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The generalized Hamming weights, introduced a few years ago by V. K. Wei,
provide substantial information of codes and thus play a central role in coding
theory. For algebraic geometric codes, there have been many works on their

Ž .generalized Hamming weights or weight hierarchy . However, for lots of codes
from Hermitian curves and the Klein quartic, some generalized Hamming weights
still have not yet been found explicitly. In this paper, we first prove a general result
Ž .Theorem 1.4 on the computation of generalized Hamming weights of geometric
Goppa codes on plane curves, using the configuration of F -rational points on theq

Ž .curves. Then we give the exact values Theorem 2.2 of the first and second
generalized Hamming weights of some codes arising from the Klein quartic. Our

Ž .main result Theorem 2.3 gives the exact values of the second and third general-
ized Hamming weights of certain codes from Hermitian curves. In the Appendix, a
previous known result of Yang, Kumar, and Stichtenoth for Hermitian codes is
shown to follow from Theorem 1.4. We also give the exact values of the first three
generalized Hamming weights for Fermat codes. Q 1998 Academic Press
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0. INTRODUCTION

Let F be a finite field with q elements, where q is a power of the primeq
w x Žp s char F . For a linear n, k code C over F i.e., a linear subspaceq q

n . w xC : F of dimension k , it was Wei 21 who first introduced the notion ofq
generalized Hamming weights d for 1 F r F k which provide substantialr
information on the codes. Since then, the generalized Hamming weights
have played a central role in coding theory. For any subset A : C, we
define

supp A s i : there is an element a s a , . . . , a g A with a / 0 .� 4Ž .1 n i

The r th generalized Hamming weight d of C is defined byr

� 4d [ min a supp D : D is an r-dimensional subcode of C ,r

where a supp D is the cardinality of the set supp D. It is clear that d is1
the minimum distance of C. These notions, which were introduced by Wei
because of a problem in cryptography, give new insight into coding theory.
The generalized Hamming weights have been studied by many authors
Ž w xHamming codes, Reed]Muller codes, Golay codes, and MDS codes 21 ;

w x w xsome classes of BCH codes 5]8 ; some trace codes 17 ; duals of BCH
w x w xcodes and Melas codes 6, 9 ; codes from Hermitian varieties 11 ; and

w x.codes from hyperelliptic curves 15 . For an excellent survey of this
w xsubject, we refer to 20 .

Ž .For algebraic geometric codes or geometric Goppa codes , Yang, Ku-
w x w xmar, and Stichtenoth 23 and Munuera 15 gave very nice works on the

generalized Hamming weights. They proved some fundamental results
Ž w x w x.e.g., Theorem 12 in 23 and Corollary 1 in 15 and used these results

Žand the gonality sequences of Hermitian curves also of the Klein quartic
w x.and hyperelliptic curves in 15 to determine d in many cases. Theirr

Žapproaches are basically algebraic. In case of Hermitian codes C i.e.,m
codes from Hermitian curves with rational divisor mQ and the set of q3

`

. 3F -rational points disjoint from Q , only when m or q y m is a poleq `

Žnumber at Q can explicit results about d be obtained see Theorems 22` r
w x w x. w xand 25 in 23 and Proposition 13 in 15 . In Theorem 27 of 23 , some

quite restrictive results on d of C were given in case q3 y m is not ar m
Ž .pole number at Q . In all of their results on d r G 2 , they need that the` r

w xequality in Theorem 12 of 23 holds. This motivates us to study the
generalized Hamming weights of Hermitian codes C with m s q3 y q qm
b, 1 F b F q y 2. Our approach is basically geometric and uses a very
careful analysis of linear systems on Hermitian curves. We determine
explicitly d and d for C in this case. It seems that the previous2 3 m
algebraic method cannot be applied here because our results show that the
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w xequality in Theorem 12 of 23 cannot hold for d , d in this case.2 3
w xComparing our approach with Hansen’s work 10 , we also give some new

Ž .results on d especially d for codes from the Klein quartic which haver 1
w xbeen studied in 10 .

The starting point of our work is the beautiful result due to Munuera
w x Ž .15 Proposition 1.1 below that, in practice, gives us the upper bounds of
the generalized Hamming weights. This, together with another beautiful
observation of Yang, Kumar, and Stichtenoth on the lower bounds of the
generalized Hamming weights, should give us precise information on the
generalized Hamming weights.

In Section 1, for the convenience of the reader, we recall some basic
results on d for algebraic geometric codes and Pellikaan’s results aboutr
gonality sequences of plane curves over perfect fields. We then prove a
general result on the computation of generalized Hamming weights for
algebraic geometric codes using the configuration of F -rational points onq

Ž .the curves see Theorem 1.4 . In Section 2, we prove our main results,
Theorems 2.3 and 2.2. In Section 3, we study the generalized Hamming
weights for Fermat curves. To make our paper more self-contained, we
give, in an appendix, geometric proofs of Munuera’s upper bounds and
Yang, Kumar, and Stichtenoth’s lower bounds mentioned above. Our
proofs are different from their algebraic proofs and are more in line with
our approach in this paper. To show the usefulness of Theorem 1.4, we use
it to recover a result on the generalized Hamming weights of Hermitian
curves due to Yang, Kumar, and Stichtenoth.

1. GENERAL RESULTS

ŽLet X be an irreducible smooth projective curve over F finite fieldq
.with q elements of genus g, G be an F -rational divisor on X, andq

� 4P s P , P , . . . , P be a set of n F -rational points of X. We assume that1 2 n q
G is disjoint from P and 2 g y 2 - deg G - n for simplicity. The algebraic

Ž .geometric code C s C X, P, G is defined to be the image of the following
evaluation map:

e¨ : L G ª F nŽ .p q

f ¬ f P , f P , . . . , f P ,Ž . Ž . Ž .Ž .1 2 n

Ž . � Ž . Ž . 4 � 4where L G s f g F X : f q G G 0 j 0 is the function space asso-q
Ž w x.ciated to G see 19, 20 . There are many interesting works about

Žw xgeneralized Hamming weights of algebraic geometric codes 15, 23 and
w x. w xthe references in 20 . We refer to II, Section 5 in 20 for a survey. The
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w xfollowing two results due to Munuera 15 and Yang, Kumar, and
w xStichtenoth 23 are fundamental to our paper.

Ž w x.PROPOSITION 1.1 Munuera 15 . For the algebraic geometric code C s
Ž .C X, P, G as abo¨e, we ha¨e the rth generalized Hamming weight

d s min deg PX : 0 F PX F P such that ll G y P q PX G r� 4Ž .r

for any r, 1 F r F dim C.

