Advances in Mathematics 140, 156-189 (1998)
Article No. AI981767

Finite Dimensional Filters with Nonlinear Drift, Xl

Explicit Solution of the Generalized Kolmogorov Equation in
Brockett—Mitter Program*

Shing-Tung Yau

Department of Mathematics, Harvard University,
Cambridge, Massachusetts 02138
E-mail: Yau@math.Harvard.edu

and

Stephen S.-T. Yau

Control and Information Laboratory MSCS, M/C 249, University of Illinois at Chicago,
851 South Morgan Street, Chicago, Illinois 60607-7045
E-mail: Yau@UIC.edu

Received February 19, 1998

Ever since the technique of the Kalman—Bucy filter was popularized, there has
been an intense interest in finding new classes of finite-dimensional recursive filters.
In the late 1970s the concept of the estimation algebra of a filtering system was
introduced. Brockett, Clark, and Mitter proposed to use the Wei-Norman
approach to solve the nonlinear filtering problem. In 1990, Tam, Wong, and Yau
presented a rigorous proof of the Brocket—Mitter program which allows one to
construct finite-dimensional recursive filters from finite-dimensional estimation
algebras. Later Yau wrote down explicitly a system of ordinary differential equations
and generalized Kolmogorov equation to which the robust Duncan—Mortenser—
Zakai equation can be reduced. Thus there remains three fundamental problems in
Brockett—Mitter program. The first is the problem of finding explicit solution to the
generalized Kolmogorov equation. The second is the problem of finding real-time
solution of a system of ODEs. The third is the Brockett’s problem of classification
of finite-dimensional estimation algebras. In this paper, we solve the first problem.
© 1998 Academic Press
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1. INTRODUCTION

Until the 1970s the basic approach to nonlinear filtering theory was via
“innovation methods,” originally proposed by Kailath in 1967 and
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rigorously developed by Fujisaki et al. ([FKK] 1972) in their seminal
paper. As pointed out by Mitter, the difficulty with this approach is that
the innovation process is not, in general, explicitly computable (except in
the well-known Kalman-Bucy case). In the late 1970s, the concept of the
estimation algebra of a filtering system was introduced by Brockett and
Clark [Br-Cl], Brockett [Br], and Mitter [ Mi]. The motivation came
from the Wei-Norman approach [ We-No] of using Lie-algebraic ideas to
solve some time varying linear differential equations. The extension of
Wei-Norman approach to the nonlinear filtering problem is much more
complicated. Instead of an ordinary differential equation, we have to solve
the Duncan—Mortensen—Zakai (DMZ) equation, which is a stochastic
partial differential equation. By working on the robust form of the DMZ
equation we can reduce the complexity of the problem to that of solving a
time varying partial differential equation. Wong [ Wo 1] constructed some
new finite dimensional estimation algebras and used the Wei—-Norman
approach to synthesize finite dimensional filters. However, the systems
considered in [ Wo 1] are very specific and the question whether the Wei—
Norman approach works for a general system with finite dimensional
estimation algebra remains open. In Tam et al. [TWY] presented a
rigorous proof of the Wei-Norman program which allows one to construct
finite dimensional recursive filters from finite dimensional estimation
algebras. They considered a class of filtering systems having the property
that the drift-term f of the state evolution equation is a gradient vector
field. In [ Wo 2], the concept of @ is introduced, which is defined as the
matrix whose (i, j)-entry is 0f;/0x;—0f;/0x; For the class of filtering
systems considered in [TWY ], Q is zero. Conversely, if 2 =0, then by the
Poincaré Lemma, f is a gradient vector field. So the class of filtering
systems considered in [ TWY] is characterized by the fact that Q =0.

Motivated by the results of [TWY], recently Yau [ Ya] considered a
more general class of filtering systems having the property that Q is a skew
symmetric matrix with constant coefficients. It was shown that Q is a skew
symmetric matrix with constant coefficients if and only if f is the sum of
gradient vector field and affine vector field ((4, ..., Z,) is an affine vector
field if /;, 1 <i<n, are affine functions). In [Ya], Yau derived a simple
necessary and sufficient condition for an estimation algebra of the above
filtering systems to be finite dimensional. He classified all finite dimensional
estimation algebra of maximal rank for these filter systems. In fact, he
constructed the corresponding finite dimensional filters explicitly.

After the work of [TWY] and [Ya], we know that the robust DMZ
equation is reduced to a generalized Kolmogorov equation and a system
of ODEs. It is clear that there remains three fundamental problems in
Brockett—Mitter program. The first one is the problem of finding explicit
solution to the generalized Kolmogorov equation. The second one is the



158 YAU AND YAU

problem of finding real-time solution of a system of ODEs. The third
problem is the Brockett’s problem of classification of finite dimensional
estimation algebras.

In the recent works of Chiou and Yau [Ch Ya], Chen ef al. [CLY 1,
CLY 2], it was shown that if the estimation algebra of maximal rank is
finite dimensional and the state space dimension is less than five, then the
filtering systems are necessarily those considered by [ Ya], i.e., 2 is a skew
symmetric matrix with constant coefficients. In view of the theorem of
[Ya], all finite dimensional estimation algebras maximal rank with state
dimension less than five are completely classified. It was conjectured by the
second named author that in general the Brockett problem can be solved
in this way.

The purpose of this paper is to solve the generalized Kolomogorov equa-
tion which is the first fundamental problem in Brockett—Mitter program.
The advantage of our approach is that we do not need to make any
assumption on the drift term f except some regularity assumption at
infinity and therefore it applies to general class of non-linear filtering
systems. We can write down the formal solution and give estimates of it.
We can also construct a convergent solution explicitly from the truncated
formal solution. Most strikingly we can actually estimate the time interval
on which our solution converges. More precisely we have proven the
following theorems.

