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A Counterexample of “Comments on ‘Stability Margin
Evaluation for Uncertain Linear Systems’ ”

Yong-Yan Cao and You-Yian Sun

Abstract—In this paper, a counterexample of the above-mentioned
paper1 is presented, and it shows that the main result of this paper is
not correct.

Consider the uncertain linear dynamic system of ordern

_x(t) = A(t)x(t) = [A0 +�A(t)]x(t) (1)

whereA0 is the nominal stable system matrix and�A(t) is the
time-varying uncertainty.

Recently, Gong and Thompson [1] have given a stability margin
evaluation method for this unstructured matrix. The criterion in
Theorem 2 of this paper is

�A
T
�A< 1

4
�
2

min
(U + U

T
)A

T

0
A0:

It is also claimed in this paper that this bound is the tightest bound
possible for all unstructured perturbations, such that (1) keeps its
asymptotic stability. But this bound was shown not to be the tightest
for all unstructured perturbations by the above-mentioned paper,1 and
a new bound also has been given; however, it is not right.

Let us consider the example of the paper1 whose system matrix is

A0 =
�3 �2

1 0
:

In this paper, it is shown that the system is guaranteed to be
asymptotically stable by Theorem 1 if

�A
T
�A<

0:7072

0:7082
A
T

0
A0: (2)

Let

�A =
3:1 1:9

0 0
:

It is obvious that�AT
�A< (0:7072=0:7082)AT

0
A0: But

A0 +�A =
0:1 �0:1

1 0

is not stable because its two eigenvalues are0:05� 0:3122i:
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Filtering Systems with Finite-Dimensional
Estimation Algebras

Rui-Tao Dong, Wing Shing Wong, and Stephen S.-T. Yau

Abstract—Estimation algebra turns out to be a useful concept in
the investigation of finite-dimensional nonlinear filters. In this paper
we study the natural question of classifying all filtering systems with
finite-dimensional estimation algebras up to state-space diffeomorphism.
In particular, we present some results on partial differential equations
arising from the study of stochastic systems and nonlinear filtering
problems.

Index Terms—Estimation algebra, nonlinear filters, under-determined
partial differential equation.

I. INTRODUCTION

In many filtering systems and stochastic control problems, one
has to deal with elliptic differential operators of a certain type. For
example, consider a filtering problem based on the following signal
observation model:

dx(t) = f(x(t))dt+ dv(t); x(0) = x0

dy(t) =Hx(t)dt+ dw(t); y(0) = 0 (1)

in which x; v; y; and w; are respectively,Rn; Rp; Rm; and Rm-
valued processes, andv andw have components that are independent
standard Brownian processes.
�(t; x); the conditional probability density of the statex(t),

given the observationfy(s): 0 � s � tg, is determined by the
Duncan–Mortensen–Zakai equation, which in theun-normalizedform
is given by (see [9] for example)

d

dt
�(t; x) =L0�(t; x) dt+

m

i=1

Li�(t; x) dyi(t)

�(0; x) =�0 (2)

where

L0 =
1

2

n

i=1

@2

@x2
i

�

n

i=1

fi
@

@xi
�

n

i=1

@fi

@xi
�

1

2

m

i=1

h
2

i

and for i = 1; � � � ;m; Li is the zero-degree differential operator of
multiplication by hi: (If p is a vector, we use the notationpi to
represent theith component ofp.) �0 is the probability density of
the initial pointx0: When the observation is absent, that ish = 0;

then (2) is simply the Kolgomorov equation.
It is important to find efficient ways to solve (2), which is the

subject of many research studies in nonlinear filtering theory. A
particularly useful concept is that of an estimation algebra, which
was introduced in [3], [4], and [12]. The survey paper [11] provides
a good introduction and many useful references to the concept. It
is defined to be the Lie algebra of differential operators generated
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by fL0; L1; � � � ; Lmg: The elliptic differential operator can be more
compactly represented if one definesDi = (@=@xi)� fi: Then

L0 =
1

2

n

i=1

D
2
i � � (3)

where

� =

n

i=1

@fi

@xi
+

n

i=1

f
2
i +

m

i=1

h
2
i : (4)

This compact representation ofL0 was exploited in [17] and [18]
to derive necessary conditions and sufficient conditions forestimation
algebras to be finite dimensional. More directly, it is easier to
understand the importance of this particular representation by noting
that