Ž w x.PROPOSITION 1.2 Yang, Kumar, and Stichtenoth 23 . For the rth
Ž .generalized Hamming weight of the algebraic geometric code C s C X, P, G

as abo¨e, we ha¨e

d G n y deg G q n ,r r

� Ž . 4where n s min deg D: D effectï e, ll D G r is the rth gonality of X for anyr
r, 1 F r F dim C.

From the previous two results, we understand that the gonality sequence
n for r s 1, 2, . . . is of fundamental importance for determining ther
generalized Hamming weights of algebraic geometric codes.

Remark 1.1. Obviously, n s 0, since we may choose D to be the zero1
Ždivisor in the definition of n . n is the usual gonality see Remark 10 in1 2

w x.23 , which is the smallest degree of a nonconstant map, defined over the
w xfield F , from X to the projective line. It was shown in 12 that n isq 2

Ž .equal to deg X y 1. In general, we have the following proposition.

Ž w x.PROPOSITION 1.3 Pellikaan 16 . Let X be a nonsingular plane cur̈ e of
Ž .degree d o¨er a perfect field any finite field is a perfect field . Let k be a

1 Ž .Ž .positï e integer, and write k s j q 1 j q 2 y i with 0 F i F j. Then2

k q g y 1 if k ) g ,
n sk ½ jd y i if k F g ,

1Ž Ž .Ž ..where g is the genus of X g s d y 1 d y 2 .2

THEOREM 1.4. Let X ; P 2 be an irreducible smooth plane cur̈ e o¨er Fq
of degree d G 4 and Q be an F -rational point on X. Let L , L , . . . , L be tq 1 2 t

2 Ž .F -lines in P i.e., cur̈ e defined o¨er F with degree 1 that intersectq q
� 1 1 1 4 � 2 2 2 4X at F -rational points Q, P , P , . . . , P , Q, P , P , . . . , P , . . . ,q 1 2 dy1 1 2 dy1

� t t t 4Q, P , P , . . . , P .1 2 dy1
Assume that there exists a hyperplane dï isor on X of the form dQ. Consider

Ž . Ž .the algebraic geometric code C s C X, P, G , where G s u d y 1 Q and
� 1 1 1 2 2 2 t t t 4P s P , P , . . . , P , P , P , . . . , P , . . . , P , P , . . . , P with u - t.1 2 dy1 1 2 dy1 1 2 dy1
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Ž .Let d , d , d be the generalized Hamming weights of C s C X, P, G . Then1 2 3

d s t y u d y 1 ,Ž . Ž .1

d s t y u q 1 d y 1 ,Ž . Ž .2

d G t y u d y 1 q d.Ž . Ž .3

Proof. Let L be a hyperplane divisor on X. For any effective divisor PX

with 0 F P X F P s P 1 q P 1 q ??? qP 1 q P 2 q P 2 q ??? qP 2
1 2 dy1 1 2 dy1

q ??? qP t q P t q ??? qP t , we have1 2 dy1

G yP qPX ; u L yQ y L y Q y L y Q y ??? y L y Q q PXŽ . Ž . Ž . Ž .1 2 t

; PX y L y Q y L y Q y ??? y L y Q .Ž . Ž . Ž .1 2 tyu

X Ž . Ž . Ž . ŽThus, for P s L y Q q L y Q q ??? q L y Q , we have ll G y1 2 tyu
X. X Ž .Ž .P q P s 1. So we have d F deg P s t y u d y 1 . On the other1

Ž Ž . w x.hand, it is well known that see, e.g., Lemma 2.3 i of 4 d G n y deg G1
Ž .Ž . Ž .Ž .s t y u d y 1 . Hence, we have d s t y u d y 1 .1
For d , we first recall that n s d y 1 by Remark 1.1. In view of2 2

Ž .Ž .Proposition 1.2, we have d G t y u d y 1 q d y 1. On the other hand,2
X Ž . Ž . Ž . Ž .take P s L y Q q L y Q q ??? q L y Q q L y Q in1 2 tyu tyuq1

the definition of d . In view of the previous calculation, we have G y P q2
X Ž X. Ž .P ; L y Q. Therefore, ll G y P q P s ll L y Q s 2, sincetyuq1 tyuq1
Ž . X Ž .Ž .ll L s 3. By Proposition 1.1, d F deg P s d y 1 t y u q 1 .tyuq1 2

Ž .Ž .Thus, we get the conclusion d s t y u q 1 d y 1 .2
w xFor d , we first apply Proposition 3 in 15 , which is due to Pellikaan, to3

get the 3-gonality n s d. By Proposition 1.2, d G n y deg G q n s3 3 3
Ž . Ž . Ž .Ž .t d y 1 y u d y 1 q d s t y u d y 1 q d. Q.E.D.

2. CODES FROM HERMITIAN CURVE
AND KLEIN QUARTIC

We first treat the codes arising from a Klein quartic. A Klein quartic X
is defined in P 2 with F 3 s F with the equation2 8

x 3 y q y3z q z 3 x s 0. 2.1Ž .

It is clear that this is a smooth curve and therefore has genus g s 3.
8 Ž 7 . Ž .Ž 6 5 4 3 2 .Since x y x s x x y 1 s x x y 1 x q x q x q x q x q x q 1 s

Ž .Ž 6 4 3 5 3 2 3 . Ž .Ž 3 .x x y1 x q x q x q x q x q x q x q x q 1 s x x y1 x q x q 1
Ž 3 2 . Ž .x q x q 1 because char F s 2 , we can find an element a g F suchq 8

3 w xthat a q a q 1 s 0. The following proposition is due to Hansen 10 .
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Ž w x. w x ŽPROPOSITION 2.1 Hansen 10 . Let F be represented as Z a r 1 q8 2
3. 2 Ž .a q a , and let X : P o¨er F be the Klein quartic with 2.1 . Then8

Ž .1 The automorphisms A and B with matrices

a 0 0 0 0 1
4A s , B s g GL FŽ .0 a 0 1 0 0 3 8ž /� 02 0 1 00 0 a

are rational automorphisms of X.
Ž . ² :2 The group G s A, B of automorphisms generated by A and B is

the Frobenius group of order 21. In fact, A7 s I, B3 s I, and By1AB s A4.
Ž . Ž .3 The cur̈ e X has precisely 24 rational points, namely, Q s 1 : 0 : 0 ,0
Ž . Ž .Q s 0 : 1 : 0 , Q s 0 : 0 : 1 , and1 2