THEOREM A [Ya-Ya l]. The genralized Kolmogorov equation

ou 12 0 i 2
T )= {2 3 <(.M—f,-(X)>

has a formal solution on R" of the following form

ut.x)=[" [ @ny

— 00 — 0
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xexp (=3, 3 (y= 0+ [ T (i £l +itr— ) i)

0 ;=1
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xao(y)dy;---dy,,
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where ay(x, y) = [o t*7'g(y + t(x— ), y) dt,

a3 =3 5 St B (o0 ) 2= )
35 Sreng £ (Frwn)
-3 A 5 = 3 =5 § ) de ()
and
=] 3 i fily+ =) d

THEOREM B. Let

$N(ts X, y) = (27U) 2 eXp <a(x’ y) - |x;ty|2>
X[14+a(x, y)t+ - +ay(x, y)tV]

eN(ta X, y) 7(1 X, y) Lx&N(ts X, J’),

where L,=337_, (0/0x;,— f,(x))* = 3(X7_, 0fi/0x(x) + X7_, fH(x) + X7,
h3(x)) is the operator defined by the right hand side of (1.1). Assume that

sup |V/f;1 < C(j!) j=1.,N
sup |[V/h,| <C[j']  j=1,..N,

where C>max(2, | f1(0)], | /2(0)], ... [£,(O)], [21(0)], |A2(0)], ... |1,,(0)]) and
V/ denotes any jth order partial dy_’ferenttatwn in x variables. Then for |t| <1

and N =3n./m C—1

() |Pnlt, X, V) S2AN+ D™ (14 /1 [x))N (141 |y (2mt) "

X — 2
X eXp <a(x, y)—| 2ty| >
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(b) len(t, x, )| S(N 42+ (14 /1 X))V T2 (14 /1 | y])?V+2

x (211) "2 {exp <a(x, ) —'x;”zﬂ :

Tueorem C. For N>3n\/1;C—1, let ¢p(t, x, y) and ex(t, x, y) be
defined as in Theorem B. Let

e, x, p) =Pt x, )+ X (=D gi(t,x, p),
k=1

where

¢k(ta X, y)

j k1 j j L sz(TkH,x, Xg41)

L= X "X

X eN(Tka Xk +1> xk) eN(kala Xke» xkfl) e eN(TOa X1, y)

If t is chosen small enough so that

. {«/n2C2+2(N+1)—nC 1 }
0<tr<min —

8(N+1) " 8nC

then the infinite series ¢(t, x, y) converges and ¢(t, x, y) is the fundamental
solution to the generalized Kolmogorov equation, i.e.,

a9
2 (t,x, y)=L,§(t, x, y)

}grré (2, x, y)=0,(y)

COROLLARY D. The fundamental solution ¢(t, x, y) in Theorem C is
approximated by

$N(t’xa y)+ 1)k+l¢k(taxa y)

I M X

k=0
which is readily computable. The error for such an approximation is given by

z (_1)k+1¢k(lsx’y)

k=K+1
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which can be estimated by

(14 /1 1%V 42 (14 /1| p)N 2

cexp [ (v -4V 1 2= B2

« i 2(N+2)4(k+2)N+4(k+1) /k+2( /zn)—(k+2)(n/2)24(N+1)(k+1)

k=K+1

Z_("/2)+k+l

[+l
x(v/4m) (k+1)!

which clearly tends to zero rapidly if t is small and K is large.

It should be noted that in the literature (see for example [Fr]), the
parametrix method was used to prove existence of fundamental solution for
bounded domain. The estimate here is more complicated as growth
assumptions have to be made on a non-bounded domain, otherwise there
is no reason to expect existence of solution even for small time.

Let L=14— f(x)-V—V(x) be an operator defined on R”" where A4 is
the Lapldcun operator, V is the gradient operator and V(x) 1 Of3/0x;
+ 337 h2(x). Let P(¢) =exp(¢L) denote the correspondlng semlgroup on
L2(R") w1th kernel p(z, x, y). We find an asymptotic expansion for
p(t, x, y) then use it to construct p(z, x, y) as an infinite series by the
parametrix method.

For a fixed large enough A, let ¢(¢, x, y) denote the N-th partial sum of
the asymptotic expansion for p(t, x, y) and let e(z, x, y)=(0/0t— L)
q(t, x, y) be the error. Let Q(z), E(¢) be the operators whose kernels are
q(t, x, ), e(t, x, y). Then Q'(¢t)=LQO(t)+ E(t) which yields

since P(0)=17=Q(0). Thus one has Q equal to P plus a linear compact
perturbation applied to P. Inverting this, one has the Neumann series

P(z):Q(z)—ftQ(z—s)E(s) ds+ff Ot —s) E(s— r) E(r) dr ds + -

We prove that if |V/f;| < C(j!) for j=1 and |V/h;| < C((j—1)!) for j>1,
our estimates on e are good enough so that the Neumann series converges
and yields p(¢, x, y).
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When the drift term f(x) is a gradient vector field so that L is self-
adjoint, the paramatrix method is more well-known although we cannot
find it in literature. If /4, ..., h,, are constants, then the result can be found
in [ Ya-Ya 2]. However when the drift term f(x) is not a gradient vector
field and A, ..., h,, are not constants, the result is new and has potential
application to many different fields besides the application to non-linear
filtering theory.

2. BASIC CONCEPTS

The filtering problem considered here is based on the following signal
observation model

dx(1) = f(x(1)) dt + g(x(1)) dv(r)  x(0) =x,
{dy ) (2.1)

(1) = h(x(1)) dt + dw(1) 1(0) =0,

in which x, v, y and w, are, respectively, R”, R?, R™, and R valued pro-
cesses, and v and w have components which are independent, standard
Brownian processes. We further assume that n = p, fand 4 are C* smooth,
and that g is an orthogonal matrix. We will refer to x(¢) as the state of the
system at time ¢ and y(¢) as the observation at time ¢.

Let p(t, x) denote the conditional density of the state given the observa-
tion { y(s): 0<s<r}. It is well-known that p(z, x) is given by normalizing
a function o(t, x), which satisfies the Duncan—Mortensen—Zakai (DMZ)
equation,

do(t,x)=Lyo(t, x) dt + ,Zn: L;o(t, x) dy;(1), (0, x)=04, (2.2)

i=1
where

1

h?

