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Abstract

The idea of using estimation algebra to construct finite-dimensional nonlinear filters was first proposed by Brockett
and Mitter independently. It has proven to be an invaluable tool in the study of nonlinear filtering problem. In 1983,
Brockett proposed to classify all finite-dimensional estimation algebras. In this paper, we give the construction of
finite-dimensional estimation algebras of non-maximal rank. These non-maximal rank finite-dimensional estimation
algebras play an important role in Brockett’s classification problem. © 1997 Elsevier Science B.V.
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1. Introduction

In the late 1970s, Brockett and Clark [2], Brockett [1], and Mitter [11] proposed the idea of using
estimation algebras to construct finite dimensional nonlinear filters. It has been proved that the Lie algebra
approach plays a fundamental role in the study of nonlinear filtering problem. The motivation came from the
Wei—Norman approach [13] of using Lie algebraic ideas to solve time varying linear differential equations.
In spite of the importance of the concept of estimation algebra, very little was known about estimation
algebra. It was only recently that the structure and classification of finite dimensional exact estimation
algebras were studied in detail in [12, 10]. In [14], the concept of Q is introduced, which is defined as the
matrix whose (i, j) clement is df;/0x; — df;/0x;, where f is the drift term of the state evolution equation. For
the class of exact filtering systems, Q is identically zero. More recently, Yau [15] has studied filtering systems
in which all entries of Q are constants. He was able to classify all finite dimensional estimation algebras of
maximal rank in such filtering systems. If the dimension of the state space is two, three, or four, then
Chiou-Yau [7] Chen-Leung-Yau [3, 4] have shown, respectively, that all entries of 2 are constants as long
as the estimation algebra is of maximal rank (see Section 2 for definition) and finite dimensional. Thus finite
dimensional estimation algebra of maximal rank is completely classified if the dimension of the state space is
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at most four. The novelty of their theorems is that there is no a priori assumption on the drift term of the
nonlinear filtering system.

Yau’s approach of complete classification of finite-dimensional estimation algebras of maximal
rank consists of two steps. The first step is to prove that for such an estimation algebra, all the entries
in the Q-matrix are degree one polynomials. The second step is to prove that in fact all the entries in Q
are constants. Then we can apply the result of Yau [15] to give a complete classification of finite dimensional
estimation algebras of maximal rank. Most recently, Chen-Yau [5] has completed the first step of
this approach. Thus we have a pretty good picture of finite dimensional estimation algebras of maximal
rank.

In this paper, we shall study finite dimensional estimation algebras of non-maximal rank. Specifically,
we shall give general construction of finite dimensional estimation algebras of non-maximal rank. This
construction gives rise to a new class of finite dimensional nonlinear filters which are not discussed
previously. We suspect that all finite dimensional estimation algebras of non-maximal rank are essentially
arising in this way. In Section 4, we shall show that the four-dimensional non-maximal rank estimation
algebra of Wong [14] is isomorphic (as Lie algebra) to one of our finite dimensional estimation algebras
constructed in Section 3.

2. Basic concepts

The filtering problem considered here is based on the following signal observation model:

dx(2) =f(x(®)) dt + g(x(2)) dv(t), x(0) = xo,

dy() = h(x(9)) dt + dw(t), y(0) = 2.1)

in which x, v, y and w are, respectively, R", R, R™, and R™ valued processes, and v and w have components
which are independent, standard Brownian processes. We further assume that n = p, f, h are C* smooth, and
that ¢ is an orthogonal matrix. We shall refer to x(t) as the state of the system at time ¢t and y(t) as the
observation at time t.

Let p(t, x) denote the conditional probability density of the state given the observation { y(s): 0 < s < ¢}. It
is well known (see [9], for example) that p(¢, x) is given by normalizing a function, ¢ (¢, x), which satisfies the
following Duncan-Mortensen—Zakai equation:

da(t, x) = Loa(t, x) dt + i L;o(t, x) dy;(¢), (0, x) = oy, (2.2)
i=1

where
1 n n a n f 1 m
L-35 & I W e PO

and for i =1, ..., m, L; is the zero degree differential operator of multiplication by %;. 6, is the probability
density of the initial point x,.
Before we proceed, we give the definition of a differential operator.

