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Decentralized Detection in Ad hoc Sensor Networks
With Low Data Rate Inter Sensor Communication

Lu Zheng, Yingwei Yao, Member, IEEE, Mo Deng, and Stephen S. T. Yau

Abstract—Decentralized binary detection problem in ad-hoc
sensor networks where a link between two sensors is on with
a certain probability is considered in this paper. We propose a
consensus based detection scheme where sensors exchange their
local decisions, update their own decisions based on the exchanges
and finally reach a consensus about the state of nature. We analyze
the error probability and convergence of this decision consensus
scheme. We show that with our scheme, the detection performance
in ad-hoc networks is asymptotically equivalent to that of a par-
allel sensor network where all the local decisions are processed by
a central node (fusion center) in the sense that the error exponents
are the same. The probability distribution of the consensus time is
also studied. Simulation and numerical results are given to verify
the theoretical results.

Index Terms—Ad hoc network, consensus problems, decentral-
ized detection, low data rate systems, Markov chain.

I. INTRODUCTION

A decentralized detection environment is characterized by a
set of sensors making observations about the state of na-

ture . The objective is to make an estimation about based
on the observations from all the sensors. Decentralized detection
problem in sensor networks has been under extensive study in
recent years[1]–[5]. In most previous works, despite of the vari-
ations in the network structures, it is assumed that there exists a
central node (fusion center) which has stronger computational
capability and direct or indirect access to all sensors across the
network. The responsibility of this central node is to fuse all the
data and produce a global decision about . Decentralized de-
tection problem in ad hoc sensor networks, on the other hand,
has not been studied much. The major difficulty with the detec-
tion problem in ad hoc sensor networks is the lack of central
control which makes it hard to aggregate the information over
the network.

In this paper, we propose a consensus based decentralized de-
tection scheme in ad hoc sensor networks. Our scheme is first
motivated by the study of rational decision consensus in social
and economic systems[8]. Similar procedure can be applied to

Manuscript received April 22, 2009; revised October 25, 2010; accepted
September 11, 2011. Date of publication January 31, 2012; date of current
version April 17, 2012.

L. Zheng, retired, is at 779 Lakehaven Dr., Sunnyvale, CA 94089 USA
(e-mail: luzheng@andrew.cmu.edu).

Y. Yao, M. Deng, and S. S. T. Yau are with the University of Illinois at
Chicago, Chicago, IL 60616 USA (e-mail: yyao@uic.edu; mdeng2@uic.edu;
yau@uic.edu).

Communicated by S. Ulukus, Associate Editor for Communication Net-
works.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2012.2184661

the detection problem in ad hoc sensor networks: each sensor
continuously collects information from its neighbors to update
its local decision. In this way, sensors’ decisions evolve over
time and if the sensors unanimously agree on some hypothesis
at some point, the global decision about can be retrieved by
querying any sensor. There are several problems we are inter-
ested in regarding a detection system like this:

• Can a consensus always be reached for this scheme?
• What is the limit distribution of the consensus?
• What is the speed of the consensus?
• What is the error probability of the detection system?

A. Related Work

The problem of distributed detection has been investigated
extensively. Based on the earlier results from classical dis-
tributed detection problem[2], recent researchers study the
distributed detection problem in sensor networks with band-
width and power constraints [3]–[6]. A star topology is assumed
in all these works.

In ad hoc networks, due to the lack of central control,
information aggregation has to be conducted in a distributed
manner. Decision consensus is a possible solution for the de-
tection problem in ad hoc networks. Decision consensus among
multiple agents is first investigated in the context of social
system [8], [9]. Due to the similarity in the distributed nature
of sensor networks and social networks, consensus procedure
can also be applied to the sensor networks.

Consensus problem in sensor network with linear protocols,
especially the average consensus, has attracted considerable at-
tention in recent years. In [1], the authors give a thorough dis-
cussion about this problem for sensor networks with different
topologies. It is shown that a consensus can always be reached
under some mild constraint on the network connectivity. Be-
sides, the authors also find that the convergence speed is directly
related to the second largest eigenvalue of the connectivity ma-
trix. These results are also given by Olshevsky and Tsitsiklis in
[7]. The decision consensus considered in this paper cannot fit
in this framework because it is inherently a consensus with non-
linear protocol.