1

l\)\
jS))
N =
I s

X

i i

IIM:
K

i=1

and for i=1, ..., m, L, is the zero-degree differential operator of multiplica-

tion by 4;. g, is the probability density of the initial point x,. Let

u(t, x)=exp ( — i h;(x) y,.(t)> o(t, x).

i=1
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It is easy to show that u(¢, x) satisfies the following time varying partial
differential equation

O ) = Lou(t. )+ 3 3D Lo. LT ult, )
Lo 23
43 S w0 plLe L] L1y Y

u(0, x)=a,
where [ -, -] is the Lie bracket.

DerFINITION.  (a) The estimation algebra E of a filtering system (2.1) is
defined to be the Lie algebra generted by {L,, ..., L,,}.

(b) E is said to be the estimation algebra of maximal rank if x;+ c;
is in E for 1 <i<n where ¢, is a constant.
We remark that if /;(x) =37, a;x;+ f;, 1 <i<m, ay, f; are constants,
and the rank of the matrix («;) is n, then the estimation algebra E is of
maximal rank. Define

i : 2 . 2
P Y i+ Y ht

i i=1 i=1

0
D=——f =
=, S m

I M s
S

i=1

Then

Lo=3( 3 D7)

i=1

THEOREM 2.1. [Ya] Let E be an estimation algebra of (2.1) satisfying
0f;/0x;— 0f;/0x; = c; where c;;, 1 <1, j<n, are constants. If E is finite dimen-
sional, then hy, ..., h,, are affine. Suppose further that E is of maximal rank.
Then n=3%7 ;) ayx;X;+ > 7/_, b;x;+d is a quadratic polynomial and E has
a basis (as real vector space) given by 1, x4, ..., x,,, D1, ..., D,, and L. In fact
the robust DMZ Egq. (2.3) has a solution for all time t =0 of the form

U([, X) — eT(t)ern(t)xn . erl(t) xlesn(t) Dn Esl(t)DletLOO'O, (24)

where  T(t), r1(t), ..., (1), $1(2), ..., s,(t) satisfy the following ordinary
differential equations (5), (6) and (7)

ds; z

7;(t)=r,-(t)+ Yosi() i+ Y hyi(t)  1<i<n, (2.5)
j=1 k=1
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where hy(x) =37_, hyx;+ex, 1 <k <m; hy; and e, are constants

£T s X ety antan)

£ 03 T sty 30

i=1 j=2 i=1
1 n n n

+3 2 50w L hahs )= 3 stnne,. @)
i =1 k=1 i i=1

It is clear from the above theorem that the robust DMA equation is
reduced to a generalized Kolmogorov equation

2 (1,3 = Loutt,
1 n 2 a n ai
=3 £ S5 00= % 0 0= 3 T uey

i=1 1=

<,§ gfl 1+ X FA0+ il hi(x )>} u(t,x)  (28)
)

and a system of ODEs. Therefore there remain three fundamental problems
in Brockett—Mitter program mentioned in Section 1.

3. FORMAL SOLUTION TO GENERALIZED KOLMOGOROV
EQUATION

The formal solution of the generalized Kolmogorov equation (2.8)
was already obtained in [ Ya-Ya 1]. The material included here without
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proof is for the sake of the convenience of the reader and for our later
use.

THEOREM 3.1. The generalized Kolmogorov equation (2.8) has a formal
asymptotic solution on R”. In fact, the solution is of the following form

..joo ! 2

x [exp(— 3 (x,— y,-)%)} b1, %, ¥) Go() dvy -y, (31)

where b(t, x, y)=3_ ax(x, y) t*. Here a,(x, y) are described explicitly as

follows. Let

a(x, y) j Z ) fily +t(x—y)) dt. (32)

Then, let

aolx, y) =),

Suppose that a, _(x, y) is given. Let

_l 2 0%, “ Oy _,
gl )= X )= LA T ()
1 m n a A
5 (Z e inn- T Lwa o G4
i=1 i=1 i

Then, for k=1

1

ay(x, p) = D [k lem DD, (4 i(x— ), p) dt
0

LemMMma 3.2. Let do(x, y)=1 and d,_(x, y)=e **Ya, (x, y). Let

gk(xa y) = efa(x, y)gk(X, y) Then

1
ax y)= | Ty i ). ) de
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THEOREM 3.3. The generalized Kolmogorov equation (2.8) has a formal
solution on R" of the following form

o 1 1 Z
f 2 [exp<—2 Z x;—y;)?

u(t, x)=j_oo... o
+f01 i (x;=y) filly+1(x—Y)) dtﬂ

ca(x, )+ Tao(y) dyy - dy,,

x[14+da,(x, y)t+
(3.5)

where Gi(x, y)= | * 7 'g(y+1(x— ), y)dt and

1 x 62~ n a ) _
B =3 X T o+ T (55 )= A ) )

12 62 1z 0 2 e 0
(S B3 () E e

4. ESTIMATES OF THE FORMAL ASYMPTOTIC SOLUTION

In this section, we shall give estimates of the formal asymptotic solution
(3.5). These estimates will be used in Section 5 to construct convergent
solution of the generalized Kolmogorov Eq. (2.8).
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LemMA 4.1. Let a=(ay, .., a,) and || =0, +oy+ -+ +,. Then

azx1+ +ana

OxX Ox3 - Ox%n (. )

1 ol =1,
= Joe] =1 1 .
oy jo 4 axolclflaxgz.”axzn (y+t(x y)) dl’

Dot o~ d
+ ooty | T = + tx— t
; jo Ox§1- - OxTi-10xF 10 it - Ox (y+ix=y)
1 alal—lf
4ot "j e =1 ! +t(x— dt
* 0 0xi‘1~~~8x2":110xZn_1 (y+dx=y)

Lo olf,
+ jo £l gl (=) 7 —— (y+ix—y))dt,

o o4
= lax22...axnn

where a(x, y) is defined in (3.2).

