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A Counterexample of “Comments on ‘Stability Margin Filtering Systems with Finite-Dimensional
Evaluation for Uncertain Linear Systems’” Estimation Algebras

Yong-Yan Cao and You-Yian Sun Rui-Tao Dong, Wing Shing Wong, and Stephen S.-T. Yau

Abstract—Estimation algebra turns out to be a useful concept in
the investigation of finite-dimensional nonlinear filters. In this paper
we study the natural question of classifying all filtering systems with
finite-dimensional estimation algebras up to state-space diffeomorphism.

Abstract—In this paper, a counterexample of the above-mentioned
paper' is presented, and it shows that the main result of this paper is
not correct.

Consider the uncertain linear dynamic system of order In particular, we present some results on partial differential equations
arising from the study of stochastic systems and nonlinear filtering
P(t) = A(t)x(t) = [Ao + AA(H)]2(t) (1) Problems.

Index Terms—Estimation algebra, nonlinear filters, under-determined
where 4, is the nominal stable system matrix addd(t) is the Partial differential equation.
time-varying uncertainty.
Recently, Gong and Thompson [1] have given a stability margin

evaluation method for this unstructured matrix. The criterion in o .
Theorem 2 of this paper is In many filtering systems and stochastic control problems, one

has to deal with elliptic differential operators of a certain type. For
AATAA < Lo2. (U + Ty AT 4, example, consider a filtering problem based on the following signal
N o observation model:

|. INTRODUCTION

It is also claimed in this paper that this bound is the tightest bound da(t) = f(x(t)) dt + dv(t), 2(0) = a0
possible _for all_l_Jnstructur_ed perturbations, such that (1) ke_eps its dy(t) = He(t) dt + dw(t), y(0) =0 1)
asymptotic stability. But this bound was shown not to be the tightest
for all unstructured perturbations by the above-mentioned pagued, in which =, v, y, and w, are respectivelyR", R?, R™, and R™-
a new bound also has been given; however, it is not right. valued processes, andandw have components that are independent
Let us consider the example of the papemhose system matrix is standard Brownian processes.
p(t,z), the conditional probability density of the state(t),
i = {—3 —2} given the observatio{y(s): 0 < s < t}, is determined by the
E I 0 | Duncan—Mortensen—Zakai equation, which in éimenormalizedorm
is given by (see [9] for example)
In this paper, it is shown that the system is guaranteed to be

asymptotically stable by Theorem 1 if ;_Il'tg(tﬁ z) = Loo(t,x) dt + ZLig(t, x) dy, (t)
=1
AATAA< 8:;8; AL 4. ?) (0, 2) =00 @
where
Let 1~ 87 a 7] "LOfi 1,y
31 1.9 Lo= 52 g0 = 2 g~ 2pn, T3 2N
AA — |: . . :| =1 t =1 =1 =1
0 0 and fori = 1,---.m, L; is the zero-degree differential operator of
multiplication by %;. (If p is a vector, we use the notatign to
It is obvious thatA A* A A < (0.707%/0.708%) AZ A,. But represent théth component ofp.) o, is the probability density of
the initial pointzo. When the observation is absent, thathis= 0,
A+ AA— {0.1 —0.1} then (2) is simply the Kolgomorov equation.
1 0 It is important to find efficient ways to solve (2), which is the
subject of many research studies in nonlinear filtering theory. A
is not stable because its two eigenvaluesas =+ 0.3122i. particularly useful concept is that of an estimation algebra, which
was introduced in [3], [4], and [12]. The survey paper [11] provides
REFERENCES a good introduction and many useful references to the concept. It

is defined to be the Lie algebra of differential operators generated
1] C. . Th “ ili i luation f i
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by {Lo, L1,
compactly represented if one definBs = (9/0x;) — fi. Then
_Lspr 3
=3 Z i =7 3)
=1
where
0 j,
n= -+ Z i+ Z n;. )

This compact representation &f was exploited in [17] and [18]
to derive necessary conditions and sufficient conditiong&imation
algebrasto be finite dimensional.

understand the importance of this particular representation by noting

that
— 9 . 9 -r
t (9.& fZ ¢ 6;1’,‘6 (5)
where F; = F;(z) = [y fi(t)dt. Hence
2
D = oo ©)

and

2

1{~rF 0
LO_Z(;e 81,2

@)

e - .