There are several works regarding consensus problem with
nonlinear protocols. In [14], the authors consider a binary con-
sensus system employing analog communication over additive
white Gaussian noise channels. They show that the steady state
of such a system is independent of the initial state and hence the
steady state error performance is unacceptable. In [15], the au-
thors analyze the binary consensus system with three-state sen-
sors and either binary or ternary signaling for information ex-
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change. A sensor updates its state after receiving the signal from
a randomly chosen sensor. It was shown that, conditioned on
initial sensor states, the error probability decays exponentially
as the number of sensors grows. In [18], Acemoglu, Dahlen,
Lobel, and Orzdaglar study the convergence rate of beliefs and
decisions in social networks. They show the convergence to the
correct action is faster than a polynomial rate when individuals
observe the most recent action and is at a logarithmic rate when
they sample a random action from the past. In [17], Swaszik and
Willett did research about the “parleying” scheme on the sensor
network detection system, showing that a consensus always oc-
curs when sensors could update their local decisions based on
the previous fused decision. In [16], Borkar and Varaiya model
the process of consensus based distributed estimation as a mar-
tingale. They prove that the estimates of the decision agents
asymptotically agree. In our work, we consider a different sce-
nario where each indivisual sensor only get information from
its neighbors. And in addition to showing the existence of a
asymptotic consensus, we also analyze the “correctness” of the
consensus.

Both [14] and [15] study binary consensus systems based on
majority rule. In this paper, we study binary consensus systems
that adopts a more general decision rule and thus can be applied
to Neyman-Pearson detection problem and Bayesian detection
with nonuniform priors. Each sensor updates its local decision
after receiving the local decisions of a randomly chosen set of
sensors. The information exchanges between sensors rely on
digital communication. We analyze the error performance and
convergence time of the consensus. Averaged over the initial
sensor states, the error probability decays exponentially and the
error exponent is identical to that of a decentralized detection
system with a star topology.

B. Organization

The rest of this paper is organized as follows. In Section II,
we are going to describe the system model and formulate the
problem. In Section III, we give a brief review of mathematical
tools used in this paper. Closed form and asymptotic analysis
on the consensus algorithm will be presented in Section IV and
Section V, respectively. In Section VI, we give numerical exam-
ples to verify the analytical results obtained in Section IV and
Section V. Finally we reach our conclusion in Section VII.

II. MODEL

A. Detection Scheme

Consider the binary detection problem

(1)

where and are probability distributions associated with
and respectively. Suppose there are sensors in the

network. Each sensor makes an observation
which takes value from some observation set . ’s are

conditionally independent and identically distributed across all
the sensors with distribution , given .

To reduce the communication burden, each sensor processes
its local information to obtain a binary local decision. A local
decision rule is a mapping from the observation set to the
decision set , i.e., . We assume all the
sensors use identical local decision rule to form their initial local
decisions, i.e., .

To reach a consensus, sensors exchange local decisions and
update their local decisions based on the exchange. We consider
two communication models for the information exchange. In the
asynchronous communication model, only one sensor retrieves
information and updates its local decisions at each time slot.
Under the synchronous communication model, in each time slot,
all the sensors update their local decisions simultaneously.

In this paper, we assume that a sensor is randomly and in-
dependently picked up for updating at any given time slot. It
receives the local decision of any other sensor with proba-
bility . We say sensor is a neighbor of sensor at time
if sensor has successfully retrieved the decision of sensor
at time . Denote the set of all neighbors of sensor and it-
self as . We use to denote the cardinality of ,
i.e., . The model we have adopted can be ap-
plied to a wireless sensor network with sensors dispersed in a
relatively small area. In such networks, the first-order commu-
nication signal strength effects are due to random fluctuations
in the medium, such as Rayleigh and shadowing fading instead
of distance, and communication between any two sensors suc-
ceeds with a certain probability[13]. This model can also be ap-
plied to sensor networks utilizing geographic gossiping where a
sensor requests information from randomly chosen sensors that
might be multiple hops away. It was shown that by utilizing this
scheme, the information can spread much faster over the entire
network [12].

Let be the local decision of sensor at time ,
be the distribution of local decisions under

. Each sensor of this system has an updating rule (sometimes
also termed as dynamics) to fuse all the re-
trieved data and form a new local decision. One natural choice
of the updating rule is a test like this

if

if

otherwise
(2)

where and are the numbers of zeros and ones among
’s, . is the function defined as follows:

(3)

and is the threshold. One can verify that

(4)

where

(5)
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We say sensor agrees with sensor if and only if
. We say the network has reached a consensus if and only

if for all .