Proof.
da 1 1o o,
v~y S =i+ [0 B =) G (=)
The proof follows from induction. Q.E.D.
Let

Fatt.x, )= (2nn) 2] exp (atx. ) - E5 20 )|

x[1+a,(x, p)t+ - +aylx, y)tV]. (4.1)

We shall estimate |§ (7, x, y)|. Our basic assumption is that
sup [V/fi(x)] < C(j!) Jj=1L.,N, 1I<i<n (4.2)
sup |V/h;(x)| < C[j!] j=1L.,N, 1<i<m (4.3)

where C>max(2, | f1(0)], ... | £,(0)], |1(0)], ..., |11,,(0)]). Here V’/ denotes
partial differentiation of order j with respect to x variables. The following
Lemma is given in [ Ya-Ya 2].
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Lemva 42, (a) If,(x) LIS Clx—yl

(b) |0a/ox, (x, )| (M| +/nClx—y|
(¢) |Va(x, )’)|<(J—1 (C+/nClx—yl|) for j<2
(d) |8afox;(x, y)— fi(x)| </nlx—y| C
(e) |V/(dajox,(x, y)—ﬁ(x) | <j/n Clx—y|+2C)

LemMa 4.3. (i) Suppose p, j are non-negative integers and p < j.
Then

(p+26)! _(j+2k)!
p!

(ii) For positive integer N, (N+2)*NT2=(2N+2)! for any non-
negative integer k.

Proof. (i)
(p+2k)!<(j+2k)!
pt
<l (p+2) < p! (j+2k)!
<jI<pl(p+1+2k)p+2+2k)---(j+ 2k).

The last inequality is obvious.
(i) For any 1 <j<N+1, it is clear that

N+4>2224j—f
which implies
(N+2)>=N>+4N+4>N>+3N+2+ j— j*=(N+2—j)(N+ 1+ ),

1e.,

N+2 _N+2—j
>

> for 1<j<N+L
N+l+j° N+2 or IsJsHNF

It follows that

Nl N42  NEIN42—
l_[N+1+] Il N+2

Jj=1

which is equivalent to (N +2)*Y+2> (2N 4 2)! Q.E.D.
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ProrosiTION 4.4. Let

0
Ai(x. ) =5 (5 ) = fi(x)
1z Oza 1 2 [da 2
n=3 203 L ()
n a l m n a A
- ¥ A5 (=3 T a0 - X i

Then

(a) [V7d,(x, )| <j!1(/n Clx—y|+20)
(b) |VfB(x,y>|<<J+1'nm(fC|y|+20f|x y|+2C)?
(€)  IVZan(x, )| < (j+2k)! n¥m*(/n C || +2C /n |x — y| +2C)%*

Proof. Part (a) follows from (d) and (e) of Lemma 4.2.
Observe that
£SO + 1) = f0) S C+/n C x|
1h;(xX)] < [7:(0)] + () — 1, (0)]

<c+ﬁC|x|<C(1+ﬁ|y|+ﬁ|x—y|)

n 62
B i<y 2[5 y)‘
1 u Oa
+5 % | <8x,— (5 0= )|
#3 3 [ S| 45 S ol + 3 [P

<! C+fC|x y|)+

<3!
x(/n Clx—y|)+ Z (1L + () = fi()])
y>|+ﬁC|x—y|

+%c2(1+ﬁy+\/ﬁ|x—y|)2+nc

i (/i) +/n Clx— )

N \

l\-)\'—‘
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I’l
<3 ( (C+/nClx—y|)+ C+fC|y|+fC|x )
x(/n Clx—yl)
+g(C+ﬁC|y|+ﬁC|x—y|)2
2
T(l+ﬁ|y|+ﬁ|x—y|)2+nC
n
<5(c+ﬁC|y|+c\/;2|x_y|)2
n
+[2(c+ﬁC|y|+ﬁC|x—y|)
x(ﬁC|x—y|)+gC2
n
E C+fC|x y])
[’; (C+/nClyl+2C/nlx—y|)? ;"cz

<THCHC Iy +Cn x—y])?
+nm<C+Cﬁ|y|+Cﬁ|x—y|)(0ﬁ|x—y|+0)
+— (C/nlx—yl+C) ”;”
X (2C+/n C|y| +2C /n|x— y|)?
=T UCHCnlyl+C/nlx—y)
+(C/nlx—yl+0)7?
LC+/n Clyl+2C Julx—y))
=nm(\/n C|y| +2C/n|x = y| +20)?

VIB(x, )] =
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r Oa
Eg‘ { axi(x’y)]
52 ]—ZV’“f, %)
g(]+1 (C+/nClx—y))

c J! P+l
521 2oV )l

0
v (4 y)ﬁ-(x))]
Xi

171

1 n
32 T VA Ve )

i=1 p+q=j

1 m !
+5 ) ﬁ IVPh,(x)| [V (x)| +n[(j+1)]C
2 i=1 p+q=j q:
LLGADCHmCl—+E Y L)
) 2P+q ]p'q!

c+fC|x y1)q! (/n Clx—y|+2C)

n
+5 3 PUCHC Syl +C/nlx—y|)

p+gqg= ]p

m j!
xq!(C+\/i;C|x—y|)+5 z W
ptq=Jj

x(p!O)Ng!' O)+n((j+1)) C

<TLU+DIC+/n C lx=y)
+ 200+ DICH/n € lx=yD2C+/n Clx =)

+2 LG+ DI(CH+C/nlyl+C/nlx =)
X (C+/nClx—yl)

+%[(j+l)!] CCan[(j+1)]C



172 YAU AND YAU
S(j—i—l)!?(C—i—C\/i;Ix—yD
X (/n C |yl +2C/n|x—y| +2C)
+(j+1)!%(c+c\/ﬁ|x—y|)
X (/n Clyl +2C/n|x—y|+2C)

+(j+1)!%+(j+1)! nm(/n Cly|+C+C/nlx—y)

x (C+ C\/i;|x—y|)+(j+1)!%c2

. nm 5
<(1+1)17(\/;ZC|y|+2Cﬁ|x—y|+2C)

. nm
+(]+1)!7(ﬁC|y|+C+Cﬁ|x—y|)2

+(j+ D) nm(/n Clyl+C+C/n|x—y|)
x(C+C/nlx—yl)

