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1. Introduction

Toric codes, which were introduced by J. Hansen [5], are constructed on toric varieties. 
These toric codes have attracted quite a bit of attention in the last decade, because they 
are, in some sense, a natural extension of Reed–Solomon codes, which have been studied 
recently in [4–6,8,9,7], etc.

Compared to the other codes, the toric codes have their own advantage for study. The 
properties of these codes are closely tied to the geometry of the toric surface XP associ-
ated with the normal fan �P of the polygon P . Thanks to this advantage, D. Ruano [11]
estimated the minimum distance using intersection theory and mixed volumes, extend-
ing the methods of J. Hansen for plane polygons. J. Little and H. Schenck [8] obtained 
upper and lower bounds on the minimum distance of a toric code constructed from a 
polygon P ⊂ R2 by examining Minkowski sum decompositions of subpolygons of P . The 
most interesting things are that J. Little and R. Schwarz [9] used a more elementary 
approach to determine the minimum distance of toric codes from simplices and rectan-
gular polytopes. They also proved a general result that if there is a unimodular integer 
affine transformation taking one polytope P1 to another polytope P2, i.e. P1 and P2 are 
lattice equivalent (Definition 2.4), then the corresponding toric codes are monomially 
equivalent (hence have the same parameters). However, the reverse implication is not 
true. An explicit example will be given in our paper to illustrate this statement. Based on 
this useful tool, they classified the toric surface codes with a small dimension. However, 
one case of toric codes of dimension 5 was missing in their classification of toric surface 
codes. In [14], the second and the last author of this paper supplemented the missing 
case and completed the proof of classification of toric codes with dimension less than 
or equal to 5. There are other families of higher dimensional toric codes for which the 
minimum distance is computed explicitly, see [13].

In this paper, we give an (almost) complete classification of toric surface codes of 
dimension equal to 6. Also some interesting phenomena have been discovered in the 
process of our proofs. On the one hand, we give an explicit example that two monomially 
equivalent toric codes can be constructed from two lattice non-equivalent polygons, see 
Proposition 3.4. On the other hand, the number of the codewords in CP over Fq with 
some particular weight can be varied by the choice of q, see [10, Tables 3.2–3.5]. The 
methods in this paper shed a light on classification of toric surface codes of higher 
dimension and it may give better champion codes than those in [2].

The main results in this paper are stated below:

Theorem 1.1. Every toric surface code with k = 6, where k is the dimension of the code, 
is monomially equivalent to one constructed from one of the polygons in Fig. 1.

Theorem 1.2. C
P

(i)
6

and C
P

(j)
6

are not monomially equivalent over Fq for all q ≥ 7, except 
that
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Fig. 1. Polygons yielding toric codes with k = 6.

(1) C
P

(5)
6

and C
P

(6)
6

over F7 are monomially equivalent;
(2) the monomial equivalence of C

P
(4)
6

and C
P

(5)
6

over F8 remains open.

The above theorems and the main results in [9,14] yield an (almost) complete classi-
fication of the toric codes of dimension ≤ 6 up to monomial equivalence. Based on the 
fact that the enumerator polynomial of C

P
(4)
6

and C
P

(5)
6

over F8 is exactly the same (see 
[10, Table A.1]), we conjecture the following:
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Conjecture 1.1. C
P

(4)
6

and C
P

(5)
6

over F8 are monomially equivalent.

This paper is organized as follows. In Section 2, some preliminaries have been intro-
duced. Section 3 is devoted to the sketch of the proofs. All the data computed by GAP 
(code from [7]) to support the proofs are collected in the tables in [10]. Due to the page 
limitation, the detailed proofs can be found there.

2. Preliminaries

In this section, we shall recall some basic definitions and results to be used later in 
this paper. We shall follow the terminology and notations for toric codes in [9].

2.1. Toric surface codes

Given a finite field Fq where q is a power of prime number. Let P be any convex 
lattice polygon contained in �q−1 = [0, q − 2]2. We associate P with an Fq-vector space 
of polynomials spanned by the bivariate power monomials:

L(P ) = Span
Fq

{
xm1ym2

∣∣ (m1,m2) ∈ P
}
.

