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Abstract 

The idea of using estimation algebra to construct finite-dimensional nonlinear filters was first proposed by Brockett 
and Mitter independently. It has proven to be an invaluable tool in the study of nonlinear filtering problem. In 1983, 
Brockett proposed to classify all finite-dimensional estimation algebras. In this paper, we give the construction of 
finite-dimensional estimation algebras of non-maximal rank. These non-maximal rank finite-dimensional estimation 
algebras play an important role in Brockett's classification problem. © 1997 Elsevier Science B.V. 
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1. Introduction 

In the late 1970,;, Brockett and Clark [2], Brockett [1], and Mitter [11] proposed the idea of using 
estimation algebras to construct finite dimensional nonlinear filters. It has been proved that the Lie algebra 
approach plays a fundamental role in the study of nonlinear filtering problem. The motivation came from the 
Wei-Norman approach [13] of using Lie algebraic ideas to solve time varying linear differential equations. 
In spite of the importance of the concept of estimation algebra, very little was known about estimation 
algebra. It was only recently that the structure and classification of finite dimensional exact estimation 
algebras were studied in detail in [12, 10]. In 114], the concept of 12 is introduced, which is defined as the 
matrix whose ( i , j )  element is Ofj/Oxi - O~/Ox~, where f  is the drift term of the state evolution equation. For  
the class of exact filtering systems, f2 is identically zero. More recently, Yau [15] has studied filtering systems 
in which all entries of Q are constants. He was able to classify all finite dimensional estimation algebras of 
maximal rank in such filtering systems. If the dimension of the state space is two, three, or four, then 
Chiou-Yau [7] Chen-Leung-Yau [3, 4] have shown, respectively, that all entries of ~2 are constants as long 
as the estimation algebra is of maximal rank (see Section 2 for definition) and finite dimensional. Thus finite 
dimensional estimation algebra of maximal rank is completely classified if the dimension of the state space is 
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at most four. The novelty of their theorems is that there is no a priori assumption on the drift term of the 
nonlinear filtering system. 

Yau's approach of complete classification of finite-dimensional estimation algebras of maximal 
rank consists of two steps. The first step is to prove that for such an estimation algebra, all the entries 
in the O-matrix are degree one polynomials. The second step is to prove that in fact all the entries in f2 
are constants. Then we can apply the result of Yau [15] to give a complete classification of finite dimensional 
estimation algebras of maximal rank. Most recently, Chen-Yau I-5] has completed the first step of 
this approach. Thus we have a pretty good picture of finite dimensional estimation algebras of maximal 
rank. 

In this paper, we shall study finite dimensional estimation algebras of non-maximal rank. Specifically, 
we shall give general construction of finite dimensional estimation algebras of non-maximal rank. This 
construction gives rise to a new class of finite dimensional nonlinear filters which are not discussed 
previously. We suspect that all finite dimensional estimation algebras of non-maximal rank are essentially 
arising in this way. In Section 4, we shall show that the four-dimensional non-maximal rank estimation 
algebra of Wong [14] is isomorphic (as Lie algebra) to one of our finite dimensional estimation algebras 
constructed in Section 3. 

2. Basic concepts 

The filtering problem considered here is based on the following signal observation model: 

dx(t) =f(x( t ) )  dt + g(x(t)) dr(t), x(0) = Xo, 
dy(t) = h(x(t)) dt + dw(t), y(0) = 0 (2.1) 

in which x, v, y and w are, respectively, R", R p, R m, and R m valued processes, and v and w have components 
which are independent, standard Brownian processes. We further assume that n = p , f  h are C °~ smooth, and 
that g is an orthogonal matrix. We shall refer to x(t) as the state of the system at time t and y(t) as the 
observation at time t. 

Let p(t, x) denote the conditional probability density of the state given the observation { y(s): 0 ~< s ~< t}. It 
is well known (see [9], for example) that p(t, x) is given by normalizing a function, a(t, x), which satisfies the 
following Duncan-Mor tensen-Zaka i  equation: 

d6(t, x) = Loa(t, x) dt + ~ Lia(t, x) dyi(t), a(O, x) = ao, (2.2) 
i = 1  

where 

Oxl 2 i = l  -- i = 1  i = 1  

and for i = 1 . . . .  , m, L~ is the zero degree differential operator  of multiplication by h~. ao is the probability 
density of the initial point Xo. 