In the special case whefeis the vector field of a potential function where i (z) =

¢, (7) can be simplified as

More directly, it is easier to
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, L }. The elliptic differential operator can be more Theorem 1.2:Let E be an estimation algebra of (1) satisfying

(0f;/0xi) — (0fi/dx;) = ci; wherec;; are constants for all
1 < i,j < n. SupposeF is finite dimensional of maximal rank.
Thenn = X7, aijesw; + 2oy biay + d where ag;,b;, and d
are constants for all < i,j < =, and the robust form of the
Duncan—Mortensen—Zakai equation

m

1o} . »
8—§(t,w) = Lo&(t.a) + 3 w0 Lo, LilE(t )
1 & ‘ ,
+ 5 ijz_l Y (t)yj (t)[[LOv LZ] L]']f(t, 58)
(10)
has a solution for alt > 0 of the form
€(t,x) = el WornWzn | ri)zr sn(ODn | s1(0)Dy
cettogy (12)
where T'(t), 71 (t),- -, 7. (t),s1(t),-- -, s, (¢) satisfy the ordinary

differential equations (12)—(14). Fdr< i < n

t)—l—z

dsl

(t)eji + Z hriy(t) (12)

G=1 hijz; + e for 1 < k < mjhy; andey are
constants.
Forl1 <j<n

R P
Lo_§<;5 922 ¢ —n). (8) ﬁ(”_lig,m(q,._ﬂ.) (13)
dt T2 o ! R
By definingé = e~ %0, (2) can be reformulated as
and
d 1 m
—E&(t,x) = =(A — t, dt L;&(t,z)dy,(t n n n
76 w) = S (A = E(tr) di 4 37 Lig(t) dyi(t) I A )
=1 E(t) :—5 Ty (t) — 5261 (t) ZC”‘ — Ay
—¢ ] z £ ‘ ‘
£0,2) =e "0 9 i=1 = J=1
. . + Z si(t)se(t
where A denotes the Laplacian operatorlfis a quadratic polyno- 1<ich<n
mial in =, then the semigroup generated by the differential operator "
A — 7 is well known and can be used to explicitly derive solutions . ZC”"V’“ + .l(auc + agi)
to the equation wheh;’s are linear inx. Thus, there is a connection i=1 2

between this representation and gaige transformatignas pointed j

out in [13]. This idea is also related with the concepeqtiivalence + Z () — ZZ si(t)eij + = Z si ()b

of parabolic equations as discussed in [1]. j=2 i=1
In [15], a finite-dimensional filter was explicitly derived for this

case { is a gradient vector field anfd's are linear inc), using the so- <Z hik h]k> - Z 5;(t)

called Wei—-Norman-Brockett—Mitter approach. A crucial argument of k=1 i,=1

this approach is that the estimation algebra is finite, which in turns

depends on whethey is a quadratic polynomial if the estimation

algebra is ofmaximal rank that is, it contains elements of the form  Given the importance of the estimation algebra, a natural question

;i +c forl <i < n. arises as to whether we can classify all finite-dimensional estimation
All these results were extended later on by [19] to the case whefgebras up to Lie-algebraic isomorphism. Building on the work

f is a sum of a linear and a gradient vector field. In particular, thef [14], [15], and [7], the classification of estimation algebras of

following extension of the main theorems in [15] holds. maximal rank was achieved by Chiou—Yau [6] and Chen—Leung—Yau
Theorem 1.1:Let E be an estimation algebra of (1) satisfying[5] if state-space dimension is two and three, respectively. A second

(0f;/0xi) — (0fi/0x;) = cij, Wherec;; are constants for all question that arises naturally is whether we can classify all filtering

1 <i,j < n. Assume also that is linear ina. systems with finite-dimensional estimation algebras up to state-space
1) If » is a polynomial of degree at most two, théhis finite diffeomorphism. This is apparently a very difficult problem and

dimensional. requires a careful study of partial differential equations of the type (4).
2) Conversely, ifE is finite-dimensional andnaximal rank then A case of these types of equations and the nonlinear filtering problem
7 is a polynomial of degree at most two. was first noted by Benes (see [2]) and was studied in some detail

+3 Z yi(t)y;(t)