+(j+1)!%(c+c\/;}|x—y|)2
+(j+1)!%(C+C\/Z|x—y|)2

<+ D! nm(/n C |yl +2C/n |x— y| +2C)>

1
dr1(x, y)= L) 5G (y+1(x—y), y)dt

=f0f {1 i %22 (y+ix—y),»)

n a~
£ Y Ay ix— ) ) SE (=), )
i=1 i

+B(y+t(x—y), y)ally+tx—y), y)} dt
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1
Va1 )| < 05 V20 (= ), )] di
(y+1x—y),)

1 n
+f DIRZALEEDY
ptg= Jp q

0 =1
X VPG (y+1(x—y),

+f1tf+" 2 7IV"B(y+t(x ) ¥)

p+qg=Jj

y)ldt
|

X |VPa(y +t(x—y), y)| dt
n
< (424 2k) nkm*
2(j+k+1)(J+ +2k) ntm
x(/n Clyl+2C/n|x—y|+2C
n i
Y p{—q (/n Clx—y|+20)

e
(]+k+1)p+q J
X mm*(p + 1+ 2k)! (/n C|y| +2C/n|x — y| +2C)%*

(g+1)!

1
+-
J+k+1M§JP'
xnm(y/n C |y +2C/n |x— y| +2C)*- (p + 2k)! n*m*
S Clyl+2C/n|x—y|+2C)*

nk+1mk
(j+ 2+ 2k)!

<7
2j+k+1)
X (y/n Cly|+2C/n|x—y|+2C)
k+1, k )
Ty Lp1 42k

+ -
J+k+1,°7  p!
1 Clx—y|+20)(/n Cly| +2C /n|x—y| +2C)*

I’lk+1mk+1 j!(q+1)
TS — - (p +2k)!
J p+qg=Jj p:

SN Cly|+2C /n|x—y| +20)*+2

nk+1mk+1
<o (j+2(k+1))!
Wtk U TAEED)
JnClyl+2C/nlx—y|+2C)
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+nk+lmk+l
jHk+1
X (/1 C |yl +2C/n|x—y| +2C)%+!
nk+1mk+1
_}_7
j+k+1
X (/n Cly| +2C/n|x—y| +2C)%+?
<nk“mk“(j+2(k+1))!
X (/n Cly| +2C/n|x—y| +2C)%*+2
y 1 N j+1
2 +k+1)2C)? " (j+k+1)(j+2k+2)2C
N (j+1)?
(j+k+1)(j+2k+1)(j+2k+2)
< HImF (4 2(k 4+ 1)!]

X (/1 Cly| +2C/n|x— y| +2C)%*+2 Q.E.D.

(J+1)-(j+1+2k)!

(j+ 1) (j+2k)

PROPOSITION 4.5.

(a) /nCly|+2C/n|x—y|+2C<3./n C(1+|x| +|y])

(b) For |t <1 andN)?mﬂC—l

S2AN+ D™ (141t 1xD (1 + /1] 19D

Z al'(x9 y) Zi
i=0

(c) For |tf| <1 and N=3n/mC—1
Bl x, MIS2AN+ D (141 |x])?N (1+ /1| p)*N (2m1) ">

|x—yI?
X eXp <a(x, y)—Ty .

Proof.
(a) /nClyl+2C/n|x—y|+2C

</n Clyl+2C /n x| +2C/n|y| +2C
<3./n C1+ x|+ 1))
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=

1M1=
e
=
=

n'm' [ (20)11(3 /n ) (1 + |x| + | y))* ¢

o

V/A)
'™ =2

nimi[(20)!] 30 C¥ (= /t] 1x))¥ (1 + /)t] |y

N
M=

Il
<]

for |7]<1

<

nmi (i 4+ 1)% 3%C% (1 + /1] |1x)? (1 +/1 | y])*

I M =z

i=0

S(NH 1PN Y [3n/m CO+ /il XD +/1d 17D

Observe that if r>./2, then XN o r? < (¥ *2—1)/(r*—1)<2r*". So we
have

N .
Z di(xs y) [l
i=0
SN+ 12V 2[3n/m C(1+ /11| Ix)(1+ /1t [yDI? for |7 <1
=2(N+ 1)V 322V mNCN (1 + /[t] |x)*N (1 +/1e] [y])?Y.

If N>3n ﬂ C —1, then we have

n

Z ﬁi(x’ y) ti

i=0

S2AN+ D™ (14 el XDV (1+ /1] [y).

(c) follows from (b) and (4.1). Q.E.D.

We now estimate

v, 5
en-= 2t Lx¢Na
where
_l n i_ i 2_1 n af’l n s m s
Lx - 2 igl <axi fl(X)> 2 <i§l axi (X) " igl fi(X) " igl hi(X)>

is the operator defined in Theorem B.
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_ProposiTION 4.6.  For N=3n ﬂ—Z and |t| <1, let epn(t, x, y)=
a¢N/at(t9 X, J/) - Lx¢N(ts X, y) Then

len(t, X, v)| < (2m1) "> {exp <a(x’ . IX;lylzﬂ

><(N+2)4N+4(1+\ﬂ|x|)2N+2(1+\ﬂ|y|)2N+2.

Proof. In view of the computation in the proof of Theorem 2 of [ Ya-Ya 1],
we have

_ 2
en(t, x, y)=—Q2n)~"2¢7"2 {exp<_ : 2ty| ﬂ

2t
9 {; 3 aa;’N (x. 2)+ ; ;;’ (5 )= fi))
ek A + 235 n)
-3 5 j“ (% )

(§ Zosd § 1o s

By applying the estimates in Lemma 4.2 and Proposition 4.4, we get

_ |2
len(t, x, )| < (2m) "2 112 {exp <a(x, n-= ztﬂ ﬂ

{2[(2N+2v]n m¥(/n C |y +2C /n|x—y| +2C)*N

+n(/n |x—y| C)[2N+1)!] n"m"
X (/n Cly| +2C/n|x—y|+2C)*N
+nm(y/n C |yl +2C/n|x— y| +2C)* [(2N)!] n¥m"

X (/n Cly|+2C/n|x—y| +2C)2N} (V1
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<(2m1)~""? [exp(a(x, . ;ty |2>]

x {; nNFimN[(2N +2)!1(/n C |y|

+2C./n|x—y| +2C)N + ¥ N (2N +1)!]