Before we proceed, we give the definition of a differential operator. 

Definition 1. For  any I = (il, i 2 ,  . . .  , i,) ~ 7}~_ where 7/~_ denotes the set of nonnegative integers, we shall use 
the following standard notation: 

O I il i2 in 
= D1 D 2  " ' "  On , III ----- i l  + i2 + " ' "  + in. 

By a differential operator  in xl . . . . .  x, variables, we mean an operator  of the form F = 
Zl11~,at(xl,  ... , x,)D ~, where a1(xl . . . .  , x,) 's are C ® functions. If one of the a1(xl . . . . .  x,), for I I I  = r ,  is 
nonzero, we say that F is a differential operator of order r. 
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Eq. (2.2) is a stochastic partial differential equation. In real applications, we are interested in considering 
robust state estimators from observed sample paths with some properties of robustness. Davis [8] studied 
this problem and proposed some robust algorithms. In our case, his basic idea reduces to defining a new 
unnormalized density 

((t, x )=  exp (--i~=x hi(x)yi(t))a(t, x). 

It is easy to show that ((t, x) satisfies the following time varying partial differential equation: 

y,(t)yj(t) [[Lo, Li], L j] ((t, x), -~( t , x )  = Lo(( t ,x )  + yi(t)[Lo, L ,J( ( t ,x )  +-~, 
i = 1  ", ' =  

~(0, x) = ao,  

where [-,.] is the Lie bracket defined as follows. 

Definition 2. If X and Y are differential operators, the Lie bracket of X and Y, [X, Y], is defined by 

[X, Y]( = X(Y0 - r ( x o  

for any C ~ function (. 

Definition 3. The estimation algebra E, of the filtering system (2.1), is defined to be the Lie algebra generated 
by {Lo, Lx, ...,Lm}. 

In [7], Chiou and Yau first introduced the concept of maximal rank estimation algebra. 

Definition 4. The estimation algebra E of (2. i) is said to be an estimation algebra of maximal rank if for any 
I ~< i ~< n, there exi,;t constants ci such that x~ + cl is in E. 

In [14], the concept of f2 was introduced, which is defined as the matrix whose (i,j) component mij is 
c3fJ Oxi - (~f / t3x j. Define 

D i = s s - - - f i  and r /= + h 2. 
i = 1  i =  i = 1  

Then 

1 - t/). 

The following theorem proved in [15] plays a fundamental role in the classification of finite dimensional 
estimation algebras. 

Theorem 2.1. Let E be a finite dimensional estimation algebra of(2.1) such that o~ u = (OfJOxl) - (af~/Oxj) are 
constants. I f  E is of maximal rank, then E is a real vector space of dimension 2n + 2 with basis given by 
1, x l ,  x2 . . . . .  x,, D::, D2 . . . . .  Dn and Lo. 

In [5], Chen and Yau have completed the first step of the program of classification of finite dimensional 
maximal rank estimation algebras. In fact they also proved the so-called Mitter conjecture [6]. 



112 A. Rasoulian, S.S.-T. Yau / Systems & Control Letters 30 (1997) 109-118  

Theorem 2.2 (Chen and Yau [6]). Let  E be a finite dimensional estimation algebra of (2.1). Let k be the 
maximal rank of  those quadratic forms in E. Then 

1. The observation terms hi(x), 1 <. i <~ m, are affine polynomials. 
2. (a) mq, for 1 <. i <. k or 1 <. j <~ k, are constants. 

(b) o~ij, for k + 1 <~ i , j  <~ n, are degree one polynomials in XR+I, ... , X,. 
3. ~l = ~ = 1  Of i/ t~Xi + ~7=l f i 2 + ~ = 1  hE is a homogenous polynomial of  degree 4. Moreover, q4 (-- homo- 

genous polynomial of  degree 4 part of  ~l) depends only on the Xk + 1 . . . . .  X, variables. 

The following theorem is proved in [5-7]. 