1]1

- 55(t). (14)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 11, NOVEMBER 1997 1603

in our previous paper [8]. In this paper, we are going to study the Theorem 2.2: There exists a smooth vector fiefdon R™ satisfy-
general under-determined system which has not been studied beforg.(16) if and only if the first eigenvalug; := \: (A — ¢) [defined
The class of nonlinear filtering systems with a finite-dimension& (19)] is nonnegative orR".

estimation algebra can be characterized by the solutions of this family Proof: The proof follows from Theorem 2.1%; > 0 implies
of under-determined nonlinear partial differential equations. The#ige existence of a smooth solution to the following equation:
equations are the focal point of this study. We will give a simple

algebraic necessary and sufficient condition for the existence of Ao+ |Vo|” = q.

solutions of these equations. We will also study the growth property of

solutions of these equations. Although we cannot completely descripgs easy to verify thatf = V¢ solves (16). We shall call this a
all the solutions of these equations, we will provide various ways gfadient solution

constructing solutions of these equations. Our result here is far fromyow, we need to prove that the condition is also necessary. Let

providing a reasonable classification theory of systems with finitg-¢ C5° be anyC'> function with compact support. Multiply (16)
dimensional estimation algebras, but it may be viewed as a necessgith ¢? and integrate the equation ov&". We get

step. , , ,
/¢2q= /(bgV-.er/éQI.flz

=—/2¢>V@-f+/@2|f|2~ (20)

Il. CLASSIFICATION THEOREMS

For any filtering system defined in (1) with an estimation algebra
E, (4) assigns a characteristic Theorem 1.1 implies that if the T
estimation algebra is finite dimensional with maximal rank, then ) :
this maps the given system to a quadratic polynomial. In order to /¢2q > _/
develop a classification of systems with finite-dimensional estimation -
algebras, we also need to understand the properties of the invgf$gch is equivalent to
of this mapping. In the following, we will provide some partial

he Schwartz inequality gives us

vol = [otr+ [orire

results to these questions. The key to these questions is a complete / Vo> + qp”> > 0.
understanding of the existence and uniqueness properties of the
following equation onR": This impliesA; > 0 according to our definition in (19). [
In view of Theorem 1.1, we are particularly interested in finding
of; "L, the precise condition for the under-determined partial differential
o T Zfi =1 (15) equation (16) to have a solution gfis a quadratic polynomial. The
- =! following is the corollary of Theorem 2.2 and our previous result
where ¢ is a C* function on R™. Using the vector notatiorf = (8, Th. 8. ) o
(f1rf2r -+ fu). (15) becomes Letq be a quadratic polynoml_al [ VR Alfter an orthogonal
transformation and a translation, can be written in the form
V.f+ |f|2 —q (16) ¥, a;x? — ¢, wherea; andc¢ are constants.

Corollary 2.3: There exists a smooth vector fiejd on R" sat-

o > > m 2 o
This is a Ricatti-type partial differential equation. When the es'ffymg VoS +IfI7 = Sinaad - cif and only if a; > 0 and

timation algebra is exact, i.ef, = (8¢/dx;) for certain potential ¢ < I V. . . .
function ¢, (15) reduces to For the remainder of this section, we ugeé to denote any

controllable constants.

In [8], we have shown that the solutions of (17) have at most
linear growth. This means that gradient solutions of (16) have at most
linear growth. We conjecture that the same holds for all solutions of
(16). This is a very difficult question, as it would imply the classical
gradient estimate, which is a hard subject by itself.

AC=qC=0. (18) Conjecture II.1: Supposef is a smooth vector field o™ sat-

isfying

Ao+ |Vo|* = q. (17)

By letting ( = exp ¢, (17) becomes

This equation has been studied extensively (see [10]). ’ )
Theorem 2.1 [10]: Let ¢ be aC* function defined omR"™. There V-f+1f7 =4
exists a positive functioq satisfying (18) onR" if and only if the

i ) . . whereq is quadratic polynomial. Then
first eigenvalue\: (A — ¢) is nonnegative o™, whereA: (A — q)