The toric surface code CP [12] is a linear code with codewords the strings of values 
of f ∈ L(P ) at all points of the algebraic torus (F∗

q)2:

CP =
{(

f(t), t ∈
(
F∗
q

)2) ∣∣ f ∈ L(P )
}
.

2.2. Minkowski sum and minimum distance of toric codes

For some special polygons P , one can compute the minimum distance of the toric 
surface code CP , say the rectangles and triangles.

Let P�
k,l = conv{(0, 0), (k, 0), (0, l), (k, l)} be the convex hull of the vectors (0, 0), (k, 0), 

(0, l), (k, l). Let �q−1 = [0, q − 2]2 ⊂ Z2. The minimum distance of CP�
k,l

is given in the 
following theorem.

Theorem 2.3. (See [9].) Let k, l < q − 1, so that P�
k,l ⊂ �q−1 ⊂ R2. Then the minimum 

distance of the toric surface code CP�
k,l

is

d(CP�
k,l

) = (q − 1)2 − (k + l)(q − 1) + kl =
(
(q − 1) − k

)(
(q − 1) − l

)
.

Let P�
k,l = conv{(0, 0), (k, 0), (0, l)} be the convex hull of the vectors (0, 0), (k, 0), 

(0, l). Similarly, the minimum distance of CP�
k,l

is given below:

Theorem 2.4. (See [9].) If P�
k,l ⊂ �q−1 ⊂ R2, and m = max {k, l}, then

d(CP�
k,l

) = (q − 1)2 −m(q − 1).
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Remark 2.1. These two theorems above can be generalized to higher dimensional case, 
see [9].

In the paper [12], the authors give a good bound for the minimum distance of CP in 
terms of certain geometric invariant L(P ), the so-called full Minkowski length of P .

Definition 2.1. Let P and Q be two subsets of Rn. The Minkowski sum is obtained by 
taking the pointwise sum of P and Q:

P + Q = {x + y | x ∈ P, y ∈ Q}.

Let P be a lattice polytope in Rn. Consider a Minkowski decomposition

P = P1 + · · · + Pl

into lattice polytopes Pi of positive dimension. Let l(P ) be the largest number of sum-
mands in such decompositions of P , and called the Minkowski length of P .

Definition 2.2. (See [12].) The full Minkowski length of P is the maximum of the 
Minkowski lengths of all subpolytopes Q in P ,

L(P ) := max
{
l(Q)

∣∣ Q ⊂ P
}
.

We shall use the results in [12] to give a bound of the minimum distance of CP :

Theorem 2.5. (See [12].) Let P ⊂ �q−1 be a lattice polygon with area A and full 
Minkowski length L. For q ≥ max(23, (c +

√
c2 + 5/2)2), where c = A/2 − L + 9/4, 

the minimum distance of the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1) − 2√q + 1.

With the condition that no factorization f = f1 · · · fL(P ) for all f ∈ L(P ) contains an 
exceptional triangle (a triangle with exactly 1 interior and 3 boundary lattice points), 
we have a better bound for the minimum distance of CP :

Proposition 2.1. (See [12].) Let P ⊂ �q−1 be a lattice polygon with area A and full 
Minkowski length L. Under the above condition on P , for q ≥ max(37, (c +

√
c2 + 2)2), 

where c = A/2 − L + 11/4, the minimum distance of the toric surface code CP satisfies

d(CP ) ≥ (q − 1)2 − L(q − 1).
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2.3. Some theorems about classification of toric codes

In this paper, we shall classify the toric codes with dimension equal to 6, according 
to the monomial equivalence. Thus, we state the precise definition below.

Definition 2.3. Let C1 and C2 be two codes of block length n and dimension k over Fq. 
Let G1 be a generator matrix for C1. Then C1 and C2 are said to be monomially equiva-
lent if there is an invertible n ×n diagonal matrix Δ and an n ×n permutation matrix Π

such that

G2 = G1ΔΠ

is a generator matrix for C2.

It is easy to see that monomial equivalence is actually an equivalent relation on codes 
since a product ΠΔ equals Δ′Π for another invertible diagonal matrix Δ′. It is also 
a direct consequence of the definition that monomially equivalent codes C1 and C2
have the same dimension and the same minimum distance (indeed, the same full weight 
enumerator).