X (/n Cly| +2C/n|x—y| +2C)N+!

+ VNI 2N)](/n C |yl
+2C /n|x—y| + 2C)2N+2} N1

<(27Z[)_"/2{ex < _|x_y|2>] N+1, N+1
< plalx, y) > AV mNH(2N 4+2)1]

><(\/;;C|y|—i—ZC\/1;|x—y|—|—2C)2N+2

11 1 1 N
X {=—+ + 1
24C2 T (2N+2)2C T 2N +1)(2N +2)

<(2mt) "2 [exp <a(x, y)— = y|2>]

2t

xnV IV F YN +2)2V+2[3 ﬁC(l + x|+ y)]V T2

L T 1] vy
X{32+8+2}l

<(2mt)~"? [exp <a(x, y)— ¥ ;[y|2>]

><(]v_+_2)2N+2 (3nﬂc)2N+2
X (14 /2 [x)V+2 (14 /1 |p])PN 2

Therefore if N> 3n \/1; C —2, then

_ 2
lexl(t, x, ¥)| < (2m1) " {exp <a(x’ . |x 2tyl ﬂ

X(N+2)"W+4 (1 4+ /1 |x])*M 2 (1+ /119> 2 QED.
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5. CONSTRUCTION OF A CONVERGENT SOLUTION
FROM FORMAL SOLUTION

We shall construct a convergent solution from the truncated formal solu-
tion

_ 2
Fatt,x, )= (2n0) 2] exp (atx. )~ P52 )|
) [L4ay(x, p) 14 - +ay(x, y) ]
which satisfies the following properties

(s X, P) S2N+ D (14+/1 X)) (1+/1 |y)>N (2mr) ">

lx—y|?
com s

and
o -
‘gabN (t’ X, y) 7Lx¢N(ta X, y)‘
t
- |eN(t’ X, y)|
12
<(2mr) "2 {eXp <a(x, ) —|)€2ty|>} (N +2)4N+4

X (14 /T IX)N+2 (141 |y) 2N+,

where <1 and N> 3n ﬂ C—1. In fact we claim that,

0< 1< min n?C?*+2(N+1)—nC 1}
= 8(N+1) 8nC "
The following series converges,

1

dnlt, x, y)+ ij: k+1\/m
fkﬂ f f j Pl Try1s X Xgy1)

T_t Xk 1 "Xk

X en(Ts Xie1s Xi) en(To— 15 Xpe» Xpe—1) - en(Tg, X1, ¥),  (5.1)
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and it represents a kernel ¢(¢, x, y) which satisfies

o _
a([’ X, y)_Lx¢(t’ X, y)
lim §(z, x, y) =0.(y).

In this way, for 1 <€/N, we have found an explicit kernel for the equation.
When time is equal to 7 which may be large, we can find the kernel up to
time 7 by the formula

¢(T,x,y)=j j j ¢<17;,x,x1>¢<£,x1,x2>--o¢<£,x,(,y>.

X1 X *K

Here K is the smallest integer greater than TN/e.
The following two lemmas can be found in [ Ya-Ya 2].

Lemva 5.1 (a) la(x, y)—=37_ (x;— p) fix)| <n Clx—y|?

a(x, x, 1)+ Y a(x; i, X)) +alxy, p)—(x—p) f(x)

i=1

t
<nC{<+l>~|y—x1|2
To
2 4 2
"’Z — Xt + 1) X1 — X7,
i=1 Tk+1

where f(x) = (fu(x), v £,(x)) and 1 =¥"H 7.

(b)

LEMMA 5.2.

k+1

(14 e XD TT (1470 )Y

1—1

k
n (14 /7 X DV (U470 19D

<(1+\/;|x|)2N(1+\ﬁ|y|)2N24N(k+l)

kel |xj+1_xj|2 | _,V|2

xexp{4Nt2<Z + >+4Nt|y|2}
T

j=1 Tj 0

We are now ready to estimate the infinite series (5.1).
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THEOREM 5.3. If t is chosen small enough so that

JnPC*+2A(N+1)—nC 1
0<t<min{ nC AN+ —n C}’ (5.2)

8(N+1) " 8n

then the general term in (5. 1) has the estimate

jz"“ j J f |¢N(Tk+lax Xiv1) el Trs Xieg 15 Xi)

T—t Xk 17X

><eN(‘L-k—la X xk—l) o 'eN(T05 X1 y)'

< 2(N+ 2)4(k+2)N+4(k+1) (2n)7(k+2)(n/2) 24(N+1)(k+1)

X (141 X2V 214/t | p]) 2V +2

Z_n/2+k+1

N S e S
X (4r) T EST]

lx— y|?

cexp | (= p)- flo) + 4N+ D 1P

Proof.

jz"“ f f j |¢N(Tk+19x X 1) enl(Trs Xy 15 Xi)

—o G0 X1 Xk

Xen(Tp_1s Xg, Xg—1) - en(T9, X1, V)]

<Lw [T [ 2 m ) (U )

—0 G=1 " X1 "Xk X1
|x_xk+1|2
X (1+/Ths1 |xk+1|)2N{exp <a(x, xk+1)_72
Tk+1

27n-k) n/2 (N+2 4N+4 + /Tk |xk+1| 2N+2 + /,L.k |xk|)2N+2

exp (a(xk+1, x0) _|xk+—xkl>}

27,
21ty ) TP (N2 (1 + iy Ixg )PV T2

Xp—Xp_1]?
L+ /Ty I )PV F? [CXP <a(xk9 Xi—1) _|kkl|>}

2t

X

X

—_~ ] o~

X (2170) T (N 4+ 2)"W 4 (1 4+ /70 |6, NPV F2 (1 4+ /70 |¥]) 2V +2

lx; — y|?
corp ot 5
0
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KON +2)4k+2 Ntk 1) (zn)—(k+2)n/2j j J f
= =T T x|
2 2N 2
X(Tg Try1) - +\/Tk+1|x| +