Definition 1. For any I = (iy, i5, ... ,i,) € Z} where Z} denotes the set of nonnegative integers, we shall use
the following standard notation:
D'=DyDy - Dy, [ =iy +ir+ - +in

By a differential operator in x,...,Xx, variables, we mean an operator of the form F =
Yin<rar(xy, oo , X,) DT, where a;(x1, ..., x,)’s are C® functions. If one of the a;(x;, ..., x,), for |I| =r, is
nonzero, we say that F is a differential operator of order r.
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Eq. (2.2) is a stochastic partial differential equation. In real applications, we are interested in considering
robust state estimators from observed sample paths with some properties of robustness. Davis [8] studied
this problem and proposed some robust algorithms. In our case, his basic idea reduces to defining a new
unnormalized density

(63 = (- 3 Koo Jate 0

i=1

It is easy to show that {(¢, x) satisfies the following time varying partial differential equation:

a m 1 m
a—f(t,x)=LoC(t, X)+_Zlya(t)[Lo,Li]C(t,X)+§ Y vi®y(t)[[Lo, L1, L;1L(2, x),

iLj=1

i=

£(0, x) = ao,

where [-,"] is the Lie bracket defined as follows.

Definition 2. If X and Y are differential operators, the Lie bracket of X and Y, [X, Y], is defined by
[X, Y] =X(Y{) - Y(X{)

for any C* function (.

Definition 3. The estimation algebra E, of the filtering system (2.1), is defined to be the Lie algebra generated
by {Lo, L1, ..., L)

In [7], Chiou and Yau first introduced the concept of maximal rank estimation algebra.

Definition 4. The estimation algebra E of (2.1) is said to be an estimation algebra of maximal rank if for any
1 €i < n, there exist constants ¢; such that x; + ¢; is in E.

In [14], the concept of 2 was introduced, which is defined as the matrix whose (i, /) component w;; is
of;/0x; — 0f;/0x;. Define

i

3 P 3 n n , m )
Di_ﬁ_)ci_ﬁ and n—i;axi+i;f,- +i;h,~.

Then

172 .
i=1

The following theorem proved in [15] plays a fundamental role in the classification of finite dimensional
estimation algebras.

Theorem 2.1. Let E be a finite dimensional estimation algebra of (2.1) such that w;; = (0f;/0x;) — (0f;/0x;) are
constants. If E is of maximal rank, then E is a real vector space of dimension 2n + 2 with basis given by
1, xy,%5, .oy Xp, D-, D3, ..., D, and L.

In [5], Chen and Yau have completed the first step of the program of classification of finite dimensional
maximal rank estimation algebras. In fact they also proved the so-called Mitter conjecture [6].
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Theorem 2.2 (Chen and Yau [6]). Let E be a finite dimensional estimation algebra of (2.1). Let k be the
maximal rank of those quadratic forms in E. Then

1. The observation terms hy(x), 1 < i < m, are affine polynomials.

2. (@) wy, for L <i<korl<j<k, are constants.

(b) wyj, for k +1 < i, j < n, are degree one polynomials in x; 1, ... , X,.
3=, 0f/0x;+ Y-, f,.2 +3n, hisa homogenous polynomial of degree 4. Moreover, n, (= homo-
genous polynomial of degree 4 part of ) depends only on the xy4 1, ... , X, variables.

The following theorem is proved in [5-7].

Theorem 2.3. Suppose that the state space of the filtering system (2.1} is of dimension n < 4. If E is the
finite dimensional estimation algebra of maximal rank, then the drift term f must be a linear vector
field (i.e. each component is a polynomial of degree one) plus a gradient vector field and E is a real vector
space of dimension 2n +2 with basis given by 1,xy, ...,%,, Dy, ...,D, and Ly. Moreover n is a degree
2 polynomial.

In view of these theorems we have a pretty good picture of all finite dimensional estimation algebras of
maximal rank.