B. Markov Chain Model of the Asynchronous System

In this subsection, we establish a Markov Chain model
for an asynchronous decision consensus system as a basis
for our analysis. We choose the number of sensors whose
current local decision is as the state of the system. We
denote it as . Now our task is to find
out the state transition matrix , where

.

Definition 1 [11]: A state of a Markov Chain is an absorbing
state if it is impossible to leave it, i.e., .

Definition 2 [11]: A Markov Chain is absorbing if it has at
least one absorbing state, and if from every state it is possible to
go to an absorbing state(not necessarily in one step).

Obviously, and are two absorbing states
for this Markov chain since for

otherwise.
(6)

Also, since at each time slot, there is only one sensor updating
its local decision, can at most change by 1 each time. Thus,

, for all .
For the other entries of the transition matrix where ,

we can compute them as follows. Suppose current state
and it is sensor ’s turn to retrieve other sensors’ information
and update its local decision. If , given current state

, and are binomi-
ally distributed with parameter and ,
respectively.

(7)

where is the regularized incomplete beta
function

(8)

and .

Similarly if , and are binomially
distributed with parameter and , re-
spectively. Then we have

(9)

Now we are ready to compute the entries of the transition matrix

(10)

(11)

and . And all the other entries are
zero as we explained previously.

C. Markov Chain Model for the Synchronous System

We still use the number of current ones in the network as the
system state . Obviously, and are still
two absorbing states for this Markov chain, i.e., for

if
otherwise

(12)

where is the transition probability from state to . The other
entries of the transition matrix where , can be computed
as follows. Let denote the set of sensors
whose decisions at time t are 1. Note . Naturally,

is the set of sensors whose decisions at time t are 0. Given
current state , for all ,

, and are binomially distributed with distribution
and respectively. Hence

(13)
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where is the regularized incomplete beta
function as defined in (8). And we have already obtained
in (9).

We can divide the sensors in into two subsets:

(14)

Let and be the cardinality of and
respectively. Thus we have

. Given , we can see and
are binomially distributed with distribution and

respectively. Therefore, the transition proba-
bility is given by

(15)

III. PERFORMANCE ANALYSIS

In this section, we present three propositions which give
closed form expressions for the probability of decision con-
sensus, the detection error probability and average consensus
time of this system. These results hold for both the asyn-
chronous and synchronous system.

Proposition 3.1 (Achievability of Consensus): In the system
described in Section II, a global consensus about the state of
nature will be reached with probability 1, i.e.,

.
Proof: The conclusion comes directly from the fact that an

absorbing Markov Chain will be absorbed by those absorbing
states with probability one [10].

Now we start to derive the detection error probability under
Bayesian rule. The distribution of the initial state of this system
is determined by the hypothesis distribution and the local deci-
sion rule. Under , for any sensor , the initial local
decision has the following distribution:

(16)

(17)

Therefore, under , the initial state of the system is bi-
nomially distributed with , i.e.

(18)

Re-arrange the transition matrix into the canonicalform [10]

...
. . .

...

(19)

where the entries is given in Section II, and and are
given by

...
. . .

... (20)

and

...
... (21)

With all these, we have the following.

Proposition 3.2 (Error Probability): Under Bayesian rule,
the error probability is

(22)

where is the -by-1 column vector whose
entry is , and are the prior probabilities

of and respectively, and are the first and second
column of an -by-2 matrix which is defined as

(23)

Proof: This proposition directly comes from the absorbing
Markov chain property [10].

Proposition 3.3: Let be the time required for consensus,
then

(24)

where , , , are defined as in Proposition 3.2
and

(25)

Proof: Proposition 3.3 is a direct result from absorbing
Markov chain property [10].

IV. ASYMPTOTIC PERFORMANCE

Though the results given in the last section fully characterize
the ad hoc detection system we are interested in, we cannot get
much insight about the system due to the complexity of those
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Fig. 1. Absorbing Markov chain.

formulas. To obtain more insight, we investigate the asymptotic
performance of the system, in terms of error exponent. For this
analysis, we are going to focus on the asynchronous system in
this section. In parallel sensor networks, it is well known that
detection error decays exponentially with respect to , with
the error exponent given in [3]. We here prove that the error
probability of the ad hoc network also decays exponentially and
the error exponent is the same as that of the parallel sensor net-
works, meaning that, an ad hoc network is asymptotically equiv-
alent to a parallel sensor network in terms of error performance.

To obtain the overall error exponent of our system, we first
obtain the distribution of the initial state; then we analyze the
conditional consensus error probability given a certain initial
state and finally, we will combine the two results to obtain the
error exponent.