k+l
(147 |x, )2 +2 n (147 X 22
1+f|)’| 2N +2
k
><|:exp <a(x, xk+l)+ Z a(xi+1’xi)+a(x7 y)>:|

i=1

2k 2 2
X—X X; X X
X exp | el Z i 11 il | 1 — )
27; 27,

2Tk+1 i=1

KN +2)4k+2) N+4Gk+1) (zn)f(k+2)n/2j‘ J J f
k+l

TEE X1 "Xy X
X (Tor+ Tppn) T2 (14 /1 [x])2V+2
X(l+\/;|y|)2N+224(N+1)(k+1)
kX — X% x —y)?
xexp[4(1v+1)tz<z A AR >+4(N+1)l|y|2}
; T T
Jj=1 J 0

xexp{(x—y)f(x)+nCK +1>|y xl? +Z<ft >

i=1
t
x|x,-—x,~+1|2+< +1>|xk+1—x|2”
Tr+1

X eXp _|x_xk+1|2_ i |xk+1_xi|2_ |?Cl_y|2
2T 11 = 21; 21,

— 2(N_|_ 2)4(k+2) N+4(k+1) (277:) —(k+2)n/2 24(N+ 1)(k+1)

(1+\ﬂ|x|)2N+2(1+\ﬂ|y|)2N+2
xeXP[(X—y).f(x)]j g f J f Tr) —n/2

- ‘L'_t Xk+1 X

1? 1
xexpﬂ4(N+l) +nC< +1> 21} |x; — y|?
0

To
k 2

t 1
+ Y [4N+1)— +nC< +1> 2T}|x,-+1—x,-|2

i=1 i

t 1
+[nC< +1>— } |x—xk+1|2+4(N+1)t|y|2}
Tr+1 274 44
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Since 0<7<min{[/n*C*+2(N+1)—nC]/8(N +1),1/8nC}, it is clear
that

1 1
4(N—|—1)l2+nC—|— <§ and nC<§

It follows that

4N+1) 2 1

1
BASALE A C 1 -
T; o <Tz - > 2z, 27, 4z,

for all i. So the general term in our series is estimated by

2(N+ 2)4(k+2)N+4(k+ 1) (271_) —(k+2)(n/2) 24(N+ (k+1)

+\/|X| 2N+2 1+\/|y|)2N+2

exp[(x— ) f(x) +4(N+ 1) ¢ [y*]}

x(1
A
Jkﬂ J J j (-L-O...-,;k+l)—n/2

T—t )Ck 1 xk Xl
2 2
X exp X — x4 2 _|xk+1_xk| __.__|x1—J’|
474 1 4z, 47,

— 2(N+ 2)4(k+2)N+4(k+1) (Zn)—(k+2)(n/2) 24(N+1)(k+1)

(L4 /2 PV 2 (14 /ey
x {exp[(x —y)-f(x) +4N+1)1|y*]}
(n/2)(k +2)
R N R L
k+1 k
XH(Tk+1’ X = Xjq) * H(Tks Xew1—Xp) * o x H(zg, X1 — p),
where, for 1 <i<k, H,(t;, x) is the kernel (4nt;) =2 exp( — |x|*/41;), H(7,, X)
is the kernel (4nty)~"?exp(—|x|?*/4ty), and H(tj,,x) is the kernel
(4nty 1) ~"? exp(—|x|*/41,, ). Each H(z;, x) defines an integral operator
acting on L*(R). In view of the semigroup property of H (see Theorem 3

on p. 33 of [ Wi]), the convolution H(t,_, x) * - * H(ty, x) is given by a
kernel of the form

2(N+ 2)4(k+2)N+4(k+1) (zn)f(k+2)(n/2) 24(N+1)(k+1)

X (14t Ix)V 2 (14 /1 |y])2V+2
x expl (x — ) - f(x) + 4N+ 1) 1 | p|2](4m) 2K+ 1) g =2

—x—y?
X exXp <4t ’[2"“ _, 1.
i=0 Ti
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Notice that
k+1

f 1=V01<Z Ti=l‘,‘[i>0>
ZkJrlT*t i—0
V1 +|grad o, |* dry drg_y - dry,

i=0 i

‘[zk,go 7;<t, 7,20

where 7, = —(t9+ 7, + -+ +174) is viewed as a function of 7y, 7y, ..., 7.
Therefore
k+1 k
Vol< Y r,~=z)>= k+2Vol<Z 7, <1, r,.>0>
i=0 i=0
l‘k+1

=\/k+2m

Therefore the general terrn in series (5.1) is estimated by
2(N+ 2)4(k+2) N+4(k+1) (27_[) —(k+2)(n/2) 24(N+ 1)(k+1)

X (14/t X))V 2 (1 4/t |y)2V+2
x {exp[(x— y) - f(x) + 4N+ 1) 1 | p[*]} (4m) DE+D e 42

|X—y|2 Z‘7n/2+k+1
X {exp( P TSI Q.E.D.

THEOREM 5.4. If t is chosen small enough so that

: { n*C*+2(N+1)—nC 1 }
0<t<min — >,

8(N+1) " 8nC (3:3)

then the infinite series (5.1) converges.

Proof. This follows easily from the root test for convergent power
series, Theorem 5.3 and the following Lemma 5.5. Q.E.D.

LEMMA 5.5. For positive integer k, k!> k.
Proof. We first assume that k is even. Observe that
(J—k)(j—1)<0 for 1<j<k
which implies
(k—j+1)j=k for 1<j<k.

Hence
k/2

[T [tk—j+1) j1= k"

j=1

The left hand side of the above inequality is exactly k!.
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We next assume that k is odd, say k=2p + 1. Observe that
[/J—2p+1)]—-1)<0 for 1<j<2p+1
which implies
2p—j+2)j=2p+1 for 1<j<2p+1.

Hence

[TL2p—j+2)j1=2p+ 1)~

j=1

Clearly, we have

p+1=/2p+ 1

Taking the product of (5.4) and (5.5), we have

(p+D) || [@2p—j+2)j1=2p+1(2p+ 1)~

I~

j=1

(5.4)

(5.5)

The left hand side of the above inequality is k! while the right hand side

is k*/2. This finishes the proof.