is defined by |fI < O+ []).
: , ) However, in terms of the general finite-dimensional filters con-
/ VoI +qo structed in [19], we assume that the drift tefrsatisfies the additional
MA—g) = inf S (19)  condition (0f;/9x;) — (0f;/dx;) = ci;. Wherec;; are constants.
0 /@2 Therefore, the following theorem is very interesting for application
purposes.
The following theorem gives a simple necessary and sufficient Theorem 2.4:Suppose thaf = (f1, f2,---, ) is a solution of
condition for an under-determined system (15) to have a solutidd8) and in additior{d f;/9;)—(0f;/9x:) = ci; are constants, then
It is rather surprising that the existence conditions for an under- If] < \/q-i-—C

determined system (15) and a scalar elliptic equation (18) turn out
to be identical, although as we will see in the next section (15) hpsovides that; has quadratic growth in the sense theg < « and
many more solutions than (18) does. |V¢| < v(1 + |z|), whereC depends only om, 9, and~.
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Remark: From the conditionVq| < ~v(1+|z|), we easily deduce positive. Notice thator. (Ver), Apr are all bounded quantities,

thatq < C(1 + |z|?). Thus, this theorem shows thgthas at most
linear growth.
Proof: DenoteF = |f|* — ¢, and we have

n

AF:Z

ij=1

9%
8_—T§fi - Agq

=1
2 n afl

> 2
~—n <1:1 ox;

2 & 5
) +2;f73_n<1

:3F2—2f.VF—q9.

08
=1 aT]

(21)

Choose a standard cutoff functign:(z) € C5°(R") such that
er(z)=1 on Bg(0)
er(z) =0 on B;,(0)

and0 < ¢r(x) < 1,|Vor(z)| < (C/R),|Apr(z)| < (C/R?).
% F achieves its maximum at, € B2z (0). At that point

V(ehF) =0
or
2VppF + orVFEF =0 (22)
and
0> A(gRF)
=¢hAF +4ppVer - VF + FApL.

Plug (22) and (21) into the above inequality, we get
0>k <3F2 —2f-VF - u) +[Apk — 8|Ver[’]F
n

= %%Fz +4pr(f-Ver)F =00k
+ (20rApR — 6|Vor|*)F. (23)
Multiply (23) by ¢% and notice that
If - Ver| <VIfI? - [Verl?
SV(F+q) - [Verf?
<VF[Verl* +Cy.

F|Ver|2 +Cy— 9ok

CrF* —4pnF
+ (2¢0rA¢R = 6|Ver|*)pRF <0

and the Schwartz inequality

Va <eca+ %

gives us

2
~piF® = 4piF (%p

—Jph + 2erApr — 6|Ver|?)eRF < 0.

1
Verl” + Crep + E)

The left-hand side is a quadratic polynomial M, where M =

©% F. Takee to be sufficiently small to make the leading coefficient

and M is therefore bounded. Hence
max F' < max p%F =M< C.

BR(0) Bar(0)
Let R — =o, and we have
IfP <q+C.
This is equivalent to our conclusion. [ ]

Let ¢ = X7 ;= aijeiz; — ¢, wheree € R and the constant
matrix A = (a;;) is positive semidefinite. LefAq,---, A} be the
eigenvalues ofd andco = 7—; v/\;. In [8], we have shown that
whenc¢ = ¢, there is a quadratic polynomial, uniquely determined
up to a constant which satisfies

Ab+ Vol = q.
Moreover, this is the unigue solution up to a constant if either one
of the following conditions holds.
1) rank A = 0 (namely, A = 0).
2) rank A > n — 2.
We can generalize this to the under-determined system (16) in the

second case.
Theorem 2.5: Consider the following equation:

Vef+If =q
whereq = X7 ;—¢ a;;x;2; — c. Equation (24) has a unique solution if
l) A1(A — (_[) = 0;
2) rank A > n — 2, A = (a5,).

Proof: Without loss of generality, we can assume thiais a
diagonal matrix with eigenvalues;, az, -, a,. Ai(A —g) =0 is
equivalent toa; > 0 andc = X7y \/a;.

In this case, Vug is a solution of (24), whereu, =
—(1/2) Sy aia?.