Di =
@

@xi
� fi = e

F @

@xi
e
�F (5)

whereFi = Fi(x) = sx0 fi(t)dt: Hence

D
2
i =e

F @2

@x2i
e
�F (6)

and

L0 =
1

2

n

i=1

e
F @2

@x2i
e
�F � � : (7)

In the special case wheref is the vector field of a potential function
�; (7) can be simplified as

L0 =
1

2

n

i=1

e
� @2

@x2i
e
�� � � : (8)

By defining � = e���; (2) can be reformulated as

d

dt
�(t; x) =

1

2
(�� �)�(t; x) dt+

m

i=1

Li�(t; x) dyi(t)

�(0; x) = e
��

�0 (9)

where� denotes the Laplacian operator. If� is a quadratic polyno-
mial in x; then the semigroup generated by the differential operator
� � � is well known and can be used to explicitly derive solutions
to the equation whenhi’s are linear inx: Thus, there is a connection
between this representation and thegauge transformation, as pointed
out in [13]. This idea is also related with the concept ofequivalence
of parabolic equations as discussed in [1].

In [15], a finite-dimensional filter was explicitly derived for this
case (f is a gradient vector field andhi’s are linear inx), using the so-
called Wei–Norman–Brockett–Mitter approach. A crucial argument of
this approach is that the estimation algebra is finite, which in turns
depends on whether� is a quadratic polynomial if the estimation
algebra is ofmaximal rank, that is, it contains elements of the form
xi + ci for 1 � i � n:

All these results were extended later on by [19] to the case where
f is a sum of a linear and a gradient vector field. In particular, the
following extension of the main theorems in [15] holds.

Theorem 1.1:Let E be an estimation algebra of (1) satisfying
(@fj=@xi) � (@fi=@xj) = cij , where cij are constants for all
1 � i; j � n: Assume also thath is linear inx:

1) If � is a polynomial of degree at most two, thenE is finite
dimensional.

2) Conversely, ifE is finite-dimensional andmaximal rank, then
� is a polynomial of degree at most two.

Theorem 1.2: Let E be an estimation algebra of (1) satisfying
(@fj=@xi) � (@fi=@xj) = cij where cij are constants for all
1 � i; j � n: SupposeE is finite dimensional of maximal rank.
Then � = �n

i;j=1 aijxixj + �n
i=1 bixi + d where aij ; bi; and d

are constants for all1 � i; j � n; and the robust form of the
Duncan–Mortensen–Zakai equation

@�

@t
(t; x) =L0�(t; x) +

m

i=1

yi(t)[L0; Li]�(t; x)

+
1

2

m

i;j=1

yi(t)yj(t)[[L0; Li]; Lj ]�(t; x)

(10)

has a solution for allt � 0 of the form

�(t; x) = e
T (t)

e
r (t)x � � � er (t)x

e
s (t)D � � � es (t)D

� etL �0 (11)

where T (t); r1(t); � � � ; rn(t); s1(t); � � � ; sn(t) satisfy the ordinary
differential equations (12)–(14). For1 � i � n

dsi

dt
(t) = ri(t) +

n

j=1

sj(t)cji +

m

k=1

hkiyk(t) (12)

wherehk(x) = �n
j=1 hkjxj + ek for 1 � k � m; hkj and ek are

constants.
For 1 � j � n

drj

dt
(t) =

1

2

n

i=1

si(t)(aij + aji) (13)

and

dT

dt
(t) =�

1

2

n

i=1

r
2
i (t)�

1

2

n

i=1

s
2
i (t)

n

j=1

c
2
ij � aii

+
1�i<k�n

si(t)sk(t)

�

n

j=1

cijcjk +
1

2
(aik + aki)

+

n

i=1

ri(t)�

n

j=2

j

i=1

sj(t)cij +
1

2

n

i=1

si(t)bi

+
1

2

m

i;j=1

yi(t)yj(t)

n

k=1

hikhjk �

n

i;j=1

si(t)

� sj(t): (14)