Theorem 2.3. Suppose that the state space of  the filtering system (2.1) is of  dimension n ~ 4. I f  E is the 
finite dimensional estimation algebra of  maximal rank, then the drift term f must be a linear vector 
field (i.e. each component is a polynomial of  degree one) plus a gradient vector field and E is a real vector 
space of  dimension 2n +2 with basis given by 1, x l ,  ... , x , ,  D1 . . . .  , D, and Lo. Moreover t 1 is a degree 
2 polynomial. 

In view of these theorems we have a pretty good picture of all finite dimensional estimation algebras of 
maximal rank. 

3. Construction of a finite dimensional estimation algebra of non-maximal rank 

Suppose that E is the finite dimensional estimation algebra associated to the filtering system (2.1). Consider 
the following enlarged filtering system: 

d)~(t) =jT(o~(t)) dt + O0~(t)) d~(t), Y(O) = Xo, 
dy(t) = h(~c(t)) d(t) + dw(t), y(O) = O. (3.1) 

Here Y = ( x x ,  . .- ,  x,, x, + 1, . . . ,  Xn + k), Y()~( t ) )  = ( f l  (X1 . . . . .  Xn) . . . .  , f n ( X l ,  " " ,  Xn), f n  + 1 (Xn + 1, " ' ,  Xn + k) . . . . .  

f ,+k(X,+l . . . . .  X,+k)), ~(Y(t)) = orthogonal matrix, h(Y( t ) )= h(xx, . . . ,  x,),  and ~ and w have components 
which are independent, standard Brownian processes. 

Let /~ be the estimation algebra associated to (3.1). We shall show that /7  is isomorphic to E as a Lie 
algebra. Observe that 

x' 

i /n+k 

where 

if l <~ i,j  <~ n, 

if i>~n, j<~n or i<~n,j>~n,  

i , j>~n, 

0 
Dn+ i - -  _ _  

C3Xn + i 
f .+i(X.+l . . . . .  x.+k), l <~ i <~ k, 

~(X)  = /](X)'-~- Z ~ X / (  x n + l  . . . . .  Xn+k)-~-  
i = n + l  

n+k 

f / 2 ( X n +  1 . . . . .  Xn+k) .  
i = n + l  
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L e m m a  3.1. I f  F is a differential operator in x l ,  . . . ,  x .  variables o f  order r, then [F,  4 (x l ,  . . . ,  Xn, Xn+ 1, " " ,  Xn+k)] 
= [F, rl(Xl . . . . .  x , ) ]  is a differential operator o f  order r - 1  in x l  . . . . .  x ,  variables. 

Proof .  W e  shal l  p rove  this by  us ing  i n d u c t i o n  o n  the  o rde r  of  the different ial  ope ra to r .  If  the  o rde r  of  F is 

zero, t hen  F is a f imc t ion  a n d  hence  [F ,  4]  = 0 =  [F , / / ] .  If  F = ~ . 7 = l a i ( x l ,  ... , x . ) D i  + b ( x a  . . . . .  x , )  is 
a differential  o p e r a t o r  of  o rde r  o n e  in  x l  . . . . .  x ,  var iables ,  t hen  

634 ~,, a i ( x l  . . . . .  Xn) 631"1 
[F,  43 = ai(x1, ... , x , )  ~ x / =  i=1 ~ x / =  IF ,  r/]. 

i = 1  

S u p p o s e  tha t  the: l e m m a  is t rue  for all  differential  ope ra to r s  of  o rde r  r in  x l  . . . . .  x ,  var iables .  Let  
F = Y~lt I <<., + ~ a1(x ~ . . . . .  x,,) D i be a different ial  o p e r a t o r  of  o rde r  r + 1 in  x ~ . . . . .  x ,  var iables .  W e  shal l  show 

tha t  IF ,  4(Xl . . . . .  x,,, x ,+  1 . . . . .  x n + d ]  = [F,  r/(x~, . . . ,  x , ) ]  is a differential  o p e r a t o r  of  o rde r  r in  Xl . . . . .  x ,  
var iables :  

[F ,  4(Xl,  . . . ,  x,,, X .+ l  . . . . .  Xn+k)] 