An affine transformation of Rm is a mapping of the form T (x) = Mx + λ, where λ is 
a fixed vector and M is an m ×m matrix. The affine mappings T , where M ∈ GL(m, Z)
(so Det(M) = ±1) and λ have integer entries, are precisely the bijective affine mappings 
from the integer lattice Zm to itself.

Generally speaking, it’s impractical to determine two given toric codes to be mono-
mially equivalent directly from the definition. A more practical criteria comes from the 
nice connection between the monomial equivalence class of the toric codes CP and the 
lattice equivalence class of the polygon P in [9].

Theorem 2.6. If two polytopes P and P̃ are lattice equivalent, then the toric codes CP

and CP̃ are monomially equivalent.

The definition of the lattice equivalence of two polygons is the following:

Definition 2.4. We say that two integral convex polytopes P and P̃ in Zm are lattice 
equivalent if there exists an invertible integer affine transformation T as above such that 
T (P ) = P̃ .

For the sake of completeness, we list some simple facts about lattice equivalence of 
two polytopes P and P̃ in Z2.

Proposition 2.2.

(i) If P can be transformed to P̃ by translation, rotation and reflection with respect to 
x-axis or y-axis, then P and P̃ are lattice equivalent;
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(ii) If P and P̃ are lattice equivalent, then they have the same number of sets of n
collinear points and the same number of sets of n concurrent segments;

(iii) If P and P̃ are lattice equivalent, then they are both n-side polygons;
(iv) If P and P̃ are lattice equivalent, then they have the same number of interior integer 

lattices.

These properties are directly followed from Definition 2.4.
Besides the properties of lattice equivalence, Pick’s formula is also a useful tool in the 

proof of Theorem 1.1.

Theorem 2.7 (Pick’s formula). Assume P is a convex rational polytope in the plane, then

�(P ) = A(P ) + 1
2 · ∂(P ) + 1,

where �(P ) represents the number of lattice points in P , A(P ) is the area of P and ∂(P )
is the perimeter of P , with the length of an edge between two lattice points defined as one 
more than the number of lattice points lying strictly between them.

Remark 2.2. Generally speaking, ∂(P ) is the number of lattice points on the bound-
ary of P . The only exception in plane is line segment, which should follow the precise 
definition of length of the edge above.

2.4. Some theorems to eliminate the upper bound of q

Let us introduce the so-called Hasse–Weil bounds, which will be used in the proof of 
Theorem 1.2 frequently to help specifying the exact number of the codewords with some 
particular weight, for q large.

Theorem 2.8. (See [1].) If Y is an absolutely irreducible but possibly singular curve, g is 
the arithmetic genus of Y , Y (Fq) is the set of Fq-rational points of curve, then

1 + q − 2g√q ≤
∣∣Y (Fq)

∣∣ ≤ 1 + q + 2g√q.

These two bounds are called the Hasse–Weil bounds.

Let f ∈ L(P ) and Pf denote its Newton polygon, which is the convex hull of the 
lattice points in (F∗

q)2. Denote

f =
∑

m=(m1,m2)∈Pf

λmxm1ym2 , λm ∈ F∗
q .

Let X be a smooth toric surface over Fq defined by a fan ΣX ⊂ R2 which is a 
refinement of the normal fan of Pf . Let Cf be the closure in X of the affine curve given 
by f = 0. If f is absolutely irreducible, then Cf is irreducible. By Theorem 2.8,
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∣∣Cf (Fq)
∣∣ ≤ q + 1 + 2g√q,

where g is the arithmetic genus of Cf .
Let Z(f) be the number of zeros of f in the torus (F∗

q)2. It is well known that the 
arithmetic genus g of Cf equals to the number of interior lattice points in Pf (see [8] for 
the curves).

Proposition 2.3. Let f be absolutely irreducible with Newton polygon Pf . Then

Z(f) ≤ q + 1 + 2I(Pf )√q,

where I(Pf ) is the number of interior lattice points.

