 3.4. Consider the map� : X ! P

4

defined by this complete linear system. By Lemma 3.7,
we can find five distinct pointsA1; � � � ; A5 2 P such that
�(A1); � � � ; �(A5) are lying on a hyperplaneH in PPP 4.
Thus there exists an effective divisorE such that

G�P(k � 5) � A1 + � � �+ A5 + E:

Recall thatn = q + 2 is an even number. So we have

n

4
+

1

2
�
n

4

and hence

n

4
+ 3 �

k � 5

2
+ 5:
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By Proposition 3.3, there are at least[n
4
] + 3 pairs of

points(P; P 0) is P such thatP +P 0
� J . We can change

appropriate pairs inP(k� 5) so that all theP(k� 5);
A1; � � � ; A5 are distinct. Therefore,G�P(k)�E. Observe
that

degE = deg (G� P(k � 5))� 5

= degG� k = g � 1 > 0

by (1.2). This gives a contradiction to Lemma 2.2.
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Surfaces and the Weight Distribution of a Family of Codes

M. van der Vlugt

Abstract—We derive the weight distribution of the binary trace codes
with words (Tr (axq+1 + bx3 + cx)x2 where a, b, c 2 q and Tr

is the trace map from q to 2. The weights of these words determine
the exponential sums which were considered earlier by Moreno, Kumar,
and Lahtonen. Results from the theory of quadratic forms play a role
but the decisive argument is of an algebraic-geometric nature, namely,
from the theory of surfaces.

Index Terms—Exponential sum, quadratic form, surface, trace code,
weight distribution.

I. INTRODUCTION

In two recent papers [10] and [8], the exponential sums

S(a; b; c) =

x2

(�1)
Tr(ax +bx +cx)

were considered. Hereq is a finite field of characteristic2 and
cardinality q2 = 22m with m � 2, Tr is the trace map from q

onto 2, anda, b, c 2 q . Since an element of q has trace zero
if and only if it is of the formy

2 + y for somey 2 q , we see
that #fx 2 q : Tr (axq+1 + bx

3 + cx) = 0g is half the number
#C

a�( q ) of q -rational points on the affine curveCa� given by

y
2
+ y = ax

q+1
+ bx

3
+ cx: (1)

HenceS(a; b; c) = #C
a�( q )� q

2. The nonsingular projective
curveCproj defined by the affine equation (1) has genusg = q=2 for
a 6= 0. The curveCproj has one point at infinity, namely(0 : 1 : 0), so

#C
proj

( q ) = #C
a�
( q ) + 1:

Then the Weil bound for the number of rational points on a curve
implies that fora 6= 0

jS(a; b; c)j = j#C
proj

( q )� 1� q
2
j2gq = q

2
:

In [10], Moreno and Kumar proved for triples

(a; b; c) 62 q � f0g � f0g

the much sharper upper bound

jS(a; b; c)j � 4q

which is attained form � 3(mod6). Thereafter, in [8] Lahtonen
showed that ifq = 2m with m even then

jS(a; b; c)j � 2q; for (a; b; c) 62 q � f0g � f0g:

The last author poses the problem whether the upper bound is2q

or 4q in casem � 1 or 5 (mod 6).
Strongly related to the exponential sumsS(a; b; c) is the binary

trace code of lengthq2 � 1

C = fccca; b; c = (Tr (ax
q+1

+ bx
3
+ cx)x2 ) : a; b; c 2 q g:
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