= ~ ax(x~ . . . . .  x d  IDa' ... D~', 4(X1, . . . ,  Xn, Xn+ 1 . . . . .  Xn +k)] 
I l l = r + 1  

o: ,Xl . . . . .  . . . . .  1 

= 2 a , ( x l ,  . . .  , X n ) [ D ' ;  . . .  D ) , 4 ( x , ,  . . .  ,Xn,  X . + ~ ,  . . .  , x , + ~ ) ]  
I I l = r + l  

The  last  equa l i ty  is a c o n s e q u e n c e  of the  i n d u c t i o n  hypothes is .  H e n c e  L e m m a  3.1 will fol low if we can  show 

tha t  for i x +  ... + i , = r + l ,  

[D' ;  . - .  ' " "  D . ,  ~/(x~, . . . ,  x , ,  x ,+~ . . . . .  xn+k)] = [D~ ... D'.",/~(x 1 . . . .  , Xn) ] 

a n d  is a differential  .operator  of  o rde r  r in  x l  . . . . .  x .  var iables .  I n  genera l  for a n y  different ial  o p e r a t o r s  X,  Y, 
a n d  Z ,  we have  the  fo l lowing  formula :  

[ X Y ,  Z ]  = X [ Y ,  Z ]  + [ X ,  Z ]  

I t  fol lows tha t  for it + ... + in = r 

EO'; ... D L  4 ( x l ,  . . . ,  x , ,  x , + l ,  

D I [ D i ; - I D 2  ~ i. ~ . . . .  Dn, q(Xx, 

Y. 

+ 1 ,  

. . . .  x . + d ]  

. . . .  x . ,  x .+  1, .-- , x .+~)]  

/-~i - 1 r l i2  i~ 
+ [Dx, 4(Xl . . . . .  Xn, Xn+ 1 . . . . .  X , + t ) ] , ' I  "-'2 "'" D.  

D l [ D i ; - l n i 2  i. " - = ~2 "'" Dn,  r /(xl ,  . . . ,  x . ) ]  + [D1, r /(xl ,  ... , x , ) ] D ~  106~2 "" D.i" 

. . . .  D,,, r/(xx . . . . .  xn)]. 

O bse rve  tha t  [D~' - ~ ~2  ni~ "'" D~ °, q(Xl , . . . . . .  , x , ) ]  is a dif ferent ia l  o p e r a t o r  of  o rde r  r - 2 in  Xl,  , x .  var iables .  
Therefore  [D~ ... D~', 4]  is a different ial  o p e r a t o r  of  o rde r  r in  x t  . . . . .  x ,  var iables .  [ ]  

L e m m a  3.2. L e t  F be a differential operator o f  order r in Xl . . . . .  x ,  variables. Then  f o r  n + 1 <~ j <~ n + k, 
[D 2, F]  = O. 
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Proof.  Observe that 

c~a~ 
[Oj ,  a i ( x l  . . . . .  xn) ] = ~Xj (x l  . . . . .  Xn) = 0 

and 
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~ r n + l ~ j ~ n + k  

[ o j ,  D,] = ~ (x~, ... , x , )  - ~ (x,+ l ,  ... , x,+~) = o 

Therefore, for n + 1 ~< j ~< n + k 

rD~, F ]  ; ,  Z al(Xl  . . . .  , xn)Oi; .. .  O 
L IIl~<r 

Z 2 il i. 
= Dj ai(x l  . . . . .  x . )D 1 ... D .  - 

Il l<.r  

=O. [ ]  

f o r l < ~ i < < . n a n d n + l < < . j < < . n + k .  

2 a l (X l  . . . .  x . )D~ i 2 , ... D2D j 
Ill~<r 

Lemma 3.3. For any differential operator F in x l  . . . . .  x ,  variables, [E,o, F ]  = [Lo, F] .  

Proof. 