Lemma 4.1 (The Distribution of Initial State): In an ad hoc
sensor network, given a local decision rule , the initial state of
the system satisfies

(26)

and

(27)

for some .
Proof: Note that

(28)

and

(29)

Applying Cramer’s Theory, we get (26) and (27).

Lemma 4.2: Consider the -state absorbing Markov
Chain shown in Fig. 1 with the transition probability

otherwise

(30)

where , . Given the starting state
, ( ), the limit distribution is

(31)

(32)

Proof: Let . Use the first step
analysis, we have

(33)

Hence we have the recursive equation

(34)

with the boundary condition and . By solving
the recursive (34), we can obtain (31) and (32).

Proposition 4.3 (Limit Distribution of the Consensus): Let
be the probability that the chain is absorbed by state 0

starting in state . Given a fixed
, decays super-exponentially with , i.e.,

(35)

Similarly, let be the probability that the chain is absorbed
by state 1 starting in state . Given
a fixed , also decays super-exponentially with , i.e.,

(36)

Proof: We only prove the super exponential decay of .
Fig. 2 illustrates the consensus Markov chain we describe in
Section II. Consider an intermediate state where

. If , starting from state , a necessary
condition for the chain to be absorbed by state 0 is that it must
first hit the state before hitting . Denote as the proba-
bility that the chain starting in hits before
hitting . Hence we have

(37)

We cut the original chain at state to get a truncated chain
consisting of state , , , as shown in Fig. 2. Let
state be an absorbing state of the truncated chain, then
is the absorbing probability by state of the truncated Markov
chain starting in state . The transition probabilities are

and . We compare this truncated
chain with a constructed Markov chain whose one step transi-
tion probabilities are given by and (also see Fig. 2).
At each state , the truncated chain has a higher probability to
move to the right and a lower probability to move to the left
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Fig. 2. Constructing a new Markov chain to compare to the original one.
(a) Truncate the original Markov chain at state � � ����. (b) Constructed
Markov chain.

than the constructed chain. Therefore, the truncated chain is less
likely to end up in state than the constructed chain. Denote
the absorbing probability of state of the constructed chain to
be , we must have . Applying Lemma 4.1 to the
constructed Markov chain, we have

(38)

To characterize the limit behavior of , we need to find out
the limit of . From (10), we have

(39)

Without loss of generality, we can assume that
and that the updating sensor is sensor ,

then we have . By the Large Devia-

tion theory, given

(40)

where is a constant with respect to . Similarly, for

(41)

Hence for any s.t , given
(we omit the condition in the equations below for

expression simplicity), we have

(42)

where . Thus,
. Similarly, for the same , we can prove

that .
From (38)

(43)

That is, decays superexponentially. Since ,
also decays superexponentially, i.e., for
all positive . So

(44)

Now we would like to compare the asymptotic performance
of our system with that of the parallel sensor network. In parallel
network, the fusion center has the access to local decisions from
the sensors (we assume ideal communication channel between
the fusion center and sensors) and makes the final decision using
likelihood ratio test, i.e.

(45)

where and are the number of ones and zeros in ’s
.

We say is admissible if

(46)

If the admissibility requirement is not satisfied, for instance, if
, then, .

Similarly if
. Hence an optimal detection algorithm (Bayesian or

Neyman-Pearson) must select an admissible threshold.

Corollary 4.4: The decision-consensus-based detection
scheme in ad hoc sensor networks has the same asymptotic per-
formance as the optimal detection in parallel sensor networks,
i.e.,

(47)
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where is defined as follows:

Bayesian
Neyman-Pearson

(48)

where the ChernoffInformation and the Kullback-
Leiblerdistance are defined as

(49)

(50)

Proof: We consider the one-sided error probability. For
parallel sensor networks, we know

(51)

where we have utilized (46) and Lemma 5.1 in the last step.
Similarly, we can obtain that .

Now, we only need to show that for detections in ad hoc net-
works, the following exponents can be achieved:

(52)

and

(53)

We use as the threshold of the ratio of and for the
updating rule. Let be a small positive number such that

. Let . Thus
. The existence of such is guaranteed by

(46).
Consider the one-sided error probability

(54)

Given a , and are independent, hence

, which decays
super-exponentially according to Proposition 4.3. Therefore,

is the dominant term
in (54). Hence

(55)

Since is a arbitrarily chosen, we have . To-
gether with the trivial bound , we have

. Similarly, We can show that .
Hence we prove detections in ad hoc sensor network and par-

allel sensor network have equivalent asymptotic performance,
i.e., .