3. Proof of the theorems

In this section, we shall give the sketch of the proofs of Theorems 1.1 and 1.2. Before 
that, let us clarify the notations first. Let Pi denote an integral convex polygon in Z2

with i lattice points, P (j)
i is the jth lattice equivalence class of Pi, V is the additional 

lattice point, which will be added to P (j)
i and P (j)

i,V := conv{P (j)
i , V } denote a new 

integral convex polygon formed by P (j)
i and V . Our strategy is almost the same as that 

in [9], by adding all possible choices of V to P (j)
5 to get all lattice equivalence classes 

of P6 with the help of Pick’s formula. For the sake of self-contain, we list all the P (j)
5 , 

j = 1, · · · , 7 in Fig. 2.

Proof of Theorem 1.1. Let us add V to P (1)
5 = conv{(0, 0), (4, 0)} to see that P (1)

6
and P (2)

6 are the only two lattice equivalence classes. If V is on the x-axis to form 
a line segment, the only choices of V would be (5, 0) or (−1, 0), otherwise the new 
convex polygon have more than 6 lattice points. Notice that P (1)

6 = conv{P (1)
5 , (5, 0)}

and conv{P (1)
5 , (−1, 0)} are lattice equivalent by translation (i.e. Proposition 2.2 (i)). 

If V is not on the x-axis, then we have ∂(P (1)
5,V ) = 6. By using Pick’s formula, 6 =

#(P (1)
5,V ) = A(P (1)

5,V ) + 1
2∂(P (1)

5,V ) + 1 = A(P (1)
5,V ) + 4, we get A(P (1)

5,V ) = 2. Therefore, the 
choices of V are the lattice points on y = ±1. Say, V = (x0, 1), x0 is integer. By the 
definition of lattice equivalence, there is an integer affine transformation M =

( 1 0
−x0 1

)
, 

which transforms conv{P (1)
5 , (x0, 1)} to P (2)

6 . The similar transformation can be found 
to conv{P (1)

5 , (x0,−1)}.
There are only 14 lattice equivalence classes P (i)

6 , i = 1, · · · , 14, as shown in Fig. 1. 
Since the arguments are similar, we just list all the possible V ’s and in which equivalence 
class P (i)

5,V is, for i = 1, · · · , 7, in [10, Table 3.1]. The verification is left to the interested 
readers. �

In order to show Theorem 1.2, we only need to determine whether two toric surface 
codes constructed from the polygons in Fig. 1 can be pairwise monomially equivalent. 
Our strategy is the following:
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Fig. 2. Polygons yielding toric codes with k = 5.

(1) For q small, say q ≤ 8, we use the GAP code (with toric package and guava package) 
to get their enumerator polynomials directly. If those enumerator polynomials of 
C

P
(i)
6

, 1 ≤ i ≤ 14, are different from each other on Fq, for 7 ≤ q ≤ 8, then they are 
not pairwise monomially equivalent. If they are the same in some cases (for example, 
C

P
(5)
6

and C
P

(6)
6

over F7, CP
(4)
6

and C
P

(5)
6

over F8, see [10, Table A.1]), we need some 
further investigations.

(2) For q large, say q ≥ 9, we shall compare the invariants of the codes, including 
minimum distance, the number of the codewords with some particular weight, etc. 
Once we could identify one invariant in one case to be different from that in another 
case, then we conclude that they are pairwise monomially inequivalent. However, the 
estimate of the number of the codewords with some particular weight depends on 
how large q is. Therefore, we still need to use GAP (with toric package and guava 
package) for small q (see [10, Tables A.2 and A.3]).

The first step in our strategy is to tell the monomial equivalence of C
P

(i)
6

, 1 ≤ i ≤ 14, 
for q ≤ 8. It’s easy to see from [10, Table A.1] that all the enumerator polynomials of 
C

P
(i)
6

, 1 ≤ i ≤ 14, are different, except that of C
P

(5)
6

and C
P

(6)
6

over F7 and that of C
P

(4)
6

and C
P

(5)
6

over F8. Here, an interesting phenomena occurs. Two toric codes constructed 
from two lattice non-equivalent polygons could also be monomially equivalent. C

P
(5)
6

and 
C

P
(6)
6

over F7 is the typical example.

Proposition 3.4. C (5) and C (6) over F7 are monomially equivalent.