Theorem 3.4. The estimation algebra E associated to the flltering system (3.1) is isomorphic to the estimation 
algebra E associated to the filtering system (2.1), and E consists o f  a basis such that all elements in this basis are 
differential operators in x l  . . . . .  x ,  variables except L,o. Furthermore, ~2 = (t~fJOxi - ~ / O x j )  is given by 

o=(: o) 
where ~ is the n x n matrix (Ofj/Oxi(x) - Ofi/Oxj(x)) associated to (2.1) and A is a k x k matrix with (i, j ) -entry 
(OL+ d ~ x . + i  - O L + @ x . +  ~I(x.+ 1 . . . . .  x.+k). 

Proof.  Observe that  for 1 ~< l ~< m 

= £ D 2,hl(xx . . . . .  x,,) n t- - Dj, h,(x 1 . . . . .  Xn) 
i=1 L2 j=n+ l  

[~( ) ] .+k rOh, 102h, ] 
= ,=,£ v t - ,  .h,(x, .... .x.) + J=.Z+, LOxj+5 axT(X, .. . . .  x.) 

= [Lo, hz(Xl . . . . .  x.)] ,  
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where [Lo, ht(xl  . . . . .  x,)]  is a differential operator  of order one in xl . . . .  , x,  variables. In view of Lemma 
3.3, we have 

[/:o, [/~o, ht(xl  . . . . .  x, ) ] ]  = Eft.o, [Lo, hi(x1 . . . .  , x,)] ]  = [Lo, [Lo, ht (x l ,  . . . ,  x,)]] .  

For  two differential operators X, Y we define A d x Y  = [X, Y]. By induction, we can show that for any 
positive integer q, 

Ad[ohz(xx,  ... , x , )  = Ad[oht(x:t . . . . .  x,,). 

It  follows that /~ = E. It  is also clear from the proof  that /~ consists of a basis such that all elements in this 
basis is a differential operator  in Xl . . . . .  x,  variables except /~o. This finishes the proof  of the Main 
Theorem. [] 

Remarks. (1) The finite dimensional estimation algebra/~ is of non-maximal rank if k > 0. Observe also that 
A is quite arbitrary. 

(2) We would like to emphasize that the orthogonal matrix O(Xl . . . . .  x , ,  x ,+ 1 . . . . .  x ,+k)  is arbitrary and 
is not necessarily of the form 

( g(X1 . . . . .  0 Xn) gl(Xn+l 0 . , . .  Xn+k))" 

So (3.1) is not a direct sum of two filtering systems. This is a crucial point of our theorem. 

4. Wong's four-dimensional estimation algebra 

Example 4.1. In [14], Wong considered the following filtering system defined on ~3 

d x l  = (x l  + x:z + x3 + 7(xl + x2 -t- X3) ) d t  + d W l ,  

d x  3 = (X 1 -I'- X2) dt + d w 3 ,  dy = (x 2 - x3) dt + dr, 

dx 2 = (x 1 + x3) dt + dw2, 
(4.1) 

where 7 is a 
independent, standard Brownian processes. Then 

f2 = 1 0 7 ' ( x l  + x2 + x3), 

1 0 

fl(X) = X 1 "-~ X 2 "t- X 3 q- ~)(X 1 -t- X 2 + X3) , 

C ° function with a bounded, non-zero first derivative and w = (Wx, w2, W3) and v are 

f z ( x )  = x l  + x3 ,  f3 (x )  = x l  + x2,  

0 
h(x)  = x 2 - x3, Di = - -  --fi(x), 1 ~< i ~< 3, 

where 

q = ~ x / +  f/2 + h2(x) 
i = 1 ;=  

= 1 + 7 ' ( x l  "t" X2 "~-X3) ' t -  [-X 1 "~-X 2 "Ji-X 3 "~ ~(X 1 "t-X 2 -t- X 3 ) ]  2 + (X1 -'~- X3) 2 " t -(X 1 "t- X2) 2 -~-(X 2 - - X 3 )  2. 
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It is easy to see that 

[Lo, h(x)] = [Lo, x2] - [Lo, x3] = D2 --  03 

and 
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: !~0)2i~ 1 63r I ~ 0)3iDiW2--~xixi)  2 ~ x 3  
i=1 ~ 0)2'Di+2 c~xi ,] + 2 ~x2 ,=i 