Given the importance of the estimation algebra, a natural question
arises as to whether we can classify all finite-dimensional estimation
algebras up to Lie-algebraic isomorphism. Building on the work
of [14], [15], and [7], the classification of estimation algebras of
maximal rank was achieved by Chiou–Yau [6] and Chen–Leung–Yau
[5] if state-space dimension is two and three, respectively. A second
question that arises naturally is whether we can classify all filtering
systems with finite-dimensional estimation algebras up to state-space
diffeomorphism. This is apparently a very difficult problem and
requires a careful study of partial differential equations of the type (4).
A case of these types of equations and the nonlinear filtering problem
was first noted by Benes (see [2]) and was studied in some detail
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in our previous paper [8]. In this paper, we are going to study the
general under-determined system which has not been studied before.
The class of nonlinear filtering systems with a finite-dimensional
estimation algebra can be characterized by the solutions of this family
of under-determined nonlinear partial differential equations. These
equations are the focal point of this study. We will give a simple
algebraic necessary and sufficient condition for the existence of
solutions of these equations. We will also study the growth property of
solutions of these equations. Although we cannot completely describe
all the solutions of these equations, we will provide various ways of
constructing solutions of these equations. Our result here is far from
providing a reasonable classification theory of systems with finite-
dimensional estimation algebras, but it may be viewed as a necessary
step.

II. CLASSIFICATION THEOREMS

For any filtering system defined in (1) with an estimation algebra
E; (4) assigns a characteristic�: Theorem 1.1 implies that if the
estimation algebra is finite dimensional with maximal rank, then
this maps the given system to a quadratic polynomial. In order to
develop a classification of systems with finite-dimensional estimation
algebras, we also need to understand the properties of the inverse
of this mapping. In the following, we will provide some partial
results to these questions. The key to these questions is a complete
understanding of the existence and uniqueness properties of the
following equation onRn:

n

i=1

@fi

@xi
+

n

i=1

f
2

i = q (15)

where q is a C1 function onRn: Using the vector notationf =

(f1; f2; � � � ; fn); (15) becomes

r � f + jf j2 = q: (16)

This is a Ricatti-type partial differential equation. When the es-
timation algebra is exact, i.e.,fi = (@�=@xi) for certain potential
function �; (15) reduces to

��+ jr�j2 = q: (17)

By letting � = exp�; (17) becomes

�� � q� = 0: (18)

This equation has been studied extensively (see [10]).
Theorem 2.1 [10]: Let q be aC1 function defined onRn: There

exists a positive function� satisfying (18) onRn if and only if the
first eigenvalue�1(�� q) is nonnegative onRn; where�1(�� q)

is defined by

�1(�� q) = inf
�2C

jr�j2 + q�2

�2
: (19)

The following theorem gives a simple necessary and sufficient
condition for an under-determined system (15) to have a solution.
It is rather surprising that the existence conditions for an under-
determined system (15) and a scalar elliptic equation (18) turn out
to be identical, although as we will see in the next section (15) has
many more solutions than (18) does.

Theorem 2.2: There exists a smooth vector fieldf onRn satisfy-
ing (16) if and only if the first eigenvalue�1 :=�1(�� q) [defined
in (19)] is nonnegative onRn:

Proof: The proof follows from Theorem 2.1;�1 � 0 implies
the existence of a smooth solution to the following equation:

��+ jr�j2 = q:

It is easy to verify thatf = r� solves (16). We shall call this a
gradient solution.

Now, we need to prove that the condition is also necessary. Let
� 2 C10 be anyC1 function with compact support. Multiply (16)
with �2 and integrate the equation overRn: We get

�
2
q = �

2r � f + �
2jf j2

=� 2�r� � f + �
2jf j2: (20)

The Schwartz inequality gives us

�
2
q � � jr�j2 � �

2jf j2 + �
2jf j2

which is equivalent to

jr�j2 + q�
2 � 0:

This implies�1 � 0 according to our definition in (19).
In view of Theorem 1.1, we are particularly interested in finding

the precise condition for the under-determined partial differential
equation (16) to have a solution ifq is a quadratic polynomial. The
following is the corollary of Theorem 2.2 and our previous result
[8, Th. 8].

Let q be a quadratic polynomial inx1; � � � ; xn: After an orthogonal
transformation and a translation,q can be written in the form
�n
i=1 aix

2

i � c; whereai and c are constants.
Corollary 2.3: There exists a smooth vector fieldf on Rn sat-

isfying r � f + jf j2 = �n
i=1 aix

2

i � c if and only if ai � 0 and
c � �n

i=1

p
ai:

For the remainder of this section, we useC to denote any
controllable constants.

In [8], we have shown that the solutions of (17) have at most
linear growth. This means that gradient solutions of (16) have at most
linear growth. We conjecture that the same holds for all solutions of
(16). This is a very difficult question, as it would imply the classical
gradient estimate, which is a hard subject by itself.

Conjecture II.1: Supposef is a smooth vector field onRn sat-
isfying

r � f + jf j2 = q

whereq is quadratic polynomial. Then

jf j � C(1 + jxj):
However, in terms of the general finite-dimensional filters con-

structed in [19], we assume that the drift termf satisfies the additional
condition (@fj=@xi) � (@fi=@xj) = cij ; where cij are constants.
Therefore, the following theorem is very interesting for application
purposes.