P s BiA jP , i s 0, 1, 2, j s 0, 1, . . . , 6,i j 00

Ž 2 2 .where P s 1 : a : a q a .00

Ž .4 The action of the Frobenius group G on the 24 rational points of X
� 4 � 4has two orbits, namely, Q , Q , Q and P : i s 0, 1, 2, j s 0, 1, . . . , 6 .0 1 2 i j

In what follows, we shall describe X in a more geometric way. We first
observe that the F -rational line x s y intersects X on the four F -ra-8 8

�Ž . Ž . Ž . Ž .4tional points 0 : 0 : 1 , b : b : 1 , b : b : 1 , b : b : 1 , where1 1 2 2 3 3
b , b , b are three distinct roots of x 3 q x 2 q 1 s 0 in F . The transfor-1 2 3 8
mation of the line x s y under A also intersects X at four F -rational8
points. Note that A is of order 7. So we have seven lines. Denote

Ž . Ž . Ž .Q s 1 : 0 : 0 , Q s 0 : 1 : 0 , Q s 0 : 0 : 1 :0 1 2

L : x s y Q , P1 , P1 , P1
1 2 1 2 3

L : a 3 x s y Q , P 2 , P 2 , P 2
2 2 1 2 3

L : a 6 x s y Q , P 3 , P 3 , P 3
3 2 1 2 3

L : a 2 x s y Q , P 4 , P 4 , P 4
4 2 1 2 3

L : a 5 x s y Q , P 5, P 5, P 5
5 2 1 2 3

L : a x s y Q , P 6 , P 6 , P 6
6 2 1 2 3

L : a 4 x s y Q , P 7, P 7, P 7
7 2 1 2 3

These seven lines intersect X at 1 q 7 = 3 s 22 F -rational points. Adding8
Q and Q , we get 24 F -rational points on X. The Weil]Serre bound says0 1 8
that there are at most 24 F -rational points on X. Therefore, there are8
exactly 24 F -rational points on X.q
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We observe that by applying B to the seven lines L , . . . , L , we get1 7
Ž . 7 Ž Ž .another seven lines passing through B Q s Q . Clearly, D B L y2 0 is1 i

� 4. 7 Ž � 4. � i 4Q s D L y Q because B leaves the set P : 1 F i F 7, 1 F j F 30 is1 i 2 j
invariant. We can repeat the same construction and get seven lines passing
through Q .1

Consider the hyperplane defined by x s 0. It is easy to check that this
hyperplane intersects X only at two points: Q with multiplicity 3 and Q2 1
with multiplicity 1. Let H denote the hyperplane divisor on X. Then,

Žby considering x s 0, we get H ; 3Q q Q where ; denotes the2 1
.usual linear equivalence of divisors . Similarly, we have H ; 3Q q Q ;0 2

3Q q Q .1 0
We now use the configuration of F -rational points on the Klein quartic8

to compute the generalized Hamming weights of the algebraic geometric
Ž . Ž .code C s C X, P, G , where G s m Q q Q q Q with m s 3, 4, 6 and0 1 2

� i4 w xP s P , 1 F i F 7, 1 F j F 3. Hansen 10 has given the lower bound ofj
the minimal distance of this code. However, some of the lists on page 924

w x Ž Ž .of 10 are wrong e.g., 21, 16, 3 is wrong, and there also might be some
Ž . Ž ..problem with lists 21, 4, 15 and 21, 13, 6 .

Ž .THEOREM 2.2. For the algebraic geometric code C s C X, P, G defined
as abo¨e, we ha¨e 2 g y 2 - deg G - n for m G 3. Moreo¨er,

Ž .i if m s 3, then d s 12 and d s 15;1 2

Ž .ii if m s 4, then d s 9 and d s 12;1 2

Ž .iii if m s 6, then d G 4.1

Ž .Proof. i We take three lines as follows:

L : x s y Q , P1 , P1 , P1
1 2 1 2 3

1 1 1B L : y s z Q , B P , B P , B PŽ . Ž . Ž . Ž .1 0 1 2 3

2 2 1 2 1 1B L : z s x Q , B P , B P , B PŽ . Ž . Ž . Ž .1 1 1 2 3

X Ž . Ž Ž . . Ž 2Ž . . XLet P sPy L y Q y B L y Q y B L yQ . Then GyPqP1 2 1 0 1 1
Ž . Xs 3 Q q Q q Q y P q P . Let H denote the hyperplane divisor on X.0 1 2

Ž . Ž .Recall that H ; 3Q q Q x s 0 , H ; 3Q q Q y s 0 , and H ; 3Q2 1 0 2 1
Ž . X Ž .q Q z s 0 . Therefore, G y P q P s 4 Q q Q q Q y 3H ; 0. In2 0 1 2

view of Proposition 1.1, we have d F deg PX s deg P y 9 s 21 y 9 s 12.1
Ž .On the other hand, for the algebraic geometry code C X, P, G , we have

Žd G n y deg G see Proposition 1.2 and Remark 1.1 above or Lemma1
Ž . w x.2.3 i of 4 . So d G 21 y 3 = 3 s 12. The conclusion d s 12 follows.1 1

X Ž . Ž Ž . .For d , we shall take P s P y L y Q y B L y Q . Then2 1 2 1 0
X Ž . Ž X . Ž .G y P q P s 3 Q q Q q Q y P y P s 3 Q q Q q Q y0 1 2 0 1 2

Ž . Ž Ž . . Ž .L y Q y B L y Q s 4 Q q Q q Q y 2 H ; Q ; H y Q .1 2 1 0 0 1 2 1 1
Ž X. Ž .So ll G y P q P s ll H y Q s 2. In view of Proposition 1.1, we have1
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d F deg PX s 21 y 3 y 3 s 15. On the other hand, by Proposition 1.22
and Remark 1.1, we have d G n y deg G q n s 21 y 9 q 3 s 15. The2 2
conclusion d s 15 follows.2

Ž . X Ž . Ž Ž . . Ž 2Ž . .ii Let P s L y Q q B L y Q q B L y Q . Now we1 1 1 0 1 2
are going to show that P ; 6H y Q y Q y Q , where H denotes the0 1 2
hyperplane divisor on X. Consider the six lines

U : x s y ,1

U : y s z ,2

U : z s x ,3

3 2U : b x q b y q z s 0,4 1 1

3 2U : x q b y q b z s 0,5 1 1

2 3U : b x q y q b z s 0,6 1 1

where b 3 q b 2 q 1 s 0 and b s a 5. Note that all six lines pass through1 1 1
Ž .the point 1, 1, 1 which is not in the Klein quartic. Thus, any of these two

lines do not have an intersection point on the Klein quartic. It is quite
clear that each of the first three lines U , U , and U intersects the Klein1 2 3