THEOREM 5.6. (i) lim, o dn(t, x, ) =0,.(»).

QED.

(i) lLim,_ @(t, x, y)=0,(y) where ¢(t,x,y) denotes the infinite

series (5.1).

Proof. (i) For any differentiable function ¢(x) on R”, we have

[ 7 [T aattx ot dyy e,

:fw"'fw Falt, x, x = y) a(x—y) dy; - dy,

=L

(2mt)—™? {exp <a(x, xX—¥) |J2}lz>}

X[14+da(x,x—y)t+ - +ayx,x—y) "] o(x—y)dy,---dy,.
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Let y =./2tr where r=(ry, ..., r,,). Then
1 n
abxx—=y)=| X yifiltx—y)+iy)di
i=1

~[ v s

Hence

[ as o vy,

:J“’ f“’ {expg S22ty flx+(1=1) 2t p) = |r]?)

— 00 — 0

x[1+dl(x,x—/5ly)t+ +&N(x,x—ﬂy) ™
—J2ty)dry---dr

It follows that

o0

lim [ [ Gt y) o) dyy - dy,

=fjooo fj)o 12 [exp < —iil rf)} a(x)dr,---dr,=a(x).

o (1) is proven.
(i1) Follows immediately from (i) and (5.8) below. Q.E.D.

THEOREM 5.7. Let ¢(t, x, y) denote the infinite series (5.1). Then
d(t, x, y) is the fundamental solution to the Kolmogorov equation, i.e.,

0
Wt y) =Lt x. ) (5.6)
lim 47, x. 1) =0,(3). (5.7)

where L, is defined by (4.4).

Proof. 1In view of Theorem 5.4, there is no problem for convergence of
the infinite series (5.1) and its derivatives. We can differentiate the series
(5.1) term by term. We rewrite the integral

jz.kﬂ J f J \/I%‘EN(THDX» Xt 1)

‘L'_t Xk 1 "Xk

X en(Trr X 15 Xi) €T 1> Xy X 1) -+~ enlTos X1, V)
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as

N N R R A

Xk+1 Xk
Xen(ty =15, Xpey15 X)) enlty — 3, Xy Xge_q) -
Xen(le—les1s X2, X1) enl(li i1y X1, ¥) dbge oy diy -+ diy.

It follows easily that

¢k o 2
on=[ [T
az y)=
0y
Xi@t (1—1t1, % X 1) enlly— Loy Xp i1 Xg)
Xen(ty—1t3, Xpe, Xg_1) - en(lie— i1 X2, X1)
Xen(ter1> X1, V) dty y dty---dt
. ol I ~
waim [ [ = x x)
1=t Y0 Y0 0 Yxp,q Yxg X
Xen(ty =1y, Xpei15 Xi) €nlln, 13, Xpe, Xpe_q) -
Xen(le—1tis1> X, X1) eplty 1, X1, ) dby iy dby---dt,
3t I NN
B R T
Xe+1 "Xk
Xen(ty =1y, Xjei1> Xie) enlly— 13, Xy Xp_1) -+
Xen(ty—tg i1, Xo, X1) enlli 1, X1, V) dty 1 diy--- dty
t oty
+JJ J‘ j I I eN l25xaxk)
0“0 Xp_1
XeN(ZZ_t3axk9xk—l)"'eN(lk_thrl:x25x1)
Xepn(tpi1, X1, ) dtyqdty---dt,.

Hence

0
<al_Lx> ¢k(l’ X, y)

L (Gt e nnnen

Xe+1 "Xk
Xen(ty— 1ty Xgy1s Xi) enlla— 3, Xpey Xge— 1) - el — b 11, X2, X1)

Xen(trp1, X1, y)dty o dty---dt
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t t2 tk
+jo fo "'L en(t—1y, X, Xi) enlty — 13, Xpy Xp_1) -+~

Xen(ty—1tri1,Xa, X1) enllp 1, X1, ¥) dlyeyq -~ diy

t ooty ol T
:fj J j J f J en(t—1, X, X34 1)
0“0 Y0 0 Xk 1

Xe=1
Xen(ty =1y, Xgq1, Xi) enlly — 13, Xgey X 1) -+

Xen(ty—1tgi1,Xo, X1) enllp 1, X1, ¥) diyyq -~ diy dty
t oty oty 4
+Jj f j en(t—15, X, X;) enlly — 13, X, Xp_y) -+
0’0 Jo 0
Xen(ty—lg 1, Xas X1) en(lg 1, X1, ¥) iy diy---di.
Therefore

<§t - Lx><$N(Z, X, y)+ éo (=Df 1¢k>

—t PR ] et

Xe+1 Xk X1
Xen(ty =1y, X1, Xg) enlla— 13, Xy Xg 1) - en(tr 1, X1, V)

dtyq---dtydt,.

However, a similar estimate as in Theorem 5.3 shows that the above
expression tends to zero uniformly as k — oo. Q.E.D.

COROLLARY 5.8. The fundamental solution §(t, x, y) in Theorem 5.7 is
approximated by

K
&N(Za X, )’)+ Z (_1)k+1 ¢k(ta X, y)
k=0

which is readily computable. Here ¢, (t, x, y) is given by (5.9). The error for
such an approximation is given by

(o)

z (_1)k+1¢k(lsx9y)

k=K+1
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which can be estimated by
(14 /2 1x])PV 2 (1 4+ ./t | p)Y 2 {exp[(x — ») - f(x) + 4N + 1) ¢ | p*]}

2 o
x{exp(—'x_ﬂ )} Z (N + 2)4k+2 N+dk+1)

4¢

k=K+1
o2kt

X /k+2( /Zﬂ)_(k+2)(n/2)24(N+1)(k+1)( /47_[)(k+1)(n/2)W

which clearly tends to zero rapidly if t is small and K is large.

Proof.

[Br]

[BrCl]

[CLY 1]

[CLY 2]

[Ch Ya]

[Da]
[FKK]
[Fr]
[Mi]

[TWY]

[We No]

[Wol]

This follows immediately from Theorem 5.3.
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