3. Construction of a finite dimensional estimation algebra of non-maximal rank

Suppose that E is the finite dimensional estimation algebra associated to the filtering system (2.1). Consider
the following enlarged filtering system:

dx(t) = f(&() dt + §(E(2) d3(1), X(0) = %o,

- 3.1
dy(t) = h(Z(0) d(0) + dw(t), v(0) = 0. G
Here X = (Xla s s Xps Xpt 15 -ee axn+k), f~(5€(t)) = (fl(xl’ ’xn): 9.f;l(x1’ ,X,,), .f;1+1(xn+1: :xn+k)a-~- >
Jotu(Xnt1s oo s Xutr)) G(X(2)) = orthogonal matrix, h(X(t)) = h(x, ..., x,), and ¥ and w have components

which are independent, standard Brownian processes.
Let E be the estimation algebra associated to (3.1). We shall show that E is isomorphic to E as a Lie
algebra. Observe that

of; of; .
D~ L = o r1<ij<n
.o o ‘ J
ij:b_x,-“(?_x,-: 0 fiznj<norig<njz=n,
o; i .
a—xj.(xn-fla axn+k) —gc—.(xn+la 7xn+k): LJ >na
i J
- 1 n+k )
Lo== D* —7i),
o=3(E,0-1)
where
d .
D,y =5——fn+i(xn+1, e Xerk)y 1SISKE
Xn+i
n+k af n+k

AR =n(x) + > —;_(xn+1:---’xn+k)+ Y FAXna1s con s Xnsi):

i=n+la i i=n+1
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Lemma 3.1. If F is a differential operator in x,, ... , x, variables of order r, then [ F, fi(x1, ..., Xpy Xpt 15 «++ s Xn+1)]
= [F, n(xy, ... , X,)] is a differential operator of order r —1 in x,, ..., x, variables.

Proof. We shall preve this by using induction on the order of the differential operator. If the order of F is
zero, then F is a function and hence [F, 7] =0=[F,n]. If F=37_,aixy, ..., x.)D; + b(xy, ..., X,) is
a differential operator of order one in x,, ..., x, variables, then

n n

. orf 0
[F’ T’] = Z ai(x19 see ,X,,) ;1 = Z ai(xls 9xn)a_:. = [F, T’]]

i=1 6 i i=1

Suppose that the lemma is true for all differential operators of order r in xy, ..., x, variables. Let
F=%<rrr10x1, o5 x,)D’ be a differential operator of order r +1in x4, ... , x, variables. We shall show
that [F, §(xy, ..., Xps Xgt 15 «-- » Xu+r)] = [F, 51(x1, ..., x,)] is a differential operator of order r in x,, ..., x,
variables:

[F7 ﬁ(xla cee s Xy X 15+ s xn+k)]

= Y afxy, ..., x)[DY - DY (X1, o s Xus Xnt 15 oo > Xn4)]
[Il=r+1

+|: Y ap(xq, - LX) DY DI (X, ey Xy Xg 15 e ,x,,+k):|

Il <r

= Z aI(xla"'axn)I:Dlll ---D:,",ﬁ(xl, "'axn,xn+19""xn+k)]
Il=r+1

+|: Y ap(xy, ... ,X,) DY o Dl p(xy, .. ,xn)}.

1I<r

The last equality is a consequence of the induction hypothesis. Hence Lemma 3.1 will follow if we can show
that for il + . 4+ Iln =r +1’

[l)lll o Dfl"a ﬁ(xla ver s Xy Xpt 1 «oe 9xn+k)] = [Dlll D;"5 ’7(x1, ven 5xn)]

and is a differential operator of order r in x, ..., x, variables. In general for any differential operators X, Y,
and Z, we have the following formula:

[XY,Z]=X[Y,Z] +[X, Z]Y.
It follows that for iy + -+ +i,=r +1,
[DY + D, fi(X1s oo s X Xt 15 oo > Xn )]
=D [D} 'DZ - DI (X1, ce s Xy Xnt 15 +oe s Xn2i)]
D1y X1y cee s Xy Xt 15 oo Xnsi)] DY 1D - D
= Dy[D}™'D% - Dy, n(xy, .., )1 + [Py, 0(x1, -, %,)1DY ' D3 - Dy
=[D} - Dy, n(x1s e s Xa)]

Observe that .[D"l‘_ ].Di; Df,", n(xy, ..., x,)] is a differential operator of order r —2 in x4, ... , x, variables.
Therefore [D} --- D7, 7] is a differential operator of order r in x4, ..., x, variables. [