P6 P6
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Proof. We use the Magma program to give the generator matrices of these two toric 
codes over F7. For the Magma code, please refer to [7]. �

Unfortunately, the other pair C
P

(4)
6

and C
P

(5)
6

over F8 can’t be determined by the 
same way as in Proposition 3.4, since the command “IsEquivalent” in Magma can only 
be used to compare toric codes over Fq with q = 4 or small prime numbers. Moreover, it is 
infeasible to show the monomial equivalence directly from the definition. So we leave the 
problem open. Based on the result in Proposition 3.4 and the fact that the enumerator 
polynomial of C

P
(4)
6

and C
P

(5)
6

over F8 is exactly the same, we conjecture that this pair, 
i.e. C

P
(4)
6

and C
P

(5)
6

over F8, is also monomially equivalent. Further, we ask a more general 
question for the interested readers: For which q and k are there monomially equivalent 
toric codes over Fq from polytopes that are not lattice equivalent?

Next, we shall classify C
P

(i)
6

, 1 ≤ i ≤ 14, for q ≥ 9. The first invariant to be examined 
is the minimum distance (or the minimum weight), denoted as d(C

P
(i)
6

).

Proposition 3.5. According to d(C
P

(i)
6

), 1 ≤ i ≤ 14, for q ≥ 9, no code in one of the five 
groups is monomially equivalent to a code in any of the other four groups:

(i) C
P

(1)
6

;
(ii) C

P
(2)
6

;
(iii) C

P
(14)
6

;
(iv) C

P
(i)
6

, for 3 ≤ i ≤ 8;
(v) C

P
(i)
6

, for 9 ≤ i ≤ 13.

Sketch of the proof. Detailed proof is included in [10, Proposition 3.5]. Here we only 
summarize the minimum distance below:

(i) d(C
P

(1)
6

) = (q − 1)2 − 5(q − 1),
(ii) d(C

P
(2)
6

) = (q − 1)2 − 4(q − 1),
(iii) d(C

P
(14)
6

) = (q − 1)2 − (3q − 5),
(iv) d(C

P
(i)
6

) = (q − 1)2 − 3(q − 1) for 3 ≤ i ≤ 8,
(v) d(C

P
(i)
6

) = (q − 1)2 − 2(q − 1) for 9 ≤ i ≤ 13. �
Just according to the minimum distance, the monomial equivalence/inequivalence of 

any two codes both from either group (iv) or (v) in Proposition 3.5 are still unknown. We 
shall examine two more invariants: the numbers of the codewords with weight (q− 1)2 −
2(q − 1) and (q − 1)2 − (2q − 3), denote as n1(CP

(i)
6

) and n2(CP
(i)
6

), respectively.
The basic idea to examine the pairwise monomial inequivalence of any two codes C

P
(i)
6

in group (iv) or (v) is:

(1) to find out n1(CP
(i)
6

) and to sort the codes with the same n1(CP
(i)
6

) into subgroups 
to be determined later;
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(2) to give the range of n2(CP
(i)
6

) among the codes with the same n1(CP
(i)
6

) and to 
compare them to give the final classification.

Fortunately, in our situation, these two invariants are enough to give a complete classi-
fication of monomial equivalence class to C

P
(i)
6

in group (iv) and (v), respectively.
To be more precise, the way to compute n1(CP

(i)
6

) is to enumerate the families of 
evaluations that contribute to weight (q − 1)2 − 2(q − 1). The completeness of the enu-
meration above is followed by Theorem 2.8, which requires q being large, say q ≥ 23
(this lower bound is given by the inequality in Proposition 2.3, see detailed explanation 
in the sketch of the proof of Proposition 3.6) in most of the cases. Then, we use the GAP 
code (with toric package and guava package) again to make up the gap 9 ≤ q ≤ 19, see 
[10, Table A.2]. For q ≥ 23, with the help of n1(CP

(i)
6

), we can exclude some codes and 
sort the ones left into several subgroups with the same n1(CP

(i)
6

). Then, by enumerating 

the families of evaluations that contribute to weight (q − 1)2 − (2q − 3), the range of 
n2(CP

(i)
6

) can be obtained to classify the subgroups.