� 4quartic at the points in P and one point in Q , Q , Q . Line U intersects1 2 3 4
�Ž 2 6 . Ž 4 . Ž 2 .the Klein quartic at the four points b , b , 1 , b , b , 1 , 1, b , b ,1 1 1 1 1 1

Ž 5 3 .4 3 2b , b , 1 in P. Here we have to use the facts b q b q 1 s 0,1 1 1 1
b 5 q b q 1 s 0, and b 6 q b 4 q 1 s 0. Note that the lines U and U are1 1 1 1 5 6
the images of U under suitable power of the transformation B. Thus, they4
intersect the Klein quartic also at F -rational points. Clearly, the intersec-8
tion of the union of these six lines U , . . . , U with the Klein quartic gives1 6

� 4us precisely the 24 points P j Q , Q , Q . Thus, we have shown that0 1 2
P ; 6H y Q y Q y Q ,0 1 2

G y P q PX ; 4 Q q Q q Q y 6H q Q q Q q Q q PXŽ .0 1 2 0 1 2

; 3H y 6H q 3H ; 0.

In view of Proposition 1.1, we have d F deg PX s 9. On the other hand,1
Ž .for the algebraic geometry code C X, P, G , we have d G n y deg G s1

21 y 12 s 9. The conclusion d s 9 follows.1
X Ž . Ž Ž . .For d , we take P to be the union of L y Q q G L y Q q2 1 1 0

Ž 2Ž . .B L y Q and any three intersection points of U with X. Then,1 2 4
X ŽG y P q P ; the three intersection points of U with X. So ll G y P q4

X. XP s 2. In view of Proposition 1.1, we have d F deg P s 9 q 3 s 12.2
On the other hand, by Proposition 1.2 and Remark 1.1, we have d G n y2
deg G q n s 21 y 12 q 3 s 12. The conclusion d s 12 follows.2 2
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Ž .iii By Proposition 1.2 and Remark 1.1, we have d G n y deg G s1
21 y 18 s 3. If d s 3, we can find PX : P such that PX consists of three1

Ž X. Ž X.points and ll G y P q P G 1. Observe that deg G y P q P s 18 y 21
X Ž .q 3 s 0. Hence, G y P q P ; 0, that is, 6 Q q Q q Q y 6H q Q q0 2 0

X Ž . X XQ q Q q P ; 8 Q q Q q Q y 6H q P y Q y Q y Q ; P y1 2 0 1 2 0 1 2
Q y Q y Q ; 0. This implies PX ; Q q Q q Q . It follows that0 1 2 0 1 2
Ž .ll Q q Q q Q G 2. From the Riemann]Roch theorem for curves, we0 1 2

have

ll Q q Q q Q y ll K y Q q Q q QŽ . Ž .Ž .0 1 2 X 0 1 2X X

s deg Q q Q q Q y g q 1,Ž .0 1 2

Ž Žwhere K is the canonical divisor of X. So we have ll K y Q q Q qX X 0 1X
.. Ž .Q s ll Q q Q q Q y 1 G 1. Note that the degree of the curve is 4.2 0 1 2X

By the adjunction formula, we have K s H on X, where H is a line inX
2 Ž Ž .. Ž ŽP . So we have ll H y Q q Q q Q G 1. Clearly, L H y Q q0 1 2 X 0X

.. Ž .Q q Q : L H . From the exact sequence1 2 X

0 ª OO 2 y3 ª OO 2 H ª OO H ª 0,Ž . Ž . Ž .P P X

Ž . Ž . Ž .2 2we have L H s L H . On the other hand, L H is spanned byX P P
Žthree coordinates x, y, z over F . Hence, we can find a function ax q by8

. Ž .q cz r a x q b y q c z vanishing at Q , Q , and Q . Here we assume0 0 0 0 1 2
that H is defined by a x q b y q c z s 0. Therefore, Q , Q , and Q are0 0 0 0 1 2
collinear. This is a contradiction. Thus, we have proved d G 4. Q.E.D.1

Let K be a finite field F 2 of q2 elements, where q is a power of theq
prime char K. The Hermitian curve X is defined over F 2 byq

y q z q yz q s x qq1.

1 Ž .It is a smooth curve with genus g s q q y 1 . It is well known that, for2

any a g F ; F 2 , we have exactly q roots T , . . . , T for the equationq q 1 q
q qq1 Ž w x.T q T s a see 23 . These correspond to the q intersection points

Ž .a : T : 1 for 1 F i F q of the line x s a z with X. The remainingi
Ž . Ž .intersection point of this line with X note deg X s q q 1 is 0 : 1 : 0 ,

which is denoted by Q . Thus, we have q2 lines L , . . . , L 2 as above` 1 q
correspondingly and 1 q q2 ? q s q3 q 1 F 2-rational points of X. Thisq
achieves the Hasse]Weil bound, and we know that we have got all
F 2-rational points of X.q

Ž .We consider the algebraic geometric code C X, G, P defined by G s
mQ and P s q2 ? q intersection points of L , . . . , L 2 with X except Q .` 1 q `

Note that the line z s 0 intersects X only at Q . Thus, we find that`
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L y Q ( qQ for any hyperplane divisor L on X. Our main theorem is as` `

follows:

THEOREM 2.3. Let X be the Hermitian cur̈ e y q z q yz q s x qq1 defined
Ž .2o¨er F , where q G 3. Let G s mQ and P s X F y Q , where Q sq ` q ` `

Ž . 30 : 1 : 0 . For m s q y q q b with 1 F b F q y 2, the generalized Ham-
Ž .ming weights of the algebraic geometry code C X, G, P are as follows:

Ž . Ž w x.i d s q due to 22 ;1

Ž .ii d s 2 q y 1;2

Ž .iii d s 2 q.3

Ž .Proof. i We shall prove d s q by Proposition 1.1. First we claim that,1
X X Ž X.for any divisor P with 0 F P F P such that ll G y P q P G 1, we have

deg PX G q. We notice that

G y P q PX ; q3 y q q b Q y q2 L y Q q PXŽ .Ž . ` `

; PX y q y b Q , 2.2Ž . Ž .`

where L is any rational line passing through the point Q so that`

Ž . Ž X. Ž X.2L ; q q 1 Q . It is clear that L P s F if ll P s 1. Thus, we know` q
Ž X. Ž X Ž . . Ž X .that ll P G 2 if ll P y q y b Q G 1. Otherwise, L P consists of`