Theorem 2.4: Suppose thatf = (f1; f2; � � � ; fn) is a solution of
(16) and in addition(@fi=@xj)�(@fj=@xi) = cij are constants, then

jf j � q + C

provides thatq has quadratic growth in the sense that�q � # and
jrqj � 
(1 + jxj); whereC depends only onn; #; and
:
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Remark: From the conditionjrqj � 
(1+ jxj); we easily deduce
that q � C(1 + jxj2): Thus, this theorem shows thatf has at most
linear growth.

Proof: DenoteF = jf j2 � q; and we have

�F =

n

i;j=1

@2

@x2
j

f
2
i ��q

� 2

n

i�j=1

@fi

@xj

2

+ 2

n

i;j=1

fi
@2fi

@xj@xj
� #

� 2

n

i=1

@fi

@xi

2

+ 2

n

i;j=1

fi
@

@xj

@fj

@xi
+ cij � #

� 2

n

n

i=1

@fi

@xi

2

+ 2

n

i=1

fi
@

@xi

n

j=1

@fj

@xj
� #

=
2

n
F
2 � 2f � rF � #: (21)

Choose a standard cutoff function'R(x) 2 C1

0 (Rn) such that

'R(x) = 1 on BR(0)

'R(x) = 0 on B
c

2R(0)

and0 � 'R(x) � 1; jr'R(x)j � (C=R); j�'R(x)j � (C=R2):

'2RF achieves its maximum atx0 2 B2R(0): At that point

r('2RF ) =0
or

2r'RF + 'RrF =0 (22)

and

0 ��('
2
RF )

='
2
R�F + 4'Rr'R � rF + F�'

2
R:

Plug (22) and (21) into the above inequality, we get

0 �'2R
2

n
F
2 � 2f � rF � # + [�'

2
R � 8jr'Rj2]F

=
2

n
'
2
RF

2
+ 4'R(f � r'R)F � #'

4
R

+ (2'R�'R � 6jr'Rj2)F: (23)

Multiply (23) by '2R and notice that

jf � r'Rj � jf j2 � jr'Rj2

� (F + q) � jr'Rj2

� F jr'Rj2 + C
:

We have

2

n
'
4
RF

2 � 4'
3
RF F jr'Rj2 + C
 � #'

4
R

+ (2'R�'R � 6jr'Rj2)'2RF � 0

and the Schwartz inequality

p
a � "a+

1

4"

gives us

2

n
'
4
RF

2 � 4'
2
RF "'

2
RF jr'Rj2 + C
'

2
R +

1

4"

� #'
4
R + (2'R�'R � 6jr'Rj2)'2RF � 0:

The left-hand side is a quadratic polynomial inM; whereM =

'2RF: Take" to be sufficiently small to make the leading coefficient

positive. Notice that'R; (r'R);�'R are all bounded quantities,
andM is therefore bounded. Hence

max
B (0)

F � max
B (0)

'
2
RF =M � C:

Let R ! 1; and we have

jf j2 � q + C:

This is equivalent to our conclusion.
Let q = �n

i;j=1 aijxixj � c, where c 2 R and the constant
matrix A = (aij) is positive semidefinite. Letf�1; � � � ; �ng be the
eigenvalues ofA and c0 = �n

i=1

p
�i: In [8], we have shown that

when c = c0; there is a quadratic polynomial, uniquely determined
up to a constant which satisfies

��+ jr�j2 = q:

Moreover, this is the unique solution up to a constant if either one
of the following conditions holds.

1) rank A = 0 (namely,A = 0).
2) rank A � n � 2:

We can generalize this to the under-determined system (16) in the
second case.