Proposition 3.6. For q ≥ 9, no two codes from the same group either (iv) or (v) in 
Proposition 3.5 are monomially equivalent.

Sketch of the proof. The argument is similar to that in the proof of Theorem 6 in [9]. 
For the readers’ convenience, we investigate n1(CP

(3)
6

) in detail in [10]. The key point in 
the argument is to find out the distinct families of reducible polynomials which evaluate 
to give the codewords with weight (q − 1)2 − 2(q − 1), where [3, Theorem 4.2] is used. 
Table 3.2 in [10] lists the key information for n1(CP

(i)
6

), 3 ≤ i ≤ 8, with q ≥ 23.
Let us explain where the lower bound of q comes from briefly, say in the case C

P
(4)
6

. 
It is also valid for other C

P
(i)
6

, 5 ≤ i ≤ 8. Actually, for q ≥ 23, we claim that there 

are exactly 5
(
q−1
2
)
(q − 1) such codewords in C

P
(4)
6

. Any other such codewords could 

only come from evaluating a linear combination of {1, x, x2, x3, y, y−1} in which both 
{x, x2, x3} and {y, y−1} appears with at least one element having nonzero coefficients 
(since otherwise we are in a case previously covered). Such polynomial will be absolutely 
irreducible. The maximal polygon of such polynomials associates to the polynomials with 
x3, y, y−1 having nonzero coefficients, as f = a1 + a2x + a3x

2 + a4x
3 + a5y + a6y

−1

where a4, a5, a6 �= 0. By Proposition 2.3, the number of zeros of f in the torus (F∗
q)2 has 

a bound:

Z(f) ≤ q + 1 + 2I(Pf )√q = 1 + q + 4√q.

When q ≥ 23, Z(f) < 2q − 2. Thus such polynomial can never have 2q − 2 zeros when 
q ≥ 23. Any other smaller polygons have fewer interior points and then have lower upper 
bound. So all such polynomials can never have 2q − 2 zeros when q ≥ 23.
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Due to Table 3.2 in [10] we still have the following three cases to verify:

(1) When q ≥ 23, any two codes of C
P

(3)
6

, C
P

(5)
6

and C
P

(6)
6

are pairwise monomially 
inequivalent;

(2) Over Fq, where 3 � (q−1), C
P

(7)
6

and any one code of C
P

(3)
6

, C
P

(5)
6

, C
P

(6)
6

are pairwise 
monomially inequivalent;

(3) Over Fq, where q = 2n, n ∈ Z+, C
P

(4)
6

and C
P

(8)
6

are pairwise monomially inequiva-
lent.

It is worth to mention that we could make sure n2(CP
(4)
6

) = 0 when q = 2n and 
n ≥ 5; and we could settle down the value of n2(CP

(i)
6

) for i = 6, 7, 8 and q ≥ 25. 
Thus, it is sufficient to check that no two enumerator polynomials of each codes over 
Fq, q ≤ 23, in [10, Table A.2] are exactly the same, which guarantees the codes are 
pairwise inequivalent in each case above. The way to find out n2(CP

(i)
6

), 3 ≤ i ≤ 8, is
similar to that of n1(CP

(3)
6

) before. So we just list the key information in [10, Table 3.3]
say the distinct families of reducible polynomials which evaluate to give the codewords 
with weight (q − 1)2 − (2q − 3), of each codes as before. The verifications are left to the
interested readers. We have reached our conclusion for group (iv) in Proposition 3.5.

Similarly, we could give a complete classification of monomial equivalence class of 
C

P
(i)
6

in group (v). They are classified by n1(CP
(i)
6

) in [10, Table 3.4]. Three cases are 
left to be determined by n2(CP

(i)
6

):

(1) C
P

(9)
6

and C
P

(11)
6

are monomially inequivalent;
(2) C

P
(10)
6

and C
P

(13)
6

are monomially inequivalent;
(3) Over Fq, where q = 2m, m ∈ Z+, C

P
(12)
6

and any one of C
P

(9)
6

, C
P

(11)
6

are monomially 
inequivalent.

The conclusion follows immediately from [10, Table 3.5]. �
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