Let w = f — Vuo, and we have

(24)

V-w+ 2Vug - w + |w]* = 0.
Multiplying both sides by and integrating o3z (0), we get

0:/ 62“0(vw+2vu0-w)+/ >0 |wl?
Bgr(0) RR(0)
= / V'(GZILO'LU)'i‘/
BRr(0) BRr(0)

2 — 2 2
:—/ e“"Ow-n —I—/ e wl”.
9B R(0) BRr(0)

Denoted(R) = [g, (o) ¢ " lwl*, ¢¥(R) = [g, () ¢*“® and by
the Schwartz inequality
/ 62u0|/w|
0BR(0)

9 _
/ e“"w-n <
9B R(0)

S / 82“'0|7.U|2 . / e2uo
dBR(0) dBR(0)

=/&'(R)- V' (R).

62u0 |/LU|2

Hence
(6(R))* < &'(R)-¥'(R)
or
o) 1
G(R) = O'(R)
Integrate over Ry, oc), and we have

dR

1 1 OO
dR > / - =00
= Jr, V'(R)

, : _ [T o(R)
% 3R " d(o) /R 52(R)




IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 11, NOVEMBER 1997 1605

The contradiction shows that(R) = 0, which is equivalent to nondegenerate, then we get

w = 0. [ ]
‘ PPT = A
Tr P =—c
I1l. CONSTRUCTION SoLuTIONS TO THE P.D.E. 0
p=0.

One can construct many interesting examples of stochastic systems
with finite-dimensional filters by finding solutions to (16).flfis such Therefore,P = /A0 whereO € O(n). Using the above lemma,
a solution, the system defined by (1) will have a finite-dimensiongle conclude the proof. -
filter as defined in Theorem 1.2. Of course, the best known 3°|”ti°”SRemark: When rank A <n. the existence condition becomes
to (16) include the linear solutions and some of the solutions discussegd S7, /. We omit the pkoof here as it is quite similar.

in [2]. However, these previously known cases are by no meangconstruction Il (Sums of Gradient and Linear Solutiondjt cer-

exhaustive. In this section, we will concentrate on the problem i, sjtyations, there are solutions of (25) which are sums of gradient

how to construct solutions for (16) wheris a quadratic polynomial. gnq jinear solutions. We shall illustrate this by considering= 2
After a Euclidean motion; can be written in the foriti_s a;e¥~  anday = ay = a + A2. Then (25) becomes

¢, wherea; andc are constants. In Corollary 2.3, we have shown that -

2

(16) is solvable if and only if:;; > 0 ande < ¥7_, \/a;. afi 2\ 2y, 2, 2
Let Zl azvi—l—fi =(@a+A)(21 +23)—c
rey @y =a 7“2 — C. (27)
r = m_z and A= - ) We shall show that (27) has a solution of the fofin= V¢ +
: K (€1,--, ), wheret;,1 < i < n, are degree-one polynomials if
LT n an c< 2\/J.
[/ar Lemma 3.2: Aé + |[V¢|? = ar® — ¢ has a radial solution if
I c< 24/a.
VA= . . Proof: Take any solutiory of the equation (such solution exists
' in view of [8, Th. 12]). It is easy to see that = ¢Y satisfies the
L dn following linear partial differential equation:
We can then rewrite (16) into Au = (ar® = )u. (28)
Vet = ol A —c (25) Let G(z) = [,co e9®) where the integral takes place over

all orthogonal transformationss is still a positive solution which

depends only om. The radial functionp = In &G solves the equation

Ap + |Vol? = ar® —c. ]
Now take

whereA > 0 ande < Trv/A.
Construction | (Gradient Solutions)Let ¢ = X, ¢ with
c; < 4/a;. By [8, Th. 11], there is a 1-parameter family of solutions of

=22 4,
Fl@) + f(2i) = aia} = ci. (26) o
and
It is easy to see thaf(z) = (fi(z1), -, fu(zn)) satisfies (25). Op
There arg2n — 1)-parameter families of such solutions to (25). Note fa= Ory Az

thatn — 1 parameters come from the different ways of decomposi
c into ¢;'s so thatec = T}, ¢;, andn parameters come fron;(0)
by [8, Th. 11]. Ap+ V| = ar® —c.
Construction Il (Linear Solutions):
Theorem 3.1: Assumingrank A = n, (25) has a linear solution Then
if and only if |¢| < X7 /a; wheren > 2. of fs
Lemma 3.1:Let O(n) be the orthogonal group. Define e + s
p: O(n) — R to bep(O) = Tr (vVAO). Then,p(O(n)) = [-7.9]. — Ap+ Vol + N2 4 22) + 22
wherey = Trv/A.
Proof: It is easy to see thai(O(n)) C [—~, ~]. Noticing that ) <$2 9¢ _ 2 9y )
the special orthogonal groufO(n) is a compact connected Lie da, dia
group, p(SO(n)) must be a closed intervak C R. We claim = (a+ M) (2} +23) — c.
that [0,+] C K. The identity matrix] € SO(n) implies that
~ € K. We still need to find a nonpositive element ii. When
n is even,—I € SO(n). Therefore,—+ € K. Whenrn is odd,