Theorem 2.5: Consider the following equation:

r � f + jf j2 = q (24)

whereq = �n

i;j=1 aijxixj�c: Equation (24) has a unique solution if

1) �1(� � q) = 0;
2) rank A � n � 2; A = (aij):

Proof: Without loss of generality, we can assume thatA is a
diagonal matrix with eigenvaluesa1; a2; � � � ; an: �1(� � q) = 0 is
equivalent toai � 0 and c = �n

i=1

p
ai:

In this case, ru0 is a solution of (24), whereu0 =

�(1=2)�n

i=1

p
aix

2
i :

Let w = f � ru0; and we have

r � w + 2ru0 � w + jwj2 = 0:

Multiplying both sides bye2u and integrating onBR(0); we get

0 =
B (0)

e
2u

(rw + 2ru0 � w) +
R (0)

e
2u jwj2

=
B (0)

r � (e2u w) +
B (0)

e
2u jwj2

=�
@B (0)

e
2u

w �*n +
B (0)

e
2u jwj2:

Denote�(R) = s
B (0) e

2u jwj2;  (R) = s
B (0) e

2u and by
the Schwartz inequality

@B (0)

e
2u

w �*n �
@B (0)

e
2u jwj

�
@B (0)

e2u jwj2 �
@B (0)

e2u

= �0(R) �  0(R):
Hence

(�(R))
2 � �

0

(R) �  0(R)
or

�0(R)

�2(R)
� 1

 0(R)
:

Integrate over(R0;1); and we have

1>
1

�(R0)
� 1

�(1)
=

1

R

�0(R)

�2(R)
dR �

1

R

dR

 0(R)
=1:
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The contradiction shows that�(R) � 0; which is equivalent to
w = 0:

III. CONSTRUCTION SOLUTIONS TO THE P.D.E.

One can construct many interesting examples of stochastic systems
with finite-dimensional filters by finding solutions to (16). Iff is such
a solution, the system defined by (1) will have a finite-dimensional
filter as defined in Theorem 1.2. Of course, the best known solutions
to (16) include the linear solutions and some of the solutions discussed
in [2]. However, these previously known cases are by no means
exhaustive. In this section, we will concentrate on the problem of
how to construct solutions for (16) whenq is a quadratic polynomial.

After a Euclidean motion,q can be written in the form�n
i=1 aix

2
i�

c, whereai andc are constants. In Corollary 2.3, we have shown that
(16) is solvable if and only ifai � 0 andc � �n

i=1

p
ai:

Let

x =

x1
x2
...
xn

and A =

a1
a2

.. .
an

p
A =

p
a1 p

a2
... p

an

:

We can then rewrite (16) into

r � f + jf j2 = x
T
Ax � c (25)

whereA � 0 and c � Tr
p
A:

Construction I (Gradient Solutions):Let c = �n
i=1 ci with

ci<
p
ai: By [8, Th. 11], there is a 1-parameter family of solutions of

f
0

i(xi) + f
2
i (xi) = aix

2
i � ci: (26)

It is easy to see thatf(x) = (f1(x1); � � � ; fn(xn)) satisfies (25).
There are(2n�1)-parameter families of such solutions to (25). Note
thatn� 1 parameters come from the different ways of decomposing
c into ci’s so thatc = �n

i=1 ci, andn parameters come fromfi(0)
by [8, Th. 11].

Construction II (Linear Solutions):
Theorem 3.1:AssumingrankA = n; (25) has a linear solution

if and only if jcj � �n
i=1

p
ai wheren � 2:

Lemma 3.1: Let O(n) be the orthogonal group. Define
�: O(n)! R to be�(O) = Tr (

p
AO): Then,�(O(n)) = [�
; 
];

where 
 = Tr
p
A:

Proof: It is easy to see that�(O(n)) � [�
; 
]: Noticing that
the special orthogonal groupSO(n) is a compact connected Lie
group, �(SO(n)) must be a closed intervalK � R: We claim
that [0; 
] � K: The identity matrix I 2 SO(n) implies that

 2 K: We still need to find a nonpositive element inK: When
n is even,�I 2 SO(n): Therefore,�
 2 K: When n is odd,
considerO1; O2; � � � ; On 2 SO(n); whereOi is a diagonal matrix,
whose ith element is 1 and all other elements are�1. Therefore,
�n
i=1 Oi = �(n�2)I: Hence,�n

i=1 �(Oi) = �(n�2)Tr
p
A � 0:

One of the numbers must be nonpositive.
�(O(n)) is symmetric about the origin.K � [0; 
] implies that

�(O(n)) � [�
; 
]:
Proof (Theorem 3.1):Let f = xTP + p; whereP is ann � n

matrix andp 2 Rn: Substitute into (25) and use the fact thatA is

nondegenerate, then we get

PP
T
=A

TrP =�c
p =0:

Therefore,P =
p
AO whereO 2 O(n): Using the above lemma,

we conclude the proof.
Remark: When rank A<n; the existence condition becomes

c � �n
i=1

p
ai: We omit the proof here as it is quite similar.