Ž X Ž . .constant functions, and hence L P y q y b Q s 0, which would con-`

Ž X Ž . . Ž X. Xtradict ll P y q y b Q G 1. The linear system L P gives a degree P`

map from X into P1. By Remark 1.1, we know that the second gonality is
q, and we also know that the second gonality is at most degree PX.
Therefore, we have shown that deg PX G q, and the claim is proven. It
follows from Proposition 1.1 that d G q.1

Now we wish to find a divisor PX with 0 F PX F P and deg PX s q such
Ž X. Ž X Ž . . Xthat ll G y P q P s ll P y q y b Q G 1. We can take P to L l` 1

Ž X Ž . . Ž .X _ Q . Then we have ll P y q y b Q s ll bQ G 1 because L ;` ` ` 1
Ž . Ž .q q 1 Q . In view of Proposition 1.1, we have d F q. So i is proved.` 1

Ž . X Ž .ii We shall first prove d F 2 q y 1. Take P s L l X y Q q2 1 `

Ž .L l X y Q y P , where P is any point different from Q in L l X.2 ` 1 1 ` 2
Then we have

G y P q PX ; PX y q y b QŽ . `

; bQ q L l X y Q y PŽ .` 2 ` 1

; L l X y P q b y 1 Q .Ž . Ž .2 1 `

Ž .Obviously, ll H l X y a point in H l X G 2 for any plane curve X and
Ž Ž . . Žhyperplane H. So we have ll L l X y P q b y 1 Q G ll L l X y2 1 ` 2

. XP G 2. Hence, by Proposition 1.1, d F deg P s 2 q y 1.1 2
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We next prove d G 2 q y 1. We first prove that d G 2 q y 2. Suppose,2 2
on the contrary, that d F 2 q y 3. In view of Proposition 1.1, we can find2

Ž .a divisor U with 0 F U F P and deg U F 2 q y 3 such that ll G y P q U
G 2. We are going to produce a contradiction. Observe that

G y P q U ; U y q y b Q .Ž . `

Ž Ž . . Ž .So we have ll U y q y b Q s ll G y P q U G 2. Let L be a hyper-`

plane divisor on X. Then, by the adjunction formula, we know that the
Ž .canonical divisor of the Hermitian curve X is given by q y 2 L. The

Ž .genus of the Hermitian curve is q q y 1 r2. From the Riemann]Roch
theorem, we have

ll U y q y b Q y ll q y 2 L y U q q y b QŽ . Ž . Ž .Ž . Ž .` `

s deg U y q q b y q q y 1 r2 q 1.Ž .

It follows that

ll q y 2 L y U q q y b Q G q q y 1 r2 q 1 y deg U q q y b .Ž . Ž . Ž . Ž .Ž .`

2.3Ž .

From the exact sequence

0 ª OO q y2 L y U ª OO q y2 L y U q q yb Q ª F 2
qyb ª 0,Ž . Ž . Ž .Ž . Ž .` q

we have

ll q y 2 L y U q q y b Q y ll q y 2 L y U F q y b. 2.4Ž . Ž . Ž . Ž .Ž .Ž .`

Since the first cohomology of a locally free sheaf on P 2 is 0, we also have
the following from the long cohomology exact sequence:

L q y 2 L s L 2 q y 2 L . 2.5Ž . Ž . Ž .Ž . Ž .P

ŽŽ . . Ž .Here L q y 2 L is the space associated with the divisor q y 2 L l X
ŽŽ . .2on the Hermitian curve, and L q y 2 L denotes the space associatedP

Ž . 2with the divisor q y 2 L on the P . Thus, we have

L q y 2 L y U s L 2 q y 2 L y U , 2.6Ž . Ž . Ž .Ž . Ž .P

ŽŽ . . Ž .2where L q y 2 L y U represents the subsystem of the q y 2 degreeP
linear system on P 2 passing through points of U. According to Lemma 2.5,
if no q y 2 q 2 s q points in U are collinear, then we have

dim L 2 q y 2 L y U s dim L 2 q y 2 L y deg U. 2.7Ž . Ž . Ž .Ž . Ž .P P
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Ž . Ž .From 2.6 and 2.7 , we have

q q y 1Ž .
ll q y 2 L y U s y deg U. 2.8Ž . Ž .Ž .

2

Ž . Ž .Equations 2.3 and 2.8 imply

ll q y 2 L y U q q y b Q y ll q y 2 L y U G 1 q q y b ,Ž . Ž . Ž . Ž .Ž .Ž .`

Ž .which contradicts 2.4 . Therefore, we conclude that there exist q points in
U that are collinear. We can assume that the divisor U is of the form
U s H y h q U X, where H is a hyperplane divisor on the Hermitian curve
X, h is the point that is not in U, and U X is a divisor with deg U X F q y 3.
By Proposition 1.3, the fourth gonality n of the Hermitian curve X is 2 q.4

Ž X. Ž X .Since deg H q U F q q 1 q q y 3 s 2 q y 2 - 2 q, we have ll H q U
Ž .F 3 by the definition of the gonality. On the other hand, the space L H ,

which is spanned by the three coordinate functions xre, yre, zre, where e
is the defining equation of the line H, is naturally included in the space
Ž X .L H q U . We have

L G y P q U s L H y h y q y b Q q U X : L H q U X s L H .Ž . Ž . Ž . Ž .Ž .`

Ž .We claim that there is no linear subspace of dimension at least 2 in L H
Ž Ž . X.of the form L H y h y q y b Q q U . To prove this claim, we need`

only to show that there exists at most one hyperplane section that contains
Ž .h q q y b Q . Since q y b G 2, we shall show that there is at most`

w xone line in the linear system H passing through the point Q of order at`

least 2.
Ž .The tangent line of the Hermitian curve at the point Q s 0, 1, 0 is`

z s 0. Let L be the line passing through the point Q of order at least 2.`

Ž .Then the equation of L must be the form ax q cz s 0 because 0, 1, 0
satisfies the equation. From the local intersection theory, we know that the
intersection multiplicity of L and the Hermitian curve at Q is`

ww xx Ž q qq1.2dim F x, z r ax q cz, z q z y x . If a / 0, the intersection multi-q
plicity of L and the Hermitian curve at Q must be 1. Thus, we have`

proven that d G 2 q y 2.2
We now need to prove that d cannot be 2 q y 2. If d s 2 q y 2,2 2

we would have a divisor U with 0 F U F P with deg U s 2 q y 2 such
Ž . Ž Ž . .that ll G y P q U s ll U y q y b Q G 2 by Proposition 1.1. By the`



CHEN, LUK, AND YAU136

Riemann]Roch theorem,

ll q y 2 L y U q q y b QŽ . Ž .Ž .`

q q y 1Ž .
s ll U y q y b Q y deg U y 1 q q q y bŽ .Ž .` 2

q q y 1Ž .
G 2 y deg U y 1 q q q y b

2

q q 1 q y 2Ž . Ž .
s q 2 y deg U q q y b. 2.9Ž .