A. Consensus Speed Analysis

In this section, we are concerned about the tail distribution of
the absorption time . Let be the ordered
eigenvalues of (See the definition of in (20)) such that

. Let be the column eigenvector
corresponding to the eigenvalues in the sense that

for all . Since is a substochastic
matrix, it is known by the Perron-Frobenius Theorem[11] that
the largest eigenvalue is unique and a real number between
zero and one . Since can always be written as
a linear combination of the eigenvectors [11], i.e.

(56)

we obtain the following proposition.

Proposition 4.5: The consensus time satisfies

(57)

where .
Proof: It is not hard to write out the pmf of as

(58)

So

(59)

A straightforward corollary from Proposition 4.5 is given
later.

Corollary 4.6: The tail probability converges to
zero exponentially in the following sense:

(60)

where .

V. NUMERICAL RESULTS

So far we have analyzed the detection error probability and
consensus speed. In this section, we are going to show the
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Fig. 3. Limit distribution of consensus in asynchronous system. (a) Limit distri-
bution of consensus given initial state �. (b) A log-plot of� ����� � ������ �
��.

supporting numerical results about the asymptotic system be-
havior in previous sections. Let’s consider the binary detection
problem

(61)

with prior probability and . All
sensors use identical local decision rule

if
otherwise.

(62)

The communication between any two sensors succeed with
probability .

A. Distribution of Consensus Conditioning on Initial State

Fig. 3 gives an example of the limit distribution of consensus
result in asymptotic system when sensor number , given
the initial state . In this case, choose the updating threshold

Fig. 4. Limit distribution of consensus in synchronous consensus scheme. (a)
Limit distribution of consensus given initial state �. (b) A log plot of� ����� �
������ � ��.

. Fig. 3(a) shows how and
change with . From Fig. 3(a), we can

see generally with the increase of , it becomes more likely to
end up with all sensors agreeing on and vice versa. Fig. 3(b)
is a log scale plot of . It shows the
probability of consensus to state drops fast with the initial
state when .

Fig. 4 gives similar results for synchronized system. Here we
use .

B. Consensus Distribution Versus Number of Sensors

We first simuluate proposition 4.3. Given certain initial state
, where , the limit distribution of consensus

result with increasing number of sensors is given by Figs. 5,
6. As shown in the figures, given a specified portion of sensors
that make the right initial local decisions, the error probability
of the consensus decision decreases superexponentially with the
increase of the total sensor number. If we compare Figs. 5 and 6,
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Fig. 5. Consensus distribution conditioned on initial state with increasing
number of sensors in asynchronous consensus scheme.

Fig. 6. Consensus distribution conditioned on initial state in synchronous con-
sensus scheme.

Fig. 7. Bayesian detection error probability in asynchronous consensus
scheme.

we can see that the synchronized scheme slightly outperforms
its asynchronized counterpart.

Fig. 8. Bayesian detection error probability in synchronous consensus scheme.

Fig. 9. Consensus speed of asynchronous consensus scheme.

We also simulate the performance of the consensus based
detection scheme in Bayesian detection problem as shown in
Figs. 7 and 8. For comparison, we plot the error probability
curve for the parallel sensor network with perfect communica-
tion channels. From the figures, we can see that the ad hoc sensor
network asymptotically performs as well as the parallel sensor
network.

C. Consensus Speed

Now we come to give the simulation result for the Corollary
5.6 regarding the consensus speed as shown in Figs. 9 and 10.
Here we let (from above simulation, we know
gives us adequate accuracy in detection). From Fig. 10, we can
see that the synchronized scheme reaches consensus really fast.

VI. CONCLUSION

In this paper, we propose a consensus based detection scheme
for the detection problem in ad hoc sensor networks. We set up a
Markov Chain model for this scheme and based on this model,
we analyze the detection error probability of our scheme and
show that it is asymptotically equivalent to that of a parallel
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Fig. 10. Consensus speed of synchronous consensus scheme.

sensor networks in the sense that they have the same error ex-
ponent even though there is no central processing node in ad
hoc sensor network. We also analyze the consensus speed of the
this our proposed scheme. We show that it is not likely that the
system takes a long time to reach consensus. the probability of
consensus time follows an exponential decay manner and the
exponent is associated with the eigenvalue of the transition ma-
trix among the transient states.
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