Construction III (Sums of Gradient and Linear Solutions):In cer-
tain situations, there are solutions of (25) which are sums of gradient
and linear solutions. We shall illustrate this by consideringn = 2

and a1 = a2 = a + �2. Then (25) becomes

2

i=1

@fi

@xi
+ f

2
i =(a+ �

2
)(x

2
1 + x

2
2)� c

= a1r
2 � c: (27)

We shall show that (27) has a solution of the formf = r� +

(`1; � � � ; `n); where `i; 1 � i � n; are degree-one polynomials if
c< 2

p
a:

Lemma 3.2:�� + jr�j2 = ar2 � c has a radial solution if
c< 2

p
a:

Proof: Take any solutiong of the equation (such solution exists
in view of [8, Th. 12]). It is easy to see thatu = eg satisfies the
following linear partial differential equation:

�u = (ar
2 � c)u: (28)

Let G(x) = s�2O eg(� �x) where the integral takes place over
all orthogonal transformations.G is still a positive solution which
depends only onr: The radial function' = lnG solves the equation
�'+ jr'j2 = ar2 � c:

Now take

f1 =
@'

@x1
+ �x2

and

f2 =
@'

@x2
� �x1

where' is the radial solution of the equation

�'+ jr'j2 = ar
2 � c:

Then

@f1

@x1
+

@f2

@x2
+ f

2
1 + f

2
2

= �'+ jr'j2 + �
2
(x

2
1 + x

2
2) + 2�

� x2
@'

@x1
� x1

@'

@x2

= (a+ �
2
)(x

2
1 + x

2
2)� c:

Construction IV (Degenerate Solution for Degenerateq): If q is
degenerate, then there are degenerate solutions of (25). We shall
illustrate this by consideringq(x) = ax21 � c where c � a=n:

Then it is easy to see that

n

i=1

@fi

@xi
+

n

i=1

f
2
i = ax

2
1 � c

wherec � a=n has a degenerate solution of the form

f(x) = (f1(x); � � � ; fn(x)) = (g(x1); � � � ; g(x1))
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where g(x1) satisfies

dg1(x1)

dx1
+ ng

2

1(x1) = ax
2

1 � c: (29)

Observe that (29) has a solution if and only ifnc �
p
na, i.e.,

c � a=n:

Construction V (Separation of Variables—The General Case):Let
c = �m

j=1 cj ; then

n

i=1

@fi

@xi
+

n

i=1

f
2

i =

n

i=1

aix
2

i � c (30)

whereai � 0 andcj �
p
an +1+

p
an +2+ � � �+

p
an +n :

Heren0 = 0 andn1 + n2 + � � �+ nm = n: It is clear that we have
a solution of (30) of the form

f(x) =(f1(x1; � � � ; xn ); � � � ; fn (x1; � � � ; xn ); � � � ;

fn +���+n +1(xn +���+n +1; � � � ; xn) � � � ;

fn(xn +���+n +1; � � � ; xn))

where

fn +���n +1(xn +���n +1; � � � ; xn +���+n ); � � � ;

fn +���+n (xn +���+n +1; � � � ; xn +���+n )

satisfies the equation

n +���n

i=n +���n +1

@fi

@xi
+ f

2

i =

n +���+n

i=n +���+n +1

aix
2

i � cj : (31)

Construction VI (Sums of Gradient and Linear Solutions in Sepa-
rable Variables): This is a special case of Construction V. In the
above construction, we can take some of

(fn +���+n +1(xn +���+n +1; � � � ; xn +�+n ); � � � ;

fn +���+n (xn +���n +1; � � � ; xn +���+n ))

to be gradient solutions of (30) and some of those to be linear
solutions of (31).
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A Normalized Schur–Cohn Stability Test
for the Delta-Operator-Based Polynomials

H. (Howard) Fan

Abstract—Two delta-operator-based stability tests, or more generally
zero location tests, were recently proposed in a separate paper. Those
tests establish two families of such tests, each spanning from the discrete-
time to the continuous-time with the delta operator providing smooth
transitions between the two domains. In this paper a third family is
proposed. Specifically, the normalized Schur–Cohn test in the discrete-
time domain is transformed into the delta-operator domain resulting in a
new delta-operator test. The limit of this new test as the sampling interval
vanishes is shown to be the recent Pham–Le Breton test in the continuous-
time domain. Its relationships with the well-known Routh test and others
are studied. A numerical example shows the advantage of the new test
for fast sampling.

Index Terms—Delta operator, inertia tests, Routh test, Schur–Cohn
test, stability tests, zero locations.
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