2

If no q points in U are collinear, we can apply Lemma 2.5 to the set
U y u, where u is an arbitrary point in U. Thus, we have

q y 2 q q 1Ž . Ž .
ll q y 2 L y U y u s q 1 y deg U y uŽ . Ž . Ž .Ž .

2

q y 2 q q 1Ž . Ž .
s q 2 y deg U. 2.10Ž .

2

Ž .Now, we wish to show that 2.10 cannot be true; that is, there are q
Ž . Ž .collinear points in the set U y u. Otherwise, from 2.9 and 2.10 , we have

ll q y 2 L y U y u q q y b Q y uŽ . Ž . Ž .Ž .`

y ll q y 2 L y U y u G q y b , 2.11Ž . Ž . Ž .Ž .

which implies

ll q y 2 L y U y u q q y b QŽ . Ž . Ž .Ž .`

y ll q y 2 L y U y u G q y b.Ž . Ž .Ž .

On the other hand, it is clear that

ll q y 2 L y U y u q q y b QŽ . Ž . Ž .Ž .`

y ll q y 2 L y U y u F q y b.Ž . Ž .Ž .

So we have

ll q y 2 L y U y u q q y b QŽ . Ž . Ž .Ž .`

y ll q y 2 L y U y u s q y b. 2.12Ž . Ž . Ž .Ž .
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Ž . Ž .Equations 2.11 and 2.12 imply

ll q y 2 L y U y u q q y b Q y uŽ . Ž . Ž .Ž .`

G ll q y 2 L y U y u q q y b Q . 2.13Ž . Ž . Ž . Ž .Ž .`

Obviously,

ll q y 2 L y U y u q q y b Q y uŽ . Ž . Ž .Ž .`

F ll q y 2 L y U y u q q y b Q , 2.14Ž . Ž . Ž . Ž .Ž .`

Ž . Ž .and so 2.13 and 2.14 imply

ll q y 2 L y U y u q q y b Q y uŽ . Ž . Ž .Ž .`

s ll q y 2 L y U y u q q y b Q . 2.15Ž . Ž . Ž . Ž .Ž .`

Consider the sheaf exact sequence

0 ª OO q y 2 L y U q q y b QŽ . Ž .Ž .X `

ª OO q y 2 L y U y u q q y b QŽ . Ž . Ž .Ž .X `

ª OO q y 2 L y U y u q q y b Q rŽ . Ž . Ž . .X `

Q q y 2 L y U q q y b Q ª 0.Ž . Ž .Ž .X `

Ž .From 2.15 , we have the following exact sequence:

0 ª F 2 ª H 1 X , OO q y 2 L y U q q y b QŽ . Ž .Ž .Ž .q X `

ª H 1 X , OO q y 2 L y U q u q q y b Q ª 0. 2.16Ž . Ž . Ž .Ž .Ž .X `

Ž .From the Serre duality, 2.16 becomes

0 ª H 0 X , OO U y q y b Q y uŽ .Ž .Ž .X `

ª H 0 X , OO U y q y b Q ª F 2 ª 0. 2.17Ž . Ž .Ž .Ž .X ` q

Ž Ž . . Ž . Ž .Recall that ll U y q y b Q s ll G y P q U G 2. Therefore, 2.17`

Ž .implies there is a nonzero function in L U y u , which vanishes at Q`

Ž .with order at least q y b. Since L U y u contains a constant function
Ž . Ž .because U y u is an effective divisor , ll U y u G 2. By the
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Riemann]Roch theorem, we have

q q y 1Ž .
ll q y 2 L y U y u s ll U y u y deg U q 1 q y 1Ž . Ž . Ž .Ž .

2

q y 2 q q 1Ž . Ž .
G q 1 y deg U y u q 1Ž .

2

q y 2 q q 1Ž . Ž .
) q 2 y deg U.

2

Ž .Therefore, we have shown that 2.10 cannot be true and there are q
collinear points in the set U y u. Then we have U s H y h q U X, where

X Ž . Ž X. ŽU is a divisor of degree q y 2, and L H s L H q U > L H y h y
Ž . X.q y b Q q U by the same argument as before. This leads to a contra-`

diction, as we have seen above. The conclusion that d cannot be 2 q y 2 is2
proved. Combining this with the earlier conclusion, we have d s 2 q y 1.2

Ž . X Ž . Žiii We shall prove that d F 2 q. Take P s L l X y Q q L l3 1 ` 2
.X y Q . Then we have`

G y P q PX ; PX y q y b QŽ . `

; bQ q L l X y QŽ .` 2 `

; L l X q b y 1 Q .Ž .2 `

Ž X . Ž .It follows that ll G y P q P G ll L l X s 3. So d F 2 q by Proposi-2 32
w xtion 1.1. On the other hand, it is known that d - d by Theorem 1 of 21 .2 3

The conclusion d s 2 q follows immediately. Q.E.D.3

Remark 2.1. If we apply the result of Yang, Kumar, and Stichtenoth
w x23 to Theorem 2.3, we can only get the following estimates:

d G q y b , d G 2 q y b , d G 2 q q 1 y b.1 2 3

Hence, the results in Theorem 2.3 are highly nontrivial.

In the following, we shall prove a lemma that is needed in the proof of
� 4 2Theorem 2.3. We recall that a set S s P , . . . , P of distinct points in P1 d

is said to impose independent conditions on curves of degree n if

ll P 2 , II n s ll P 2 , OO 2 n y d ,Ž . Ž .Ž . Ž .S P

where II : OO 2 is the ideal sheaf of the zero-dimensional variety S.S P

LEMMA 2.4. If a set S of 2n q 1 distinct points in P 2 fails to impose
independent conditions on cur̈ es of degree n, then S must include n q 2
collinear points.
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Proof. We first note that the linear system of degree n q 2 passing
2n q 1 points S can separate any two points in P 2 if n G 2. So this linear
system is ample over P 2. Thus, we can find a degree n q 2 smooth
projective plane curve T passing these 2n q 1 points by the Bertini
theorem.