1 (~0)21 1 t3q 1 t~0)31 1 t~q 
= 0)21D1 + 2 ~ x  1 ~ 2 Ox2 0)31D1 2 0X 1 2 ~X 3 

1 8q 10q 
- -  - -  3 ( X 2  - -  X3).  --263X2 263X3 

Therefore, E is a four-dimensional Lie algebra with basis given by (1, x 2 --  X3, D 2 --  D3, Lo). 
We now claim that Wong's four-dimensional estimation algebra E above is isomorphic to one of the 

estimation algebras in our Main Theorem. Consider n = 1 and k = 2 in our Main Theorem. Let us look at 
the following filtering system: 

dxl=(x/e-lxx-+ x / ~ ) d t + d w  ~ e, f l e R  and e > l ,  

dx2 =f2(x2,  x3) dt + dw2, dx3 =f3(x2, x3) dt + dw3, dy = Xl dt + dr, 

(4.2) 

wheref2,f3 are C oO functions with a suitable growth rate so that (4.2) is well-defined for all time, dwl and dv 
are independent Brownian motions. Then 

[! o o 1 ~r2= 0 0)23 , 

--  (-023 0 

where  6023 = 6~f3/Ox2 (x2, x3) - 6~f2/6~x 3 (x2, x3). I t  is ea sy  to see t h a t  

[-Zo, x1]  = / 3 1 ,  I-/31, x,] = 1, leo,/311 = 0~X1 -'l'- ft. 

Therefore the estimation algebra E of (4.2) is four-dimensional with basis given by 
(1, Xl,/31,/7,0). The isomorphism from our estimation algebra/~ to Wong's estimation algebra E is explicitly 
given by 

~ : E =  (1, x 1 , / 3 1 , L o ) - - . E  = (1, x 2 - X 3 , D  2 - D 3 , z 0 )  , 

~(a + bxl + C/3 1 + dLo) 

= a  2~ + b  x / ~ ( x 2 - x 3 ) - 2  ~fl  + ¢  ( D 2 - - D 3 )  +d~Lo. 

[Lo,  D2 - D3] = [Lo, D2] --  FLo, D3] 
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It is easy to check that this linear isomorphism actually preserves Lie bracket structures. So ~b is a Lie algebra 
isomorphism. For the sake of convenience to the reader, we include the multiplication table of these two Lie 
algebras: 

E 

1 

x 2 -- x 3 0 

D 2 -- D 3 0 

Lo 0 

X1 

Eo 

1 Y2 - x 3  D 2  - -  D 3  Lo 

0 0 0 0 

0 - 2  - ( D  2 - D 3 )  

2 0 - 3 ( x 2  - x3) 

D z - D 3  3 (x2 -x3 )  0 

/Sa Eo 
0 0 

- 1  - - D  1 

0 - ~ x l  - /~  

~ X  1 -'l- fl  0 

/~ 1 x~ 

1 0 0 

0 0 

0 1 

0 Da 

In fact (4.1) can be directly transformed by the change of variables 

X 2 - -  X 3 
Z l - -  %//~ 

x2 + x3 
Z 2 = N//- ~ 

Z 3 = X1,  

X 1 ~ Z3,  

z l - - k z  z 
X 2 = %/~ 

Z 2 - -  Z 1 
X 3 - -  N//~ 

into the system 

dza = - zl dt + d~l ,  dz2 = (x//2z3 + z2) dt + d~2, 
(4.3) 

dz3 = (z3 + ,/Tz2 + ~(z~ + ,Jgz2)) dt + d~3, 

where (wl, w2, w3) = ((w2 - w3) /x /~ ,  (w2 + w3) /x /~ ,  wO is a new Brownian motion. 
We present another example in which 9 is not of a special form as we mentioned in Remark (2) of Section 3. 

Example 4.2. 

(dZl,( Zldt )t0cosz sinz2)(d t, 
dz2 ] = (x/~z3 + z2)dt + 0 sin z2 cos zz d~2 ] 

dz3 ] z3 + x//-2z2 + 7(z3 + V/-2z2))dt 1 0 0 d~3 ] 

dy = x/~zl dt + dv 

It is clear that the system cannot be split into two subsystems. We can apply the Lie algebra approach to 
find the conditional probability density. 
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