Lemma 3.2. Let F be a differential operator of order r in x, ..., X, variables. Then for n +1 <j<n+k,
[D}, F]1=0.
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Proof. Observe that

da;

(xl""axn)zo fOrn+1<j<n+k
0x;

[DJ, al(xl, ceey x,,)] =

and

o
Ox

j

of:
[D;, D] = (x1, ...,xn)—a—g(x,,ﬂ, v Xpr) =0 forl<i<nandn+l<j<n+k

Therefore, forn +1 <j<n+k

[D?, F]=[D}, Y ap(xq, ..o, XD} --~Df,"]

|I|<r

= Y Diaixy, ... , Xg) D't - D — Y ap(xy, ... , X,) D} --- D D?

I <r H1I<r

=0. O

Lemma 3.3. For any differential operator F in x,, ..., x, variables, [Ly, F] = [Lo, F].

Proof.
- 1 n+k N n 2 1 n+k R L .
[LO’F]=|:§<ZD1'_ﬁ>aF]=[52Di,F]+[§ Z DjaF:|+7[F)’1]
i=1 i=1 j=n+1

=B > D?,F]+%[F,n]=[%<i D?—n>,F]=[Lo’F1 =
i=1 i=1

Theorem 3.4. The estimation algebra E associated to the filtering system (3.1) is isomorphic to the estimation
algebra E associated to the filtering system (2.1), and E consists of a basis such that all elements in this basis are
differential operators in xy, ... , x, variables except Lo. Furthermore, 3 = (3f;/0x; — of:/0x;) is given by

~ (20
2(o 3}

where § is the n x n matrix (0f;/0x,(x) — 8f;/0x(x)) associated to (2.1) and A is a k x k matrix with (i, j)-entry
(Ofn+ i/ O%nsi — O if 0% 4 ) (Xt 15 +ev s Xni)-

Proof. Observe that for 1 <I<m

- _1 n+k R
[L09hl(x1a"-9xn)]: 5( Di _ﬁ):hl(xl>'--,xn)]

1 & ., 1 mk
= 5 Z Diahl(xl, ee s X,.) + E Z D_;y h,(xl, ,x,,)

j=n+1

TN

n n+k ah lazh
YD} —n s, X)) [+ Y | o g (Xas s X)
=1 28xj

j=mr1 LOX;

= [LO’ hl(x19 sy xn)]a
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where [Lg, hy(xq, ..., x,)] is a differential operator of order one in x4, ..., x, variables. In view of Lemma
3.3, we have

[EO’ [EO: hl(xls R xn)]] = [E07 [L09 hl(xl’ tees X,,)]] = [LO’ [L(b hl(xl’ ERR xn):l]'

For two differential operators X, Y we define AdyY = [X, Y ]. By induction, we can show that for any
positive integer g,

Adj By(xy, ..., x,) = AdL y(xy, ..., X,).

It follows that E = E. It is also clear from the proof that £ consists of a basis such that all elements in this
basis is a differential operator in x,, ..., x, variables except L,. This finishes the proof of the Main
Theorem. [J

Remarks. (1) The finite dimensional estimation algebra E is of non-maximal rank if k > 0. Observe also that
A is quite arbitrary.

(2) We would like to emphasize that the orthogonal matrix §(x;, ... , Xy, Xy+1, --- » Xo+x) 1s arbitrary and
is not necessarily of the form

(g(xls-'-’xn) 0 >
0 gl(xn+1,""xn+k) '

So (3.1) is not a direct sum of two filtering systems. This is a crucial point of our theorem.