Second, we observe that, for any hyperplane H in P 2, we have

dim L nH s n n q 2 y g T q 1Ž . Ž . Ž .T

n n q 1Ž .
s n n q 2 y q 1Ž .

2

n q 2 n q 1Ž . Ž .
s

2

s dim L 2 n .Ž .P

Ž . Ž . Ž . Ž .2 2Hence, L n s L nH and also L nH y S s L nH y S . By theP T P T
Riemann]Roch theorem, for the divisor nH y S in T we have

dim L 2 nH y S s dim L nH y SŽ . Ž .P T

n n q 1Ž .
s n n q 2 y deg S y q 1Ž .

2

q dim L K y nH q S .Ž .T T

Ž . Ž .Recall that K s n q 2 H y 3H s n y 1 H. We haveT

n q 2 n q 1Ž . Ž .
2dim L nH y S s y deg S q dim L S y H .Ž . Ž .P T2

If these 2n q 1 points of S do not impose independent conditions on
Ž .2OO nH , namely,P

n q 2 n q 1Ž . Ž .
2dim L nH y S s y deg S q dim L S y HŽ . Ž .P T2

) dim L 2 nH y deg SŽ .P

n q 2 n q 1Ž . Ž .
s y deg S,

2

Ž .then we have dim L S y H G 1; that is, S y H is linear equivalent toT
< < < < < <an effective divisor E. So we have S ; H q E and H ; H q E s S .

On the other hand, deg S s 2n q 1 - 2n q 2 s n by Proposition 1.3.4
Ž .Thus, we have dim L S F 3 by the definition of n . It follows that4
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Ž . Ž . < < < < < <dim L S s dim L H s 3. Clearly, the inclusion H ; H q E s S is
< < < < < <natural. Hence, we have H s S . Therefore, every member of S has to

be in the form of a line plus E. In particular, S has to be in the form of a
line plus E. This means that there are n q 2 points in S that are collinear.

Q.E.D.

3. OTHER EXAMPLES

In this section, we give two more examples in which we can apply
Proposition 1.2 to determine their generalized Hamming weights.

EXAMPLE 3.1. Let q s r 2, where r is a power of odd prime. Let F beq
the finite field of q elements. X is the curve defined over F by theq
equation

x rq1 q y rq1 q z rq1 s 0.

It is easy to check that X is an irreducible nonsingular curve. For any
a g F such that a rq1 / y1, since r is divisible by char F , we haveq q

r r 2rq1 rq1 r qr rq11 q a s 1 q a s 1 q a s 1 q a .Ž . Ž .

Ž rq1. ry1 � 4 UThus, y1 y a s 1. Note that F y 0 s F is a multiplicativeq q
Ž .Ž . Ž rq1.cyclic group of order q y 1 s r y 1 r q 1 . We find that y 1 q a

Ž . rq1 Uhas to be an r q 1 power b for some b g F . Therefore, the line L :q a

Ž .x s a y intersects X at r q 1 F -rational points of X, which are denotedq
Ž .by P , . . . , P , where b , . . . , b are r q 1 -distinct elements ina , b a , b 1 rq11 rq1U Ž . rq1 Ž rq1.F such that b s y 1 q a . It is clear that, for any two distinctq i

�Ž .4a and a , L l L s 0, 0, 1 , which is outside X. Hence, all those1 2 a a1 2

P are distinct. We consider the algebraic geometric code C sa , b i
Ž .C X, G, P , where G s mL, where L is a hyperplane divisor and P s

n Ž . rq1D L l X for n distinct a , a , . . . , a g F such that 1 q a / 0.is1 a 1 2 n q ii
Ž . 2 Ž . Ž .Here we also assume that 2 g X y 2 s r y r y 2 - m r q 1 - n r q 1

Ž Ž . .i.e., 2 g X y 2 - deg G - deg P . Then we can use Propositions 1.1 and
1.2 to prove the following statement.

Ž .THEOREM 3.1. For the algebraic geometric code C s C X, G, P as
abo¨e, suppose r G 3. Then the generalized Hamming weights are as follows:

Ž . Ž .Ž .i d s n y m r q 1 ;1

Ž . Ž .Ž .ii d s n y m r q 1 q r ;2

Ž . Ž .Ž .iii d s n y m q 1 r q 1 .3
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Ž . Ž .Ž . X Ž .Proof. i To prove d s n y m r q 1 , we take P s Ý L l X ,1 a i

where the sum is over n y m distinct a in a , . . . , a . Then G y P qi 1 n
X Ž . Ž X.P ; mL y nL q n y m L ; 0 and ll G y P q P s 1. Thus, d F1

X Ž .Ž .deg P s n y m r q 1 by Proposition 1.1. On the other hand, Proposi-
Ž .Ž .tion 1.2 says that d G deg P y deg G s n y m r q 1 . Hence, d s1 1

Ž .Ž .n y m r q 1 .
Ž . Ž .Ž . X Ž .ii To prove d s n y m r q 1 q r, we take P s L l X2 a1

Ž . ŽŽ . .q ??? q L l X q L l X y P , where P is a point ina any m nymq1X Ž . Ž X .L l X. Then G y P q P ; L l X y P and ll G y P q Pa any mq1 nymq1X Ž .Ž .s 2. Thus, d F deg P s n y m r q 1 q r by Proposition 1.1. On the2
other hand, Proposition 1.2 says that d G deg P y deg G q n . In view of2 2

Ž .Ž .Proposition 1.3, we have n s r. Thus, d G n y m r q 1 q r. We have2 2
Ž .Ž .proven d s n y m r q 1 q r.2

Ž . Ž .Ž . X Ž .iii To prove d s n y m q 1 r q 1 , we take P s L l X3 a1
Ž . X Ž X.q ??? q L l X . Then G y P q P ; L and ll G y P q P s 3.any mq1 X Ž .Ž .Thus, d F deg P s n y m q 1 r q 1 by Proposition 1.1. On the other1

hand, Proposition 1.2 says that d G deg P y deg G q n . In view of3 3
Ž .Ž .Proposition 1.3, we have n s r q 1. Thus, d G n y m r q 1 q r q 13 3

Ž .Ž . Ž .Ž .s n y m q 1 r q 1 . We have proven d s n y m r q 1 q r q 1.3
Q.E.D.

Remark. The code in Example 3.1 was considered in Example 4 on
w xpage 814 of the famous paper of Justesen et al. 14 .