n . . . .
\/9herefp is the radial solution of the equation

+fi+f

Construction IV (Degenerate Solution for Degeneraje If ¢ is
degenerate, then there are degenerate solutions of (25). We shall
illustrate this by considering(z) = axi — ¢ wherec < y/a/n.

considerOy, 02, ---,0,, € SO(n), whereO; is a diagonal matrix, e
whoseith element is 1 and all other elements ar@. Therefore, 1hen it is easy to see that
P10, =—(n—2)I.Hence X7 | p(0;) = —(n—2) TrVvA <. " 8fi LI, N
One of the numbers must be nonpositive. Ere + Zf,:‘ =azi —c¢
p(O(n)) is symmetric about the origink” D [0,~] implies that i=1 i=1
p(O() 3 [=7,7]- B wherec < \/a/n has a degenerate solution of the form

Proof (Theorem 3.1):Let f = =" P + p, whereP is ann x n
matrix andp € R". Substitute into (25) and use the fact thtis (@)= (fi(z), -, fulz)) = (g(z1), -, g9(x1))
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where g(x1) satisfies [8] R.-T. Dong, L.-F. Tam, W. S. Wong, and S. S.-T. Yau, “Structure and
I (1) classification theorems of finite dimensional exact estimation algebras,”
agi{& 2, N _ 2 SIAM J. Contr. Optim.vol. 29, pp. 866—877, 1991.
dx tngi(an) = ari —c. (29) [9] M. H. A. Davis and S. |. Marcus, “An introduction to nonlinear
filtering,” Mathematics of Filtering and Identification and Applications
Observe that (29) has a solution if and onlyrif < y/na, i.e., Reidel: Dordrecht, 1981.
c < ya/n. [10] D. Fischer-Colbrie and R. Schoen, “The structure of complete stable
Construction V (Separation of Variables—The General Cagest minimal surfaces in 3-manifolds of nonnegative scalar curvature,”
. — Y7 .. then Comm. Pure Appl. Mathvol. 33, pp. 199-211, 1980.
€= =16 [11] S. I. Marcus, “Algebraic and geometric methods in nonlinear filtering,”
noo n n SIAM J. Contr, vol. 22, pp. 817-844, 1984.
Jf; + Z f? _ Z”’T? —¢c (30) [12] S. K. Mitter, “On the analogy between mathematical problems of
= Ouw; — ’ e ) nonlinear filtering and quantum physicsRicerche di Automaticavol.
- - - 10, no. 2, pp. 163-216, 1979.
wherea; > 0andc; < /@y o1+ Jan, g2+ + /G _3n.. [13] ——, “Non-linear filtering and stochastic mechanics,” Thhe Mathe-
Hereno = 0 and nJl i ,,\L/2 _1_3 ._.1.+_|_ nn\{ 237:.1-': is clear thatjv_vghéjive matics of Filtering and Identification and Applicatignl. Hazewinkel
a solution of (30) of the form and J. S. Wlllemg, _Eds.‘ Re@el: Dordr_echt‘, 1981. ‘ ‘
[14] D. L. Ocone, “Finite dimensional estimation algebras in nonlinear
F(2) =(fr (10 s @ny )y Fuy (210 s Ty )y filtering,” in The Mathematics of Filtering and Identification and Ap-
S JIVEL T g Jo T S AL T B Sy plications M. Hazewinkel and J. S. Willems, Eds. Reidel: Dordrecht,
et Tooideetn e @) e, 1981.
Fuatrtnmaatt @t @) [15] L. Tam, W. S. Wong, and S. S.- T. Yau, “On a necessary and sufficient
JalTni g 1415 s Tn)) condition of estimation algebras3IAM J. Contr. Optim.vol. 28, pp.
173-185, 1990.
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