4. Wong’s four-dimensional estimation algebra

Example 4.1. In [14], Wong considered the following filtering system defined on R?

dxy = (x1 + X5 + X3 +y0¢; + Xz + x3)) dt +dwy,  dxy =(x; + x3) dt + dw,
4.1)
dxz = (x; + x;) dt + dws, dy = (x; — x3) dt + dv,

where y is a C*™ function with a bounded, non-zero first derivative and w = (wy, w,, w3) and v are
independent, standard Brownian processes. Then

0 —1 —1
Q=1 0 0] y(x;+xz+x3),
1 0 0

fi(x) = x1 + x5 + x5 + (x1 + x2 + X3), f2(%) = x1 + x3, f3(x) = x1 + x5,

h(x) = x5 ~ x5, D; = —filx), 1<i<3,

1 n
L0=§<z D‘Z_r’>,
i=1

where

ax,

- ;éf—+ ¥ £+

=1 +')),(X1 -+ X5 +X3) + [x1 + X5 + X3 +y(x1 + X, +X3)]2 + (Xl +X3)2 + (xl +x2)2 + (x2 —X3)2.
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It is easy to see that

[Lo, h(x)] = [Lo, x2] — [Lo, x3] =Dz — D3
and

[Lo, D3 — D3] = [Lo, D;] — [Lo, D3]

3 1 6w,; 1 3 1 dws; 1 on
2 (“’Z'D 3 ax,>+za—‘ 2 (W’ T3%% ) 20k

i

0. D, 4 0@ 10w o 1ows 1 0n
T T ok, T 2 6x, MTLT 2 0%, 20x,
1oy 10n

==— —=— = 3(x; — X3).

20x, 20x; (2 = x3)

Therefore, E is a four-dimensional Lie algebra with basis given by <1, x, — x5, D, — D3, Lg).

We now claim that Wong’s four-dimensional estimation algebra E above is isomorphic to one of the
estimation algebras in our Main Theorem. Consider n = 1 and k =2 in our Main Theorem. Let us look at
the following filtering system:

dxl =<\/oc—1x1 +

)dt+dw1 o feR and o> 1,

B
Ja—1

de :fz(XZ, X3) dr + sz, dx3 =f3(x2, X3) dt + dW3, dy = X3 dt + dU,

(4.2)

where f,, f3 are C* functions with a suitable growth rate so that (4.2) is well-defined for all time, dw; and dv
are independent Brownian motions. Then

0 0 0
Q= 0 O CL)23 5
0 - Wiy 0

where w,3 = 0f3/0x5 (X2, X3) — 0f2/0x3 (x4, x3). It is easy to see that
[Lo,x,]1 =Dy, Dy, x;1=1, [Lo, D] =ax, + B.

There~f0re~ the estimation algebra E of (4.2) is four-dimensional with basis given by
{1,xy, Dy, Lo). The isomorphism from our estimation algebra E to Wong’s estimation algebra E is explicitly
given by

¢3E =, x1,51, E0> —E=<1,x; —x3,D; — D3, Lo,

é(a + bx;, + cD, + dLy)

ol s f o i)
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It is easy to check that this linear isomorphism actually preserves Lie bracket structures. So ¢ is a Lie algebra

isomorphism. For the sake of convenience to the reader, we include the multiplication table of these two Lie
algebras:

E 1 x,—x3 D,— D, L,
1 0 0 0 0
X; —x3|0 0 -2 — (D, — D3)
D, —D; |0 2 0 —3(x; — x3)
Ly |0 Dy;—D;5 3(x;—x3) 0
Elt =x; D, Lo
1{0 0 0 0
x:10 0 -1 —D,
D0 1 0 —axy—f
Lol0 Dy ax;+ B 0

In fact (4.1) can be directly transformed by the change of variables

._x2_x3 Xy =23,
2y = ’
7
zZ1+ 2y
XZ+X3 X2 = »
Zy = s \/i
NG
2— 0
X3=
Z3 = Xi, ﬁ ’

into the system

le=—Zldt+dW1, de=(\/§Z3+Z2)dt+dW2,
(4.3)
dzs = (23 + /222 + (23 + +/222)) dt + dibs,

where (Wy, W, W3) = (W, — w3)/\/§, (wy + w3)/\/§, w,) is a new Brownian motion.
We present another example in which g is not of a special form as we mentioned in Remark (2) of Section 3.

Example 4.2.
le —Z dt 0 COS z, —Sin Z, dWl
dz, | = (\/523 + z,) dt +1{ 0 sinz, cosz, dw,
dzs 23 + /22, + 7(23 + /22,)) dt 1 0 0 dws

dy = /22, dt + dv

It is clear that the system cannot be split into two subsystems. We can apply the Lie algebra approach to
find the conditional probability density.
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