EXAMPLE 3.2. Let p be an odd prime G 5. We consider the curve X
Ž .over F s Zr pZ defined byp

x py1 q y py1 q z py1 s 0.

It is easy to check that X is an irreducible nonsingular curve in P 2. Note
that, for x, y, z g F , we have x py1, y py1, z py1 equal to either 1 or 0.p
Hence, x py1 q y py1 q z py1 has to be 0, 1, 2, or 3. Since we assume

py1 py1 py1 Ž . Ž .p G 5, the only solution of x q y q z s 0 is x, y, z s 0, 0, 0 ,
which is not in P 2. Thus, X has no F -rational point. However, asp

w xindicated in 2, 3 , over a sufficiently large extension field F of F , whereq p
q s pr with r sufficiently large, many F -rational lines intersect X atq
F -rational points. For example, if we take a , a , . . . , a g F 2 to beq 1 2 n p
distinct elements and let F > F 2 be the splitting field of the equationq p

py1 Ž py1.u q 1 q a s 0, then the n F -rational lines x s a y for 1 F i F ni q i
� 1 1 1 2intersect X at F -rational points P s P , P , . . . , P , P ,q 1 2 py1 1

2 2 n n 4P , . . . , P , . . . , P , . . . , P . Note that any two lines intersect at2 py1 py1 py1
Ž .0, 0, 1 , which is not in X. Let L be a hyperplane divisor that is disjoint

Ž . Ž .from P. We consider the algebraic geometric code over F C X, G, P ,q
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Ž .where G s mL and P as above, with the assumption that 2 g X y 2 -
Ž . Ž .m p y 1 - n p y 1 s deg P. The same argument as in Theorem 2.1

gives us the following statement.

Ž .THEOREM 3.1. For the algebraic geometric code C X, G, P as abo¨e, we
ha¨e

Ž . Ž .Ž .i d s n y m p y 1 ;1

Ž . Ž .Ž .ii d s n y m p y 1 q p y 2;2

Ž . Ž .Ž .iii d s n y m q 1 p y 1 .3

4. APPENDIX

In this appendix, we prove Propositions 1.1 and 1.2 and a result of Yang,
w x Ž .Kumar, and Stichtenoth 23 mentioned in Remark 2.1 . Our geometric

proofs, which are different from the original algebraic proofs, may be
easier to understand and make our paper more self-contained.

Proof of Proposition 1.1. We first note that e¨ is injective, since thep
Ž .kernel of e¨ is L G y P , which is 0 because deg G - n. Thus, we canp

find an r-dimensional subcode or, equivalently, an r-dimensional subspace
Ž .V of L G such that all functions in V are 0 at n y d pointsr

P , P , . . . , P of P. Let f , f , . . . , f be a base of V, and we havei i i 1 2 r1 2 nydr

f s yG q P q P q ??? qP q U ,Ž .1 i i i 11 2 nydr

f s yG q P q P q ??? qP q U ,Ž .2 i i i 21 2 nydr

...

f s yG q P q P q ??? qP q U ,Ž .r i i i r1 2 nydr

Žwhere U , U , . . . , U are effective divisors. Hence, we find that ll G y P1 2 r i1
. � X X Žy ??? yP G r and d G min deg P : 0 F P F P such that ll G y P qi rny drX. 4P G r .

Y � 4 YOn the other hand, suppose P s P , . . . , P : P such that t s deg Pi i1 t
� X X Ž X. 4s min deg P : 0 F P F P, ll G y P q P G r . We can find r indepen-

Ž Y .dent functions g , . . . , g g L G y P q P . Thus, g , . . . , g vanish at1 r 1 r
Y Y � 4n y t points P y P . Let V be the image of the linear span of g , . . . , g1 r

Y Ž Y .under the evaluation map. We have dim V s r and a supp V F t. We
� X X Ž X. 4find that d F min deg P : 0 F P F P such that ll G y P q P G r s t.r

The conclusion is proved. Q.E.D.
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Proof of Proposition 1.2. By Proposition 1.1, we can find an effective
Y Y Y Ž Y . Ždivisor P with deg P s d , 0 F P F P and ll G y P q P s dim L Gr
Y . Ž Y .y P q P G r. Let f be an arbitrary nonzero function in L G y P q P
Ž . Yand U s f q G y P q P be an effective divisor. Clearly, we have

Ž . Ž Y .ll U s ll G y P q P G r and deg U G n by the definition of the r thr
gonality. On the other hand, deg U s deg G y deg P q deg PY s deg G
y n q d . Thus, d G n y deg G q n . Q.E.D.r r r

Finally, we show that the next result follows immediately from our
Theorem 1.4.

Ž w x. 2THEOREM Yang, Kumar, and Stichtenoth 23 . For q G 3, 2 q y q y
3 Ž .2 - m - q , and m ' 0 mod q , we ha¨e the generalized Hamming weights

Ž .of C X, G, P as follows:

d s q3 y m ,1

d s q3 y m q q ,2

d s q3 y m q q q 1.3

Proof. We apply Theorem 1.4 with t s q2, d s q q 1, and u s mrq.
Then we get d s q3 y m, d s q3 y m q q, and d G q3 y m q q q 1.1 2 3

It remains to prove d F q3 y m q q q 1. In view of Proposition 1.1, it3
X Ž X.suffices to find an effective divisor P F P such that ll G y P q P G 3

and deg PX F q3 y m q q q 1. Because of the assumptions q G 3, m )
2 Ž .2 q y q y 2, and m ' 0 mod q , we have mrq ) q q 1. Let b be a

q Ž .solution of b q b s 1. Observe that the points a , b , 1 in X, wherei
a qq1 s 1, are not in the lines L : x s a z, where a qq1 / 1. We takei a

q2ymrq qq1
XP s L y Q q a : b : 1 .Ž .Ž .Ý Ýa ` ij

qq1 is1a /1j qq1a s1i

So we have
G y P q PX

q2
m

Xs qQ y L y Q q PŽ . Ž .Ý` i `q is1

qq1m m
; qQ y L y Q q a : b : 1Ž . Ž . Ž .Ý` ` iq q is1

qq1a s1i

qq1

; a : b : 1 .Ž .Ý i
is1

qq1a s1i
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Note that the line y s b z intersects X exactly at those q q 1 points
Ž . qq1 X Ž X. Ž .a : b : 1 , a s 1. We find that, for this P , ll G y P q P s ll L si i

X Ž 2 . 33. Thus, by Proposition 1.1, d F deg P s q y mrq q q q q 1 s q y3
m q q q 1. Q.E.D.
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