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Complete classification of finite-dimensional estimation algebras of maximal rank

STEPHEN S.-T. YAU

The idea of using estimation algebras to construct finite-dimensional non-linear filters was first proposed by Brockett and
Clark, and Mitter independently. In his famous talk at the International Congress of Mathematics in 1983, Brockett
proposed to classify all finite-dimensional estimation algebras. In this paper we explain why the theory of estimation
algebras plays an important role in non-linear filtering. We show how to use the Wei–Norman approach to construct
finite-dimensional filters from finite-dimensional estimation algebras. We survey some results in estimation algebras after
1984. We give a self-contained proof of complete classification of finite-dimensional estimation algebras of maximal rank
in one place. The proof given here is simpler than those proofs scattered in several papers. This provides the readers with
a complete coherent view of the important topic of the classification of finite-dimensional estimation algebras.

Dedicated to Roger Brockett on the occasion of his
65th birthday and to Sanjoy Mitter on the occasion of
his 70th birthday.

1. Introduction

Filtering is concerned with making estimates of
quantities associated with a stochastic process fxtg on
the basis of information gleaned from a related process
fytg. The process fxtg is called the signal or state pro-
cess and fytg is the observation process. The goal is the
computation, for each t, of least square estimates of
functions of the signal xt given the observation history
fys : 0 � s � tg, i.e. the computation of conditional
expectations of the form E½�ðxtÞ=ys; 0 � s � t� ¼ d�ðx�ðxtÞ
or perhaps even the computation of the entire con-
ditional distributional of xt, given the observation his-
tory. In many (engineering) applications the data come
in sequentially and one does not really want a calculat-
ing procedure which needs all the data ys, 0 � s � t,
every time t that it is desired to find d�ðx�ðxtÞ; rather we
would like to have a procedure which uses a statistics mt

which can be updated using only the new observations
ys, t � s � t 0 to its value mt 0 , i.e.

mt 0 ¼ aðmt; t; t
0; fys : t � s � t 0gÞ

and from which the desired conditional expectation can
be calculated directly, i.e.d�ðx�ðxtÞ ¼ E½�ðxtÞ=ys; 0 � s � t� ¼ bðt; yt;mtÞ
Finally to actually implement the filter it would be nice if
mt were a finite dimensional quantity. All this leads to
the (ideal) notion of a finite dimensional recursive filter.
By definition such a filter is a system

d�t ¼ �ð�tÞdtþ
Xp

i¼1
�ið�tÞdyit

driven by the observation yit; yit is the ith component of
yt i ¼ 1; . . . ; p; together with an output map

d�ðx�ðxtÞ ¼ �ð�tÞ

This was solved in the context of linear dynamics by
Kalman and Bucy (1960, 1961) and the resulting
‘Kalman filter’ has of course enjoyed immense success
in a wide variety of applications. Attempts were soon
made to generalize the results to systems with non-linear
dynamics. This is a substantially more difficult problem,
being in general infinite-dimensional, but nevertheless
equations describing the evolution of conditional distri-
butions were obtained by several authors in the mid-
sixties; for example, Bucy (1965), Duncan (1967),
Kushner (1964), Mortensen (1966), Shiryaev (1967),
Stratonovich (1968) and Wonham (1965). Wonham
(1965) studied the important finite-state case and evalu-
ated numerically performance of the optimal non-linear
filter for one example and found the performance to be
better than that of the simpler Wiener filter. Zakai
(1969) obtained these equations in substantially simpler
form using the so-called ‘reference probability’ method
(see Wong (1971)).

Ever since the technique of the Kalman–Bucy filter
was popularized, there has been an intense interest in
finding new classes of finite dimensional recursive filters.
In the 1960s and early 1970s, the basic approach to non-
linear filtering theory was via the ‘innovation methods’
originally proposed by Kailath (1968) and Frost and
Kailath (1971) and subsequently rigorously developed
by Fujisaki et al. (1972). As pointed out by Mitter
(1979), the difficulty with this approach is that the inno-
vation process is not, in general, explicitly computable
(except in the well-known Kalman–Bucy case). In the
late 1970s, Brockett and Clark (1980), Brockett (1981)
and Mitter (1979) proposed the idea of using estimation
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algebras to construct a finite-dimensional non-linear

filter. This Lie algebra approach has several merits.

First, it takes into account of geometrical aspects of

the situation. Second, it explains convincingly why it is

easy to find exact recursive filters for linear dynamical

systems while it is very difficult to filter something like

the cubic sensor described in the work of Hazewinkel

et al. (1998 a). The third, and perhaps most important,

merit of the Lie algebra approach is the following. As

long as the estimation algebra is finite dimensional, not

only can the finite dimensional recursive filter be con-

structed explicitly, but also the filter so constructed is

universal in the sense of Chaleyat-Maurel and Michel

(1984). Moreover, the number of sufficient statistics in

the Lie algebra method, which requires computing the

conditional probability density, is linear in n, where n is

the dimension of the state space. This is a consequence

of our classification result (see Corollary 2). Finally the

Lie algebraic methods are useful for classifying equiva-

lence of finite dimensional filters and for indicating when

no finite dimensional filters exist. In those cases where

no finite dimensional representations exist the available

methods must be redirected to the construction of con-

sistent and useful approximate filters (see Marcus (1984)

for an example).

In his talk at the International Congress of

Mathematics in 1983, Brockett proposed the problem

of classifying finite-dimensional estimation algebras.

Since then, the concept of estimation algebra has been

proven to be invaluable tool in the study of non-linear

filtering problems. Nevertheless, the structure and clas-

sification of finite-dimensional estimation algebras were

studied in detail only in the early 1990s by Tam et al.

(1990), Chiou and Yau (1994), Yau (1994), Chen and

Yau (1996, 1997), Chen et al. (1996, 1997), Wu et al.

(2002) and Yau and Hu (preprint). In Wong (1987), the

concept of O was introduced, which is defined as the

matrix whose ði; jÞ element is !ij ¼ ð@fj=@xiÞ � ð@fi=@xjÞ,
where f is the drift term of the state evolution equation

(1). The programme of classifying finite dimensional

estimation algebras of maximal rank was begun in

1990 by Yau. There are four crucial steps here.

Step 1. In 1990, Yau first observed that Wong’s O-
matrix plays an important role. As the first

crucial step, he classifies all finite dimensional

estimation algebras of maximal rank if Wong’s

matrix has entries in constant coefficients. His

result was announced in 1990 (Yau 1990) and

the detail of the proof was published in 1994

(Yau 1994). Chiou and Yau (1991) formally

introduced the concept of finite dimensional

estimation algebra of maximal rank and gave

classification when the state space dimension n

is at most 2. Their results were published in 1994
(Chen and Yau 1996).

Step 2. The second crucial step was due to Chen and
Yau in 1996 (Chen and Yau 1997). They devel-
oped quadratic structure theory for finite
dimensional estimation algebra. They laid
down all the ingredients which are needed to
give classification of finite dimensional estima-
tion algebras of maximal rank. In particular,
they introduced the notion of quadratic rank
k. In this way, the Wong’s O-matrix is divided
into three parts: (1) ð!ijÞ, 1 � i, j � k; (2) ð!ijÞ,
kþ 1 � i; j � n and (3) ð!ijÞ, 1 � i � k,
kþ 1 � j � n, or kþ 1 � i � n, 1 � j � k.
Chen and Yau (1997) proved among many
other things that part (1) ð!ijÞ, 1 � i, j � k, is
a matrix with constant coefficients.

Step 3. In their published paper, Chen et al. (1997)
proved the weak Hessian matrix non-
decomposition theorem for n � 4. As a result,
part (2), ð!ijÞ, kþ 1 � i, j � n, is a matrix with
constant coefficients. In their paper, Wu et al.
(2002) proved the weak Hessian matrix non-
decomposition theorem for general n. Thus
part (2), ð!ijÞ, kþ 1 � i, j � n is also a matrix
with constant coefficients for arbitrary n.

Step 4. This final step was also done in 1997. Yau and
Hu (preprint) used the full power of the quad-
ratic structure theory developed by Chen and
Yau (1997) to prove that the matrix ð!ijÞ,
1 � i � k, kþ 1 � j � n and the matrix ð!ijÞ,
kþ 1 � i � n, 1 � j � k are with the constant
coefficients.

The above four steps complete the classification of
finite dimensional estimation algebras of maximal rank.
Therefore Yau and his coworkers have proved the
following theorem.

Theorem 1: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-
dimensional estimation algebra with maximal rank, then
f ¼ r�þ ð�i; . . . ; �nÞ where � is a smooth function and
�i, 1 � i � n, are affine functions and E is a real vector
space of dimension 2nþ 2 with basis given by 1; x1; . . . ;xn,
D1; . . . ;Dn and L0 where Di and L0 are defined in (5)
and (7).

Mitter conjectured a long time ago that all the func-
tions in finite dimensional estimation algebras are poly-
nomial of degree one. As an immediate consequence of
the above theorem, we have the following corollary.

Corollary 1 (Mitter conjecture): Suppose that E is the
finite-dimensional estimation algebra with maximal rank
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corresponding to the filter system (1). Then any function
in E is a polynomial of degree one.

The following corollary is an immediate consequence
of the above theorem and Theorem 7 of Yau (1994) (cf.
Theorem 14 below).

Corollary 2: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-dimen-
sional estimation algebra with maximal rank, then the
number of statistics in order to compute the conditional
density by Lie algebraic methods is n.

In } 2, we recall some basic concepts and notations.
We prove two fundamental results: Ocone theorem
(Theorem 2) and nonexistence solution of over-
determined PDE (Theorem 3 and Corollary 3). We
explain why one wants to work with robust DMZ equa-
tion (3) rather than stochastic partial differential equa-
tion (2). We also recall the gauge transformation of
Mitter and Brockett’s estimation equivalence group in
non-linear filtering. In } 3, we survey some result devel-
oped after the beautiful survey article by Marcus (1984).
We recall Wong’s structure theorem of estimation alge-
bra in case the drift term f ðxÞ is real analytic with some
growth conditions as well as a new class of finite dimen-
sional estimation algebra introduced by Wong. The con-
cept of finite dimensional exact estimation algebra is
introduced. The structure and classification of these
algebras are discussed. We recall Cohen de Lara’s struc-
ture theorem for those finite dimensional estimation
algebras of maximal rank with very strong assumption
on the structure of differential operators in the estima-
tion algebras. We also recall the general construction of
finite dimensional estimation algebra with non-maximal
rank by Rasoulian and Yau. The most recent beautiful
result by Chiou and Chiueh on classification of five-
dimensional estimation algebras is discussed. In } 4, we
survey some results obtained in Yau (1994). In particu-
lar, the classification result is proved under the assump-
tion that O-matrix has constant coefficients. We describe
in detail how to solve the time-varying parabolic partial
differential equation by Wie–Norman theory. We char-
acterize those drift f ðxÞ for which the O-matrix has con-
stant coefficients. We use the Wei–Norman approach to
construct a finite dimensional filter if the estimation
algebra is finite dimensional. In } 5, we survey some
results obtained in Chen and Yau (1996). In particular,
quadratic structure theory is developed for finite dimen-
sional estimation algebra. The linear structure of O-
matrix is proved and the constant structure of the
upper left corner of the O-matrix is also proved. The
proof given here is different from those in Chen and
Yau (1996). In } 6, we survey the result obtained in
Wu et al. (2002). We prove the constant structure of
the lower right corner of the O-matrix. In } 7, we survey

some results obtained in Yau and Hu (preprint). We
prove the constant structure of the lower left corner
and the upper right corner of the O-matrix.

2. Some basic concepts, fundamental tools and

equivalent filtering problems

The filtering problem considered here is based on the
signal observation model

dxðtÞ ¼ f ðxðtÞÞ dt ¼ gðxðtÞÞ dvðtÞ; xð0Þ ¼ x0

dyðtÞ ¼ hðxðtÞÞ dtþ dwðtÞ; yð0Þ ¼ 0

)
ð1Þ

Here x, v, y and w are respectively R
n, R

p, R
m and R

m

valued processes, and v and w have components which
are independent, standard Brownian processes. We
assume that n ¼ p; f , h are C1 smooth; and g is an
orthogonal matrix. We refer to xðtÞ as the state of the
system at time t and to yðtÞ as the observation at time t.

Let 
ðt; xÞ denote the conditional probability density
of the state given the observation fyðsÞ : 0 � s � tg. It is
well known (see, e.g. Davis and Marcus 1981) that

ðt; xÞ is given by normalizing �ðt; xÞ, i.e.

ðt; xÞ ¼ �ðt; xÞ=

Ð
�ðt; xÞdx, which satisfies the

Duncan–Mortensen–Zakai (DMZ) equation

d�ðt; xÞ ¼ L0�ðt; xÞ dxþ
Xm

i¼1
Li�ðt; xÞ dyiðtÞ

�ð0; xÞ ¼ �0

9>>=>>; ð2Þ

where

L0 ¼
1

2

Xn

i¼1

@2

@x2
i

�
Xn

i¼1
fi

@

@xi

�
Xn

i¼1

@fi

@xi

� 1

2

Xm

i¼1
h2i

and, for i ¼ 1; . . . ;m, Li is the zero degree differential
operator of multiplication by hi. The term �0 is the
probability density of the initial point x0.

Equation (2) is a stochastic partial differential equa-
tion (with as probability space a space of paths fyg) and
as such a solution is in principle only defined apart from
a set of measure zero. On the other hand, actual obser-
vations will always consist of piecewise smooth sample
paths yðtÞ and the class of all such path is of measure
zero. Thus there arises the question whether there exist a
version of (2) which can be interpreted pathwise for all
yðtÞ and for which the solution of (2) for piecewise
smooth yðtÞ carry (approximate) information. This
means that in real applications, we are interested in con-
structing robust state estimators from observed sample
paths with some property of robustness. Davis (1980)
studied this problem and proposed some robust algor-
ithms. In our case, his basic idea reduces to defining a
new unnormalized density

Finite-dimensional estimation algebras 659
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uðt; xÞ ¼ exp
Xm

i¼1
hiðxÞyiðtÞ

 !
�ðt; xÞ

Davis reduced (2) to the following time-varying partial
differential equation, which is called the robust DMZ
equation

@u

@t
ðt; xÞ ¼ L0uðt; xÞ þ

Xm

i¼1
yiðtÞ½L0;Li�uðt; xÞ

þ 1

2

Xm

i;j¼�1
yiðtÞyjðtÞ½½L0;Li�;Lj�uðt; xÞ

uð0; xÞ ¼ �0ðxÞ

9>>>>>>>>>=>>>>>>>>>;
ð3Þ

which is a time-varying partial differential equation.
Here we have used the following notation.

Definition 1: If X and Y are differential operators,
the Lie bracket of X and Y , ½X ;Y �, is defined by
½X ;Y �� ¼ XðY�Þ � YðX�Þ for any C1 function �.

Recall that a real vector space F , with an operation
F � F ! F denoted ðx; yÞ7!½x; y� (called the Lie
bracket of x and y), is called a Lie algebra if the follow-
ing axioms are satisfied:

(i) The Lie bracket operation is bilinear;

(ii) ½x; y� ¼ 0 for all x 2 F ;

(iii) ½x; ½y; z�� þ ½y; ½z; x�� þ ½z; ½x; y�� ¼ 0 ðx; y; z 2 FÞ:

Definition 2: The estimation algebra E of a filtering
system (1) is defined as the Lie algebra generated by
fL0;L1; . . . ;Lmg denoted by fL0;L1; . . . ;LmgL:A:. E is
said to be an estimation algebra of maximal rank if,
for any 1 � i � n, there exists a constant ci such that
xi þ ci is in E.

Definition 3: Wong’s matrix of a filtering system (1)
is a n� n matrix O ¼ ð!ijÞ defined by

!ij ¼
@fj

@xi

� @fi

@xi

; 81 � i; j � n ð4Þ

We remark that clearly O is a skew symmatric matrix
with the cyclic conditions

@!jk

@xi

þ @!ki

@xj

þ
@!ij

@xk

¼ 0; 81 � i; j; k � n

Define

Di ¼
@

@xi

� fi ð5Þ


 ¼
Xn

i¼1

@fi

@xi

Xn

i¼1
f 2i þ

Xm

i¼1
h2i ð6Þ

Then

L0 ¼
1

2

Xn

i¼1
D2

i � 


 !
ð7Þ

For the convenience of the readers, we list the fol-
lowing elementary lemmas without proof. The lemmas
were proven in Chiou and Yau (1994) and Yau (1994).

Lemma 1:

ðiÞ ½XY ;Z� ¼ X ½Y ;Z� þ ½X ;Z�Y where X ; Y and

Z are differential operators

ðiiÞ ½gDi; h� ¼ g
@h

@xi

;where g, h are any function

defined on R
n

ðiiiÞ ½gDi; hDj� ¼ gh!ij þ g
@h

@xi

� �
Dj � h

@g

@xi

� �
Di

where !ji ¼ ½DiDj � ¼
@fi

@xj

�
@fj

@xi

ðivÞ ½gD2
i ; h� ¼ 2g

@h

@xi

� �
Di þ g

@2h

@x2
i

 !

ðvÞ ½D2
i ; hDj� ¼ 2

@h

@xi

� �
DiDj � 2h!ijDi

þ @2h

@xi

 !
Dj � h

@!ij

@xi

� �
ðviÞ ½D2

i ;D
2
j � ¼ 4!jiDjDi þ 2

@!ji

@xj

� �
Di þ 2

@!ji

@xj

� �
Di

þ 2
@!ji

@xi

� �
Dj þ

@2!ji

@xi@xj

þ 2!2
ji

ðviiÞ ½D2
k; hDiDj� ¼ 2

@h

@xk

� �
DkDiDj þ 2h!jkDiDk

þ 2h!ikDkDj þ
@2h

@x2
k

 !
DiDj

þ 2h
@!jk

@xi

� �
Dk þ h

@!jk

@xk

� �
Di

þ h
@!ik

@xk

� �
Dj þ h

@2!jk

@xi@xk

 !

ðviiiÞ ½gDiDj; hDk� ¼ g
@h

@xj

� �
DiDk þ g

@h

@xi

� �
DjDk

þ gh!kjDi þ gh!kiDj

þ g
@2h

@xi@xj

 !
Dk þ gh

@!kj

@xi

� �
� h

@g

@xk

� �
DiDj
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Lemma 2:

ðiÞ ½L0; xj þ cj� ¼ Dj; 1 � j � n

ðiiÞ ½Dixj þ cj� ¼ �ij ; 1 � i; j � n

ðiiiÞ ½Di;Dj� ¼ !ji; 1 � i; j � n

ðivÞ Yj :¼ ½L0;Dj � ¼
Xn

i¼1
!jiDi þ

1

2

@!ji

@xi

� �
þ 1

2

@


@xj

;

1 � j � n

ðvÞ ½Yj ; !kl� ¼
Xn

i¼1
!ji

@!kl

@xi

; 1 � j; k; l � n

ðviÞ ½Yj ;Dk� ¼
Xn

i¼1
!ji!ki �

@!ji

@xk

Di

� �

� 1

2

Xn

i¼1

@2!ji

@xk@xi

� 1

2

@2


@xk@xj

;

1 � j; k � n

The following theorem due to Ocone (1980) is the
first result which allows us to understand what kind of
functions can appear in finite dimensional estimation
algebra.

Theorem 2 (Ocone): Let E be a finite-dimensional esti-
mation algebra. If a function � is in E, then � is a poly-
nomial of degree at most (2).

Proof: Let AdL0
ð�Þ ¼ ½L0; �� and Adk

L0
� ¼ ½L0;Adk�1

L0
ð�Þ�.

Then it is easy to see that

Adk
L0
ð�Þ ¼

Xn

il;...;ik¼1

@k�

@xil
. . . @xik

Dil . . .Dik þ ðk� 1Þth

order differential operator

Since Adk
L0
ð�Þ is in E for all k, the finite dimensionality of E

implies that @k�=@xil
. . . @xik

¼ 0, for 1 � il ; . . . ; ik � n, if k
is large enough. It follows that � is a polynomial.

Observe that � 2 E impliesXn

i¼1

@�

@xi

� �2

¼ ½AdL0
ð�Þ; ��;2 E

The facts that � is a polynomial and E is finite dimen-
sional imply � is a polynomial of degree at most 2. &

We shall now prove a very useful theorem in PDE
which can be found in Yau (1994).

Theorem 3: Let Fðx1; . . . ; xnÞ be a C1 function on R
n.

Suppose that there exists a path c : R�!R
n and � > 0

such that limt!1 kcðtÞk ¼ 1 and limt!1 supB�ðcðtÞÞ F ¼ �1,
where B�ðcðtÞÞ ¼ fx 2 R

n : kx� cðtÞk < �g. Then there
are no C1 functions f1; f2; . . . ; fn on R

n satisfying the
equation Xn

i¼1

@fi

@xi

þ
Xn

i¼1
f 2i ¼ F ð8Þ

Proof: Let  2 C1
0 be any C1 function with compact

support. Multiplying (8) with  2 and integrating the
equation of R

n, we getð
R

n
ðdiv f Þ 2 þ

ð
R

n
 2ð f � f Þ ¼

ð
R

n
F 2

where f ¼ ð f1; . . . ; fnÞ and div f ¼
Pn

i¼1ð@fi=@xiÞ. In
view of divergence theorem, we haveð

R
n
F 2 ¼ �

ð
R

n
2 r � f ¼

ð
 2ð f � f Þ

� �
ð

R
n
jr j2 �

ð
R

n
 2ð f � f Þ þ

ð
 2ð f � f Þ

¼ �
ð

R
n
jr j2

Therefore we getð
R

n
F 2 þ

ð
R

n
jr j2 � 0 ð9Þ

for all  2 C1
0 . Take any non-zero C1 function � with

compact support in the ball B�ð0Þ of radius �. Define  
to be � followed by a translation by cðtÞ. Observe thatÐ
R

n jr j2 is independent of the translation selected. On
the other hand,

Ð
R

n F 2 ! �1 as t !1 by our
assumptions. This leads to a contradiction to (9). &

Corollary 3: Let Fðx1; . . . ; xnÞ be a polynomial R
n.

Suppose that degree of F is odd. Then there are no C1

functions f1; . . . ; fn on R
n satisfying the equationXn

i¼1

@fi

@xi

þ
Xn

i¼1
f 2i ¼ F

The estimation algebra can be useful in recognizing
equivalent filtering problems in the sense that E is invar-
iant under certain transformations of a filtering prob-
lem. First, note that if we perform a ‘change of scale’ on
the unnormalized conditioned density function, multi-
plying it by a non-negative function  ðxÞ taking
�! ~�� ¼  ðxÞ�, the DMZ equation becomes

d~��ðt; xÞ ¼  ðxÞL0 
�1ðxÞ~��ðt; xÞ dxþ

Xn

i¼1
Li~��ðt; xÞ dyiðtÞ

This transformation takes L0 7! L0 
�1 and hi 7! hi 

�1 ¼
hi, 1 � i � m and the corresponding Lie algebras are
isomorphic. Specifically we have the following theorem.

Theorem 4: If  : R
n ! R is smooth and positive, then

the Lie algebra E generated by L0, h1; . . . ; hm and the
Lie algebra E generated by  L0 

�1, h1; . . . ; hm are iso-
morphic with an isomorphism � : A !  A �1 for all
A 2 E.

The proof of Theorem 4 can be found for example in
Marcus (1984). The transformation in Theorem 4 is
called gauge transformation by Mitter (1978).
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A related phenomenon occurs when one performs a
smooth non-singular change of variables z ¼ �ðxÞ with
inverse x ¼ �ðzÞ. Then Brockett (1979) proved the fol-
lowing theorem.

Theorem 5: If the estimation problem (1), (2) is trans-
formed by a smooth non-singular change of coordinates
zt ¼ �ðxtÞ, so that fztg has generator L0z, then the
mapping

� : L0 ! L0z; � : hi 7!hi � �; 1 � i � m

extends to an isomorphism of the Lie algebras
fL0; h1; . . . ; hmgL:A: and fL0z; h1 � �; . . . ; hm � h�gL:A:.

Since the set of all transformations consisting of suc-
cessive applications of the two types of transformations
described in Theorems 4 and 5 forms a group under
composition, Brockett (1979) has called this the estima-
tion equivalence group and he has termed two estimation
problems equivalent if their estimation algebras can be
transformed into one another by elements of this group.
This group is also called the (stochastic) invariance
group by Hijab (1980).

3. Structures of finite-dimensional estimation algebras

The concept of the estimation algebra has played a
very important role in the recent studies of non-linear
filtering systems. The beautiful survey article by Marcus
(1984) has provided a detail account of many develop-
ments that involve the estimation algebra. In this sec-
tion, we shall survey some estimation algebra related
results developed after Marcus (1984). Wong (1987 a)
proved several theorems concerning the structure of
finite dimensional estimation algebras. Among other
things, these results together with his other results in
Wong (1987 b) shed new light on the classification prob-
lem of finite dimensional estimation algebras. The struc-
ture theorem of Wong (1987 a) can be stated as follows.

Theorem 6: Assume that h and f in (1) are real analy-
tic functions on R

n, and f satisfies the growth condition
for any i, all the first, second, and third order partial de-
rivatives of fi are bounded functions:

(1) If the degree of h in x is greater than 1, then the
estimation of (1) is infinite dimensional.

(2) If the estimation algebra of (1) is finite dimen-
sional, then it has no differential operator of
degree higher than two. It has a basis consisting
of one second degree differential operator, L0, first
degree operator(s) of the form

Pn
i¼1 �iDi þPn

i¼1 �ið@
=@xiÞ where �i, �i are constants, and
zero degree differential operator(s) affine in x.

(3) All finite dimensional estimation algebras (1) are
solvable.

The growth condition in Theorem 6 guarantees that
(1) has a well-defined solution for all time. It also implies
that for all i, fi ¼ OðjxjÞ at infinity. (We say
aðxÞ ¼ OðbðxÞÞ at infinity if there exist constants M
and N such that jaðxÞj � MjbðxÞj for jxj � NÞ.

Wong (1987 b) introduced a new class of solvable
finite dimensional estimation algebras. Using either the
Wei and Norman (1964) method or the function-space
integral approach of Benés (1981), one can derive from
these results new finite dimensional non-linear filters.
In our case, Wong’s (1987 b) result can be stated as
follows.

Theorem 7: Let hi ¼ HT
i x where HT

i ¼ ðHi1; . . . ;HinÞ
is a constant vector, 1 � i � n. Let O be the skew-
symmetric matrix defined in Definition 3 and
J
 ¼ ð@2
=@xi@xjÞ denote the Hessian of 
. Define
r
 ¼ ð@
=@x1; . . . ; @
=@xÞT and D ¼ ðD1; . . . ;DnÞT.
Let U denote the associative algebra of n by n matrix-
valued function of x over R generated by fO; J
; Ig,
where I stands for the identity matrix. If HT

i G is a vec-
tor of constant functions for any i and any G in U, then
the dimension of the estimation algebra of (1) is bounded
above by 2nþmþ 2.

Tam et al. (1990) introduced the concept of an exact
estimation algebra, i.e. estimation algebra with f ¼ r�
for some smooth function � defined on R

n. A simple
algebraic necessary and sufficient condition was proved
for an exact estimation algebra to be finite-dimensional.
They also provided a detailed examination of the rela-
tionship between finite-dimensional exact estimation
algebras and finite-dimensional non-linear filters. More
specifically they proved the following structure
theorems.

Theorem 8: Let E be a finite-dimensional exact estima-
tion algebra. Then:

(1) h1; . . . ; hm are polynomials of degree at most one.

(2) E has a basis consisting of one second-degree dif-
ferential operator L0, first-degree differential
operator(s) with constant coefficients for the
@=@xi terms, and zero-degree differential opera-
tor(s) affine in x. Moreover, if X and Y are in
E with degree less than or equal to one, then
½X ;Y � is a constant.

(3) E is a solvable Lie algebra.

Theorem 9: Suppose E is an exact estimation algebra.
Then E is finite-dimensional if and only if rhTi Jj


 is a
constant for 1 � i � m and all j ¼ 0; 1; . . . ; where J
 is
the Hessian matrix of 
.

Given the importance of the estimation algebra, a
natural question arises as to whether we can classify
all finite-dimensional exact estimation algebras up to
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Lie algebraic isomorphism. Theorems 8 and 9 provide a
starting point for solving this problem. Dong et al.
(1991) provided a more explicit structure theorem for
an important subclass of finite-dimensional exact esti-
mation algebras as follows.

Theorem 10: Suppose E is a finite-dimensional exact
estimation algebras of maximal rank. Then it is a real
vector space of dimension 2nþ 2 with basis given by 1,
x1, x2; . . . ; xn, D1; . . . ;Dn and L0. Moreover, 
 is a
polynomial of degree at most two and the quadratic part
of 
 �

Pm
i¼1 h2i is positive semidefinite.

A next question that arises naturally is whether we
can classify all filtering systems with finite-dimensional
exact estimation algebras up to state-space diffeomorph-
ism. This is apparently a very difficult problem and
requires a careful study of partial differential equations
of type (8) with fi ¼ @�=@xi. The connection between
these types of equations and the non-linear filtering
problem was first noted by Benés (1981). The properties
of these equations, however, are not well-known. In
Dong et al. (1991), the authors provided some answers
in regard to the existence and uniqueness of the sol-
utions of these types of equations.

Cohen de Lara (1997) proved a structure theorem
under a severe assumption of estimation algebra as
follows.

Theorem 11: Suppose E is a finite-dimensional estima-
tion algebra of the form RL0 � F, where F is a finite-
dimensional Lie algebra consisting of linear partial
differential operators of order less than or equal to one.
If E is of maximal rank, then

(1) h1; . . . ; hp are polynomials of degree less than or
equal to one,

(2) there exists a skew-symmetric matrix K and a
smooth function � such that

a. the drift f may be written as f ðxÞ ¼ r�ðxÞ þ Kx

b. the function r�þ kr�þ Kxk2 is quadratic.

Rasoulian and Yau (1997) studied finite-dimensional
estimation algebras of non-maximal rank. They gave
general construction of finite-dimensional estimation
algebras of non-maximal rank. Suppose that E is the
finite-dimensional estimation algebra of (1). Consider
the enlarged filter system

d~xxðtÞ ¼ ~ff ð~xxðtÞÞ dtþ ~ggð~xxðtÞÞ d~vvðtÞ; ~xxð0Þ ¼ x0

dyðtÞ ¼ hð~xxðtÞÞ dtþ dwðtÞ; yð0Þ ¼ 0

9=; ð10Þ

Here ~xx ¼ ðx1; . . . ; xn; xnþ1; . . . ; xnþkÞ, ~ff ð~xxðtÞÞ ¼
(f1ðx1; . . . ; xnÞ; . . . ; fnðx1; . . . ; xnÞ, fnþ1ðxnþ1; . . . ; xnþkÞ; . . . ;
fnþkðxnþ1; . . . ; xnþkÞ), ~ggð~xxðtÞÞ ¼ orthogonal matrix, hð~xxðtÞÞ ¼
hðx1; . . . ; xnÞ, and ~vv and w have components which are

independent, standard Brownian processes. Let ~EE be the
estimation algebra associated to (10). Rasoulian and
Yau showed that ~EE is isomorphic to E. Note that
although E is of maximal rank with respect to (1), ~EE is
of non-maximal rank with respect to (10) in general.
They suspected that all finite dimensional estimation
algebras of non-maximal rank are essentially arising in
this way. In Yau and Rasoulian, they classified all esti-
mation algebras of dimension at most four. In a recent
preprint of Chiou and Chiueh (preprint), the authors
have done spectacular works on five-dimensional esti-
mation algebra. Specifically, they have proved the fol-
lowing theorem.

Theorem 12: The five-dimensional estimation algebra
is isomorphic to a Lie algebra having a basis given by
f1; x1;D1;Y1;L0g where

D1 ¼
@

@x1

� f1; Y1 ¼ ½L0;D1� ¼
Xn

i¼1
!i1Di þ

1

2

@


@x1

;

L0 ¼
1

2

Xn

i¼1
D2

i � 


 !
Moreover !1j ¼ constant ð6¼ 0, for some j ¼ 2; . . . ; nÞ, 
 ¼
�x2

1 þ �ðx2; . . . ;xnÞx1 þ �ðx2; . . . ; xnÞ, where �ðx1; . . . ; xnÞ
and �2ðx2; . . . ; xnÞ are C1 functions. In particular,
f1; . . . ; fn have to satisfy the equationsXn

i¼1

@fi

@xi

þ
Xn

i¼1
f 2i ¼ ð�� 1Þx2

1 þ �ðx2; . . . ; xnÞx1

þ �ðx2; . . . ; xnÞ

1

2

@�

@xi

¼ c1!1i þ
Xn

j¼1
!1j!ij ; i ¼ 2; . . . ; n

Xn

j¼1
!1j

@�

@xj

¼ c2

Xn

j¼1
!1j

@�

@xj

¼ c3�ðx2; . . . ; xnÞ þ c4

where �1, c1, c2, c3 and c4 are constants, and � � 1.

4. Estimation algebras of maximal rank with X-matrix

in constant coefficients and Wei–Norman approach

to construct finite dimensional filters

The application of the Lie algebra method to non-
linear filtering problems has led to a number of new
results concerning finite dimensional filters and to a dee-
per understanding of the structure of non-linear filtering
problems in general. In this section we shall show how
to construct finite dimensional filter by Lie algebra
method via Wei–Norman approach.
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We begin with the following general lemma observed
in Yau (1994)

Lemma 3: Let E be a finite dimensional estimation al-
gebra with maximal rank. Then E � h1; x1; . . . ; xn;
D1; . . . ;Dn;L0i and !ij 2 E is a polynomial of degree 2
for all 1 � i, j � n.

Proof: This is an immediate consequence of Lemma
2 and Theorem 2. &

We now prove the following theorem (Yau 1994)
which plays a fundamental role in the classification of
finite-dimensional estimation algebras of maximal rank.

Theorem 13: Let E be a finite-dimensional estimation
algebra of (1) such that !ij ¼ ð@fj=@xiÞ � ð@fi=@xjÞ ¼
constant cij . If E is of maximal rank, then E is a real
vector space of dimension 2nþ 2 with basis given by
1; x1; . . . ; xn, D1; . . . ;Dn and L0 and 
 defined in (6) is a
polynomial of degree 2.

Proof: Since E is of maximal rank, there are con-
stants cis such that xi þ ci is in E for i ¼ 1; . . . ; n. In
view of Lemma 2, the following elements are in E

½L0; xi þ ci� ¼ Di 2 E ð11Þ

½Di; xi þ ci� ¼ �ij 2 E ð12Þ

½L0;Di� ¼
Xn

i¼1
cijDj þ

1

2

@


@xi

2 E ð13Þ

Equations (11) and (13) imply that @
=@xi is in E for all
1 � i � n. If 
 is a quadratic polynomial, then in view of
(11), (12) and (13), we see easily that E is a finite dimen-
sional real vector space spanned by 1; x1; . . . ; xn,
D1; . . . ;Dn and L0. Therefore to finish the proof of
this theorem, we only need to prove that 
 is a poly-
nomial of degree at most 2.

To see that 
 is a quadratic polynomial, we first
observe that by Theorem 2, @
=@xi, for all 1 � i � n,
are polynomials of degree at most two because
@
=@xi 2 E by (13). It follows that 
 is a polynomial
at most three. If the homogeneous degree 3 part of 

is non-zero, then clearly there exists a straight line cðtÞ
passing through the origin such that limt!1 
ðcðtÞÞ ¼ �1.
In particular

lim
t!1


 �
Xm

i¼1
h2i

 !
ðcðtÞÞ ¼ �1

Recall that


 �
Xm

i¼1
h2i ¼

Xn

i¼1

@fi

@xi

þ
Xn

i¼1
f 2i

In view of Corollary 3, we get a contradiction. Therefore
the homogeneous degree 3 part of 
 must be zero. &

Constructing a robust finite-dimensional filter to (1)
is equivalent to finding a smooth manifold M, complete
C1 vector fields �i on M, C1 function � on M � R

n,
and !is on R

m such that uðt; xÞ in (3) can be represented
in the form

dz

dt
ðtÞ ¼

Xk

i¼1
�iðzðtÞÞ!iðyðtÞÞ; zð0Þ 2 M ð14Þ

uðt; xÞ ¼ �ðzðtÞ; t; xÞ ð15Þ

Following Chaleyat-Maurel and Michel (1984), we say
that system (1) has a robust universal finite-dimensional
filter if, for each initial probability density �0, there
exists a z0 such that (14) and (15) hold if zð0Þ ¼ z0 and
�i, !i are independent of �0.

The method of Wei and Norman (1964) of using Lie
algebraic ideas to solve time-varying linear differential
equations is roughly as follows. Consider the equation

d

dt
XðtÞ ¼ AðtÞXðtÞ �

Xm

i¼1
aiðtÞAiXðtÞ Xð0Þ ¼ X0

where X and Ais are n� n matrices and the ais are
scalar-valued functions. Let B1; . . . ;Bl be a basis of the
Lie algebra generated by A1; . . . ;Am. Then the Wei–
Norman theorem states that, locally in t, XðtÞ has a
representation of the form

XðtÞ ¼ eb1ðtÞB1 . . . eblðtÞBl X0

where the bis satisfy an ordinary differential equation of
the form

dbi

dt
¼ ciðb1; . . . ; blÞ; bið0Þ ¼ 0; 1 � i � l

The functions ci, 1 � i � n in the above equation are
determined by the structure constants of the Lie algebra
(generated by the Ais) relative to the basis fB1; . . . ;Blg.

The extension of Wei and Norman’s approach to the
non-linear filtering problem is much more complicated.
Instead of an ordinary differential equation, we have to
solve the robust DMZ equation, which is a time-varying
differential equation.

Suppose that the Wei–Norman theory is applied to
solve partial differential equations of the form

@u

@t
¼ a1A1uþ � � � þ amAmu ð16Þ

where the Ai, 1 � u � m, are linear partial differential
operators in x1; . . . ; xn, and the ai, 1 � i � m, are given
functions of time t. The idea is to solve (16) in terms of
solutions of the simpler equations

@u

@t
¼ Aiu; 1 � i � m ð17Þ

which we write as

664 S. S.-T. Yau
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uðt; xÞ ¼ eAit ðxÞ  ðxÞ ¼ uð0; xÞ ð18Þ

We shall assume that the Lie algebra generated by the
operators A1; . . . ;Am in (16) is finite dimensional. By
setting, if necessary, some of the aiðtÞ equal to zero,
and by combining other ajðtÞ in case of linear depen-
dence among the operators on the r.h.s. of (16), without
loss of generality, we can assume that we are dealing
with equation (16) with the additional property that

½Ai;Aj � ¼
X

k

�k
ij � Ak; . . . ; i; j ¼ 1; . . . ;m ð19Þ

for suitable real constants �k
ij , 1 � i; j; k � m.

The central idea of Wei–Norman theory is now to
try for a solution of the form

uðtÞ ¼ eg1ðtÞA1 eg2ðtÞA2 . . . egmðtÞAm ð20Þ

where the gi, 1 � i � m, are still to be determined func-
tions of time. The next step is to insert (20) into (16), to
obtain

_uu ¼ _gg1A1 e
g1A1 . . . egmAm þ eg1A1 _gg2A2e

g2A2 . . . egmAm þ � � �

þ eg1A . . . egm�1Am�1 _ggmAm egmAm ð21Þ

Now for i ¼ 2; . . . ; n insert a term

e�gi�1Ai�1 . . . e�g1A1 eg1A1 . . . egi�1Ai�1

just behind _ggiAi in the ith term of (21). Then use the
adjoint representation formula

eABe�A ¼ Bþ ½A;B� þ 1

2!
½A; ½A;B�� þ 1

3!
½A; ½A;B�� þ � � �

ð22Þ

and (19) repeatedly, and use the linear independence of
the A1; . . . ;Am to obtain a system of ordinary differen-
tial equations for the g1; . . . ; gm (with initial conditions
g1ð0Þ ¼ 0 ¼ g2ð0Þ ¼ � � � ¼ gmð0ÞÞ. These system of
ODEs are always solvable for small time. However
they may not be solvable for all time, meaning that finite
escape time phenomena may occur.

Fortunately, Theorem 13 above will allow us to
prove the following theorem which shows in particular
how to construct finite dimensional filters from finite-
dimensional estimation algebras. Since the estimation
algebra is solvable, the corresponding system of ODEs
are solvable for all t � 0. The detail can be found in Yau
(1994).

Theorem 14: Let E be an estimation algebra of (1)
satisfying ð@fj=@xiÞ � ð@fi=@xiÞ ¼ cij, where the cijs are
constants for all 1 � i, j � n. Suppose that E is a finite
dimensional estimation algebra of maximal rank. Then
E has a basis of the form 1, x1; . . . ; xn, D1; . . . ;Dn, and
L0 and

Xn

i¼1

@fi

@xi

þ
Xn

i¼1
f 2i þ

Xm

i¼1
h2i

is a degree two polynomialXn

i;j¼1
aijxixj þ

Xn

i¼1
bixi þ d

The robust DMZ equation (3) has a solution for all t � 0
of the form

uðt; xÞ ¼ eTðtÞernðtÞxn . . . er1ðtÞx1esnðtÞDn . . . es1ðtÞD1etL0�0

where TðtÞ; r1ðtÞ; . . . ; rnðtÞ, s1ðtÞ; . . . ; snðtÞ satisfies the
ordinary differential equations

dsi

dt
ðtÞ ¼ riðtÞþ

Xn

i¼1
sjðtÞcji þ

Xn

k¼1
hkiykðtÞ; 1� i� n ð23Þ

drj

dt
ðtÞ ¼ 1

2

Xn

i¼1
siðtÞðaij þ ajiÞ; 1� j � n ð24Þ

dT

dt
¼�1

2

Xn

i¼1
r2i ðtÞ�

1

2

Xn

i¼1
s2i ðtÞ

Xn

j¼1
c2ij � aii

 !
þ
Xn

i¼1
riðtÞ

ð25Þ

�
Xn

j¼2

Xj

i¼1
sjðtÞcij þ

X
1�i<k�n

siðtÞskðtÞ

�
Xn

j¼1
cijcjkþ

1

2
ðaikþ akiÞ

" #

þ 1

2

Xn

i¼1
siðtÞbi þ

1

2

Xm

i;j¼1
yiðtÞyjðtÞ

Xn

k¼1
hikhjk

�
Xn

i;j¼1
siðtÞrjðtÞcij

where hkðxÞ ¼
Pn

j¼1 hkjxj þ ek, 1 � k � m, hkj and ek are
constants. In particular, a universal finite-dimensional
filter exists.

The following theorem in Yau (1994) gives a char-
acterization when the drift term f ðxÞ satisfies the
conditions ð@fj=@xiÞ � ð@fi=@xjÞ ¼ cij , where cij are
constants for all 1 � i; j � n.

Theorem 15: ð@fj=@xiÞ � ð@fi=@xjÞ ¼ cij are constants
for all i and j if and only if

ðf1; . . . ; fnÞ ¼ ðl1; . . . ; lnÞ þ
@ 

@xi

; . . . ;
@ 

@xn

� �
ð26Þ

where l1; . . . ; ln are polynomials of degree one and  is a
C1 function.

Proof: It is clear that if (26) is satisfied, then
ð@fj=@xiÞ � ð@fi=@xjÞ ¼ cij are constants for all i and j.
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Conversely, suppose that ð@fi=@xiÞ � ð@fi=@xjÞ ¼ cij

are constants for all 1 � i, j � n. Observe that cij ¼ �cji.
Let bij ¼ � 1

2
cij . Then we have

bji � bij ¼ cij; 1 � i; j � n ð27Þ

Let liðxÞ ¼
Pn

j¼1 bijxj for 1 � i � n

d
Xn

j¼1
fj dxj

 !
¼
X
i<j

@fj

@xi

� @fi

@xj

� �
dxi ^ dxj

¼
X
i<j

cij dxi ^ dxj ð28Þ

d
Xm

j¼1
lj dxj

 !
¼
X
i<j

ðbji � bijÞ dxi ^ dxj ð29Þ

In view of (27), (28) and (29) we have

d
Xn

j¼1
fi dxj �

Xn

j¼1
lj dxj

 !
¼ 0

Since every d-closed differential form on R
n are d-exact,

there exists a C1 function  such thatXn

j¼1
fj dxj �

Xn

j¼1
lj dxj ¼ d ¼

Xn

j¼1

@ 

@xj

dxj &

5. Structures of quadratic forms and linear structure of

X-matrix

We shall recall the theory of quadratic forms in esti-
mation algebras developed by Chan and Yau (1996). We
first introduce the notion of quadratic rank k for any
estimation algebra. This concept plays a fundamental
role in the theory of classification of finite dimensional
estimation algebras. We show that any quadratic poly-
nomial in the estimation algebra depends on the vari-
ables only up to quadratic rank k (cf. Lemma 4).

We show that there is a natural decomposition
f1; 2; . . . ; kg into disjoint union of Si, where Si is
described in (39) below. For each Si, we associate a
basic quadratic polynomial pi (cf. (41) below) in the
estimation algebra. We show some important properties
of quadratic polynomials in the estimation algebras in
terms of this decomposition (cf. Lemmas 5–7). These
properties of quadratic polynomials are used to prove
the constant structure of the k� k left upper corner of
the O matrix (cf. Lemma 10, Theorem 20 and Theorem
21). The proofs given are easier than those in Chen and
Yau (1996). Quadratic polynomial properties were also
used to prove the constant structure of the k� ðn� kÞ
right upper corner of the O matrix (cf. } 7). In } 5, we
also develop a new simple proof of linear structure of O
matrix than those given in Chen and Yau (1996). The

proof given here depends on some special properties of
partial Euler operators developed in Theorems 16–18.

Let Q be the space of quadratic forms in n variables,
that is, real vector space spanned by xixj, with
1 � i � j � n. Let X ¼ ðx1; x2; . . . ; xnÞT and let MnðRÞ
be the group of n� n matrices.

Definition 4: For any quadratic form p 2 Q, there ex-
ists a symmatric matrix A such that pðxÞ ¼ XTAX .
The rank of the quadratic form p is denoted by rðpÞ
and is defined to be the rank of the matrix A. A funda-
mental quadratic form of the estimation algebra E is
an element p0 2 E \Q with the greatest positive rank,
that is, rðp0Þ � rðpÞ for any p 2 E \Q. The maximal
rank of quadratic forms in the estimation algebra E is
defined to be k ¼ rðp0Þ and is called the quadratic rank
of E.

After an orthogonal transformation on x, p0 can be
written as

p0 ¼ c1x
2
1 þ c2x

2
2 þ � � � þ ckx2

k; ci 6¼ 0; 0 � k � n

ð30Þ
From p0ðxÞ, we can construct a sequence of quadratic
forms in E \Q as

q0ðxÞ ¼ p0ðxÞ ð31Þ

qjðxÞ ¼ ½½L0; qj�1�; q0� ¼
Xk

i¼1
4 jc jþ1

i x2
1 ð32Þ

In view of the invertibility of the Vandermonde matrix,
we can assume that

p0ðxÞ ¼ x2
1 þ x2

2 þ � � � þ x2
k 2 E

Lemma 4: If p is a quadratic form in the estimation
algebra E, then p is independent of xj for j > k, where
k ¼ rðp0Þ. In other words, @p=@xj ¼ 0 for kþ 1 � j � n.

Proof: Suppose on the contrary that @p=@xi 6¼ 0 for
some j > k. Let A be a symmetric matrix such that
p ¼ XTAX . A can be written as

A ¼
A1 A2

AT
2 A4

 !
ð33Þ

where A1 is a k� k symmetric matrix and A4 is an
ðn� kÞ � ðn� kÞ symmetric matrix. There is a k� k
orthogonal matrix S1 and an ðn� kÞ � ðn� kÞ orthogo-
nal matrix S2 such that ST

1 A1S1 and ST
2 A4S2 are diago-

nal matrices. So we can assume that A1 and A4 are
diagonal matrices. @p=@xj 6¼ 0 for some j > k implies
A2 6¼ 0 or A4 6¼ 0. Since

rð�p0 þ �pÞ ¼ rank
�I þ �A1 �A2

�AT
2 �A4

 !
ð34Þ

if we choose � large enough, it is easy to see that
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rð�p0 þ �pÞ > k ð35Þ

This contradicts the greatest positive rank assumption
of p0. &

Let p1 2 E \Q be an element with least positive
rank, that is 0 < rðp1Þ � rðqÞ for any non-zero
q 2 E \Q. After an orthogonal transform that fixes
xkþ1; . . . ; xn variables (i.e. an orthogonal transform on
x1, x2; . . . ; xk) and the Vandermonde matrix procedure
as above, we can assume

p1 ¼
Xk1

i¼1
x2
1 2 E; 1 � k1 � k ð36Þ

Note that the orthogonal transform on x1; . . . ; xk

leaves p0 invariant. In summary, we deduce that p0 ¼Pk
i¼1 x2

i has the greatest positive rank and p1 ¼
Pk1

i¼1 x2
i

has the least positive rank. Define

S1 ¼ f1; 2; . . . ; k1g ! S ¼ f1; 2; . . . ; kg ð37Þ

and Q1 ¼ real vector space spanned by fxixj : k1 þ 1 �
i � j � kg ! Q.

If k1 < k, then Q1 \ E is a non-trivial space, since
p� p0 2 E [Q. In a similar procedure as above, there
exists

p2 ¼
Xk2

i¼k1þ1
x2

i 2 E \Q1 ð38Þ

with the least positive rank in E \Q1. By induction, we
construct a series of Si, Qi and pi such that

Si ¼ fki�1 þ 1; . . . ; kig; k0 ¼ 0; ki � k ð39Þ

and

Qi ¼ real vector space spanned by

fxlxj : ki þ 1 � l � j � kg ð40Þ

pi ¼
Xki

j¼ki�1þ1
x2

j ¼
X
j2Si

x2
j ; i > 0 ð41Þ

and pi has the least positive rank in E \Qi�1 for i > 0.

Lemma 5: If p 2 E \Q, then

pð0; . . . ;0xki�1þ1; . . . ;xki
;0; . . . ;0Þ ¼ �pi for i> 0

Proof: In view of Lemma 1 and the fact that
½L0; pi� 2 E, ½L0; p0 � pi� 2 E, we haveX

j2Si

xjDj 2 E;
X

j2S�Si

xjDj 2 E ð42Þ

HenceX
j2Si

xjDj; p

" #
�

X
j2S�Si

xjDj;
X
j2Si

xjDj; p

" #" #
¼ 2pð0; . . . ; 0; xki�1þ1; . . . ; xki

; 0; . . . ; 0Þ 2 E

Because pi has the least positive rank for polynomials in
xki�1þ1; . . . ; xki

, there is a � such that

pð0; . . . ; 0; xki�1þ1; . . . ; xki
; 0; . . . ; 0Þ ¼ �pi &

Similarly, we also have the following lemma.

Lemma 6: if p 2 E \Q, then

pðx1; . . . ;xki�1 ; 0; . . . ; 0; xkiþ1; . . . ; xkÞ 2 E for i > 0

Proof: The lemma follows immediately from the
formula

pðx1; . . . ; xki�1 ; 0; . . . ; 0; xkiþ1; . . . ; xkÞ

¼ p�
X

j2S�Si

xjDj;
X
j2Si

xjDj; p

" #" #
�pð0; . . . ; 0; xki�1þ1; . . . ; xki

; 0; . . . ; 0Þ &

Lemma 7: Let p ¼
P

i2Sl1

P
j2Sl2

2aijxixj 2 E, where
aij 2 R and l1 < l2. Let Xi ¼ ðxki�1þ1; . . . ; xki

ÞT be
a ðk1 � ki�1Þ-vector. Under this notation, p can be writ-
ten as

p ¼ ðXT
l1 ; XT

l2 Þ
0 A

AT 0

 !
Xl1

Xl2

 !
ð43Þ

Then jSl1
j ¼ jSl2

j and A ¼ bT, where b is a constant and T
is an orthogonal matrix

Proof: ½L0;p� ¼ 2
P

i2Sl1

P
j2Sl2

aijðxiDj þxjDiÞ 2E. Hence

½½L0; p�; p� ¼ 4
X

i;m2Sl1

X
j;l2Sl2

aijaml½xiDj þ xjDi; xmxl �

¼ 4
X

i;m2Sl1

X
j;l2Sl2

aijaml

� ðxixlSim þ xixm�jl þ xjxl�im þ xjxm�ilÞ
¼ 4

X
i2Sl1

X
j;l2Sl2

aijajlxixl

þ 4
X

i;m2Sl1

X
j2Sl2

aijamjxixm

þ 4
X
i2Sl1

X
j;l2Sl2

aijailxjxl

þ 4
X

i;m2Sl1

X
j2Sl2

aijamixjxm

Since ½½L0; p�; p� 2 E, from Lemma 5, we have

X
i;m2Sl1

X
j2Sl2

aijamj

0@ 1Axixm ¼ �1pl1
ð44Þ

X
j;l2Sl2

X
i2Sl1

aijail

0@ 1Axjxl ¼ �2pl2
ð45Þ
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Equations (44) and (45) show that the rows of A are
mutually orthogonal and so are the columns. Since for
any matrix the row rank is equal to column rank, we
have jSl1 j ¼ jSl2 j. As the column vectors have the same
Euclidean length, it follows that A is a constant multiple
of an orthogonal matrix. &

If E is a finite dimensional estimation algebra with
maximal rank, then Lemma 3 says that !ij 2 E is a poly-

nomial of degree at most 2 for all 1 � i, j � n. Let !
ð2Þ
ij ,

!
ð1Þ
ij be the homogeneous part of degree 2, and 1 of !ij

respectively. Then we have the following lemma.

Lemma 8: Suppose that E is a finite dimensional esti-
mation algebra of maximal rank. Then

ðiÞ !ð2Þij depends only on x1; . . . ; xk for i � k or j � k

ðiiÞ !ð2Þij ¼ 0 for kþ 1 � i; j � n

ðiiiÞ
@!

ð2Þ
ij

@xl

þ
@!

ð2Þ
jl

@xi

þ @!
ð2Þ
li

@xj

¼ 0 for 1 � i; j; l � n

ðivÞ
@!

ð1Þ
ij

@xl

þ
@!

ð1Þ
jl

@xi

þ @!
ð1Þ
li

@xj

¼ 0 for 1 � i; j; l � n

Proof: Since E is finite dimensional of maximal rank
and !ij 2 E, it follows that !

ð2Þ
ij 2 E. Hence !

ð2Þ
ij de-

pends only on x1; . . . ; xk by Lemma 4. The cyclic con-
ditions of part (iii) and part (iv) of this Lemma follow
from the corresponding cyclic conditions

@!ij

@!l

þ
@!jl

@xi

þ @!li

@xj

¼ 0 ð46Þ

Let kþ 1 � i, j � n, and 1 � l � k. Then (iii) gives

@!
ð2Þ
ij =@xl ¼ 0. It follows that !

ð2Þ
ij ¼ 0 for kþ 1 � i,

j � n. &

The following three theorems are due to Yau and
Rasoulian (1999)

Theorem 16: Let Ek ¼
Pk

j¼1 xjð@=@xjÞ be a Euler
operator in x1; . . . ; xk variables. Suppose that m is an
integer and � is a C1 function on R

n such that
Ekð�Þ þm� is a polynomial of degree r, r a positive inte-
ger, in x1; . . . ; xk variables with coefficients in C1 func-
tions of xkþ1; . . . ; xn variables. If rþm � 0, then � is a
polynomial of degree r in x1; . . . ; xk variables with co-
efficients in C1 functions of xkþ1; . . . ; xn. If rþm < 0,
then � is a polynomial of degree at most �m in
x1; . . . ; xk variables with coefficients in C1 functions of
xkþ1; . . . ; xn.

Proof: First let rþm � 0, that is, rþmþ 1 > 0. Also
let D ¼ ð@=@x1Þ�1 � � � ð@=@xkÞ�k , �1 þ � � � þ �k ¼ rþ 1
be a differential operator of order rþ 1. Since
Ekð�Þ þm� is a polynomial of degree r in x1; x2; . . . ; xk

variables with coefficients in C1-functions of
xkþ1; . . . ; xn variables, we have D½Ekð�Þ þm�� ¼ 0. On
the other hand, in view of

@

@xi

Ek ¼ Ek

@

@xi

þ @

@xi

for 1 � i � k

it is easy to see by induction that

D½Ekð�Þ þm�� ¼ @

@x1

� ��1

. . .
@

@xkþ1

� ��k�1 @

@xk

� ��k

� ½Ekð�Þ þm��

¼ @

@x1

� ��1

. . .
@

@xl�1

� ��k�1

� Ek

@

@xk

� ��k

� þ ð�k þmÞ @

@xk

� �
�

� �
¼ EkðD�Þ þ ð�1 þ � � � þ �k þmÞD�

So we have EkðD�Þ þ ðrþ 1þmÞD� ¼ 0. Observe that

Ek½xrþ1þm
1 D�� ¼ ðrþ 1þmÞxrþ1þm

1 D� þ xrþ1þm
1 EkðD�Þ

¼ xrþ1þm
1 ½EkðD�Þ þ ðrþ 1þmÞD�� ¼ 0

Denote � ¼ xrþ1þm
1 D�. Because rþ 1þm > 0, we have

�ðx1; . . . ; xk; xkþ1; . . . ; xnÞ � �ð�x1; . . . ; �xk; xkþ1; . . . ; xnÞ

¼
ð1
�

d�

dt
ðtx1; . . . ; txk; xkþ1; . . . ; xnÞ dt

¼
ð1
�

x1

@�

@x1

ðtx1; . . . ; txk; xkþ1; . . . ; xnÞ þ � � �
�

þ xk

@�

@xk

ðtx1; . . . ; txk; xkþ1; . . . ; xnÞ
�
dt

¼
ð1
�

1

t
ðEk�Þðtx1; . . . ; txk; xkþ1; . . . ; xnÞ dt ¼

ð1
�

0

t
dt ¼ 0

for � > 0. Now let �! 0. Then we get �ðx1; . . . ; xk,
xkþ1; . . . ; xnÞ ¼ 0. This implies that

D� ¼ @

@x1

� ��1

. . .
@

@xk

� ��k

� ¼ 0

for all �1 þ � � � þ �k ¼ rþ 1 and �1 � 0; . . . ; �k � 0. In
other words � is a polynomial of degree at most r in
x1; . . . ; xk variables with coefficients in C1-functions
of xkþ1; . . . ; xn variables. Now by two methods we can
prove that � is a polynomial of degree r. One method is
by induction on r and using the same method as above;
the other method is by assumption that

� ¼
X

0�i1þ���þik�s

ai1...ikðxkþ1; . . . ; xnÞxi1
1 . . . x

ik
k ; s � r
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is a polynomial of degree s, and then using the definition
of Ekð�Þ þm� and the hypothesis that the last one is a
degree r polynomial. We provide the proof using the
second method. Let � by a polynomial of degree s

Ekð�Þ þm� ¼ Ek

X
0�jij�s

aiðxkþ1; . . . ;xnÞxi1
1 . . . x

ik
� �

þm

�
X

0�jij�s

aiðxkþ1; . . . ; xnÞxi1
1 . . .x

ik
k

¼
X

0<jij�s

jijaiðxkþ1; . . . ; xnÞxi1
1 . . . x

ik
k þm

�
X

0�jij�s

aiðxkþ1; . . . ; xnÞxi1
1 . . .x

ik
k

¼
X

0<jij�s

ðjij þmÞaiðxkþ1; . . . ; xnÞxi1
1 . . . x

ik
k

þma0ðxkþ1; . . . ; xnÞ

¼
X

0�jij�r

biðxkþ1; . . . ; xnÞxi1
1 . . . x

ik
k

where i ¼ ði1; . . . ; ikÞ and jij ¼ i1 þ � � � þ ik and
biðxkþ1; . . . ; xnÞ is C1. By looking at the coefficients
on both sides we see that s ¼ r and ðjij þmÞai ¼ bi for
all i, 0 < jij � r. That is, � is a polynomial of degree r in
x1; . . . ; xk variables with coefficients being C1 functions
in xkþ1; . . . ; xn.

Now let rþm < 0. In this case m is a negative inte-
ger. Let m ¼ �m 0, m 0 > 0. Then Ekð�Þ þm� ¼ Ekð�Þ�
m 0� ¼ Pr where Pr is a polynomial of degree r in
x1; . . . ; xk variables with coefficients in C1 functions
of xkþ1; . . . ; xn. We have

@

@xi1

½Ekð�Þ �m 0�� ¼ @

@xi1

Pr ¼ Pr�1 1 � i1 � k

) Ek

@�

@xi1

� �
� ðm 0 � 1Þ @�

@xi1

¼ Pr�1

where Pr�1 is a polynomial of degree r� 1. Using the
same technique, we get

@

@xi2

Ek

@�

@xi2

� �
� ðm 0 � 1Þ @�

@xi1

� �
¼ @

@xi2

Pr�1 ¼ Pr�2; 1 � i2 � k

) Ek

@2�

@xi1
@xi2

 !
� ðm 0 � 2Þ @2�

@xi1
@xi2

¼ Pr�2

where Pr�2 is a polynomial of degree r� 2. After m 0 � 1
times, we have

Ek

@m 0�1�

@xi1
. . . @xim 0�1

 !
� @m 0�1�

@xi1
. . . @xim 0�1

¼ Pr�ðm 0�1Þ;

1 � im 0�1 � k

where Pr�ðm 0�1Þ is a polynomial of degree 0 in x1; . . . ; xk

variables, i.e. a C1-function in xkþ1; . . . ; xn.
Once more, we have

@

@xim 0

Ek

@m 0�1�

@xi1
. . .@xim 0�1

 !
� @m 0�1�

@xi1
. . .@xim 0�1

" #
¼ 0 1� im 0 � k

) Ek

@m 0
�

@xi1
. . .@xim 0

 !
¼ 0

Now let � > 0. By the same technique we have

@m 0
�

@xi1 . . . @xim 0

ðx1; . . . ; xk; xkþ1; . . . ; xnÞ

� @m 0
�

@xi1
. . . @xim 0

ð�x1; . . . ; �xk; xkþ1; . . . ; xmÞ

¼
ð1
�

d

dt

@m 0
�

@xi1
. . . @xim 0

ðtx1; . . . ; txk; xkþ1; . . . ;xnÞ
" #

dt

¼
ð1
�

1

t
Ek

@m 0
�

@xi1
. . . @xim 0

ðtx1; . . . ; txk; xkþ1; . . . ;xn

" #
dt

¼
ð1
�

0

t
dt ¼ 0

Let �! 0. Then

@m 0
�

@xi1
. . . @xim 0

ðx1; . . . ; xk; xkþ1; . . . ; xnÞ

¼ @m 0
�

@xi1
. . . @xim 0

ð0; . . . ; 0; xkþ1; . . . ; xnÞ

The right-hand side is a function of xkþ1; . . . ; xn. This
means that @m 0�1�=@xi1

. . . @xim 0�1
is a linear function of

x1; . . . ; xk with coefficients in C1-functions of
xkþ1; . . . ; xn. Now by induction, we conclude that � is
a polynomial of degree at most m 0 in x1; . . . ; xk variables
with coefficients in C1-functions of xkþ1; . . . ; xn.

&

Theorem 17: Let Ek ¼ x1ð@=@xiÞ þ � � � þ xkð@=@xkÞ be
an Euler operator in x1; . . . ; xk variables. Suppose that
m is a positive constant and � is a C1 function on R

n

such that Ekð�Þ þm� is a polynomial of degree r in
x1; . . . ; xn variables. Then � is a polynomial of degree r
in x1; . . . ; xn variables.

Proof: By Theorem 16, � ¼
P

0�j�j�r a�ðxkþ1; . . . ; xnÞx�1

1

. . . x�k

k , where � ¼ ð�1; . . . ; �kÞ and j�j ¼ �1 þ � � � þ �k

and a�ðxkþ1; . . . ; xnÞ is C1.
Hence we have
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Ekð�Þ þm� ¼
X

0<j�j�r

j�ja�ðxkþ1; . . . ; xnÞx�k

1 . . .x�k

k

þm
X

0�j�j�r

a�ðxkþ1; . . . ; xnÞx�1

1 . . . x�k

k

¼
X

0<j�j�r

ðj�j þmÞa�ðxkþ1; . . . ; xnÞx�1

1 . . . x�k

k

þma0ðxkþ1; . . . ;xnÞ

¼
X

0�j�j�r

p�ðxkþ1; . . . ; xnÞx�1

1 . . .x�k

k

where p�ðxkþ1; . . . ; xnÞs are polynomials in xk1
; . . . ; xn

(because Ekð�Þ þm� is a polynomial in x1; . . . ;xn, so
we may assume that it is a polynomial in x1; . . . ; xk

with coefficients being polynomials in xkþ1; . . . ; xn).

Now, looking at both sides, we conclude that
ðj�j þmÞa� ¼ p�, for all � ¼ ð�1; . . . ; �kÞ, 0 < j�j � r;

in other words all a�, 0 < j�j � r are polynomials and
also a0 ¼ ð1=mÞp0 is a polynomial, and hence � is a poly-

nomial. &

Remark: Theorem 17 is false if m ¼ 0. It is possible

that Ekð�Þ is a polynomial of degree r in x1; . . . ; xn

variables, but � is not a degree r polynomial in
x1; . . . ; xn variables. For example, we can simply take �
to be any degree r polynomial in x1; . . . ;xn variables

plus a transcendental function in xkþ1; . . . ; xn variables.

Theorem 18: Let

Ek ¼ x1

@

@x1

þ � � � þ xk

@

@xk

be an Euler operator in x1; . . . ;xk variables. Suppose that �
is a C1 function on R

n such that Ekð�Þ is a polynomial of

degree r in x1; . . . ;xn variables. Then � ¼ Prðx1; . . . ;xnÞþ
aðxkþ1; . . . ; xnÞ where Prðx1; . . . ; xnÞ is a polynomial of
degree r and aðxkþ1; . . . ; xnÞ is a C1 function in

xkþ1; . . . ; xn.

Proof: In view of Theorem 16, � ¼
P

0�j�j�r

a�ðxkþ1; . . . ;xnÞx�1

1 . . .x�k

k , where � ¼ ð�1; . . . ; �kÞ and

j�j ¼ �1 þ � � ��k and a�ð�kþ1; . . . ; xnÞ is C1. Then
Ekð�Þ ¼

P
0<j�j�r j�ja�ðxkþ1; . . . ; xnÞx�1

1 . . . x�k

k , which is

a polynomial of degree r in x1; . . . ; xn variables. There-
fore a�ðxkþ1; . . . ; xnÞ for j�j � 1, are polynomials.

Theorem 18 follows immediately. &

Lemma 9: Let E be a finite-dimensional estimation

algebra of maximal rank. Let k be the quadratic rank of

E. For 1 � i, j � n, !ij and �i ¼
Pk

j¼1 xj!ij 2 E are

polynomials of degree 2 in x1; . . . ; xn variables. Further-

more, we have the following relationships:

ðiÞ Ekð!ijÞ þ 2!ij ¼
@�i

@xj

�
@�j

@xi

; 81 � i; j 2 k;

ðiiÞ Ekð!ijÞ þ !ij ¼
@�i

@xj

�
@�j

@xi

; 81 � i � k; kþ 1 � j � n;

ðiiiÞ Ekð!ijÞ þ !ij ¼
@�i

@xj

�
@�j

@xi

; 81 � j � k; kþ 1 � i � n;

ðivÞ Ekð!ijÞ ¼
@�i

@xj

�
@�j

@xi

; 8kþ 1 � i; j � n

Proof: By Lemma 2, we have !ij 2 E and �i ¼
1
2 ½½L0;Dj �; p0� 2 E where p0 is defined by (11). Theorem
2 implies that !ij and �i are polynomials of degree 2
in x1; . . . ; x2 variables. The relationships (i)–(iv) follow
immediately from the definition of Ekð!ijÞ and �i. For
example, we give the proof of (i) here

@�i

@xj

¼
Xk

l¼1

@ðxl!ilÞ
@xj

¼ !ij þ
Xk

l¼1
xl

@!il

@xj

@�j

@xi

¼
Xk

l¼1

@ðxl!jlÞ
@xi

¼ !ji þ
Xk

l¼1
xl

@!jl

@xi

@�j

@xi

� @�i

@xj

¼ 2!ji þ
Xk

l¼1
xl

@!jl

@xi

� @!il

@xj

� �

¼ 2!ji þ
Xk

l¼1
xl

@!jl

@xi

þ @!li

@xj

� �

¼ 2!ji þ
Xk

l¼1
xl

@!ji

@xl

¼ 2!ji þ Ekð!jiÞ &

Corollary 4: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

O ¼ ð!ijÞ ¼
P1ðx1; . . . ;xnÞ P1ðx1; . . . ; xnÞ

P1ðx1; . . . ;xnÞ P1ðx1; . . . ; xnÞ þ P2ðxkþ1; . . . ; xnÞ

0@ 1A
i.e. !ijs are polynomials of degree 1 in x1; . . . ; xn variables
for 1 � i � k or 1 � j � k and !ij are polynomials of
degree 1 in x1; . . . ; xn variables plus polynomials of degree
2 in xkþ1; . . . ;xn variables for kþ 1 � i, j � n.

Proof: This follows from Theorems 17 and 18 and
Lemma 9 &

Theorem 19: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

O ¼ ð!ijÞ ¼
P1ðx1; . . . ; xkÞ P1ðx1; . . . ; xkÞ

P1ðx1; . . . ; xkÞ P1ðxkþ1; . . . ; xnÞ

0@ 1A
i.e.

(i) !ij is a polynomial of degree 1 in x1; . . . ; xk for
1 � i � k or 1 � j � k
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(ii) !ij is a polynomial degree 1 in xkþ1; . . . ; xn for
kþ 1 � i; j 2 n.

Proof: Since �i ¼
Pk

j¼1 xj!ij is a quadratic poly-
nomial in E by Lemma 9, it cannot depend on
xkþ1; . . . ; xn variables for 1 � i � n according to
Lemma 4, (i) follows immediately. If kþ 1 � i, j � n,
by using the cyclic relationship

@!ij

@xl

þ @!li

@xj

þ
@!jl

@xi

¼ 0

we have @!ij=@xl ¼ 0 for 1 � l � k. This means that !ij

are independent of x1; . . . ; xk for kþ 1 � i, j � n. Now
!ij ¼ p1ðxkþ1; . . . ; xnÞ þ p2ðxkþ1; . . . ; xnÞ for kþ 1 � i,
j � n. Since !

ð2Þ
ij 2 E as a quadratic polynomial in E

cannot depend on xkþ1; . . . ; xn variables for kþ 1 � i,
j � n according to Theorem 2, it follows that
p2ðxkþ1; . . . ; xnÞ ¼ 0. &

Lemma 10: Suppose that E is a finite-dimensional esti-
mation algebra of maximal rank. With the same nota-
tion as in (39), if X

i2Sl

xi�i ¼ 0 ð47Þ

where �is are homogeneous polynomials of degree 2 in E,
then �i ¼ 0 for all i 2 Sl.

Proof: Let Xi ¼ ðxki�1þ1; xki�1þ2; . . . ; xki
ÞT and X ¼

x1; x
2; . . . ; xnÞT. Without loss of generality, we assume

that l ¼ 1. Let XT ¼ ðXT
1 ;

�XXT
1 Þ where �XX1 is the comple-

menting variable of X1 in X . Write

�iðXÞ ¼ �iðX1; 0Þ þ �ið0; �XX1Þ

þ ½�i � �iðX1; 0Þ � �ið0; �XX1Þ� ð48Þ

Hence (47) is still true if we replace �i in (47) by one of
the three terms on the right-hand side of (48). We see
immediately that

�ið0; �XXiÞ ¼ 0 8i 2 S1 ð49Þ

By Lemma 5, we have

�iðX1; 0Þ ¼ �ip1 ð50Þ

So the corresponding equation of (47) for �iðX1; 0Þ givesX
i2S1

xi�ip1 ¼ 0 ð51Þ

It follows that �i ¼ 0, that is,

�iðX1; 0Þ ¼ 0 8i 2 S1 ð52Þ

Finally, �i � �iðX1; 0Þ � �ið0; �XX1Þ is a sum of 2XT
1 RilXl

for l � 2 and Ril is a constant multiple of an orthogonal
matrix. Therefore the corresponding equation of (47) for
�i � �iðX1; 0Þ � �ið0; �XX1Þ gives

X
l�2

XT
1

X
i2S1

2xiRil

 !
Xl ¼

X
i2S1

xi

X
l�2

2XT
1 RilXl ¼ 0 ð53Þ

This implies

XT
1

X
i2S1

2xiRil

 !
¼ 0 8l � 2 ð54Þ

Fix i0 2 S1, and let xi0
¼ 1 and xi ¼ 0 for i 6¼ i0. Then

(54) becomes

ð0; . . . ; 0; 1; 0; . . . ; 0ÞRi0l ¼ 0 8l � 2 ð55Þ

Since Ri0l is a constant multiple of an orthogonal matrix,
we see that Ri0l

¼ 0, 8l � 2. This is true for all i0 2 S1.
Thus

�i � �iðX1; 0Þ � �ið0; �XX1Þ ¼ 0 ð56Þ

So we have proved �i ¼ 0 by (49), (52) and (56) &

Theorem 20: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the same no-
tation as in (39), if p 6¼ q and i 2 Sp, j 2 Sq, then !ij is
a constant.

Proof: Recall that from (42), we have
P

i2Sp
xiDi andP

j2Sq
xjDj in E. Hence

X
i2Sp

X
j2Sq

xixj!ij ¼ �
X
i2Sp

xiDi;
X
j2Sq

xjDj

24 35 2 E ð57Þ

In view of Theorems 2 and 19, equation (57) implies

X
i2Sp

X
j2Sq

xixj!
ð1Þ
ij ¼

X
i2Sp

xi

X
j2Sq

xj!
ð1Þ
ij

0@ 1A

¼
X
j2Sq

xj

X
i2Sp

xi!
ð1Þ
ij

0@ 1A ¼ 0 ð58Þ

Hence !
ð1Þ
ij depends only on xm, where m 2 Sp [ Sq for

i 2 Sp and j 2 Sq. Since E is of maximal rank, Dj 2 E for
any j. In particular, ½

P
i2Sp

xiDi;Dj� 2 E for j 2 Sq, and
½
P

i2Sq
xjDj ;Di� 2 E for i 2 Sp. In view of (iii) of Lemma

1, we haveX
i2Sp

xi!
ð1Þ
ij 2 E for j 2 Sq

and
X
j2Sq

xj!
ð1Þ
ij 2 E for i 2 Sp ð59Þ

Equations (58), (59) and Lemma 10 simplyX
i2Sp

xi!
ð1Þ
ij ¼ 0 for j 2 Sq

and
X
j2Sq

xj!
ð1Þ
ij ¼ 0 for i 2 Sp ð60Þ
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The first equation of (60) says that, for i 2 Sp and j 2 Sq,
!
ð1Þ
ij does not depend on the variable xm for m 2 Sq. The

second equation of (60) says that, for i 2 Sp and j 2 Sq,
!
ð1Þ
ij does not depend on the variable xm for m 2 Sp.

Hence !
ð1Þ
ij ¼ 0 &

Theorem 21: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the same
notation as in (39), if i, j 2 Sl, then !ij is a constant.

Proof: Without loss of generality, we shall assume
that l ¼ 1. For 1 � i � k1, �i ¼

Pk
j¼1 xj!ij is in E by

Lemma 9. In view of Theorem 20, we have

�i ¼
Xk1

j¼1
xj!ij 2 E ) �iðxk; . . . ; xk1

0; . . . ; 0Þ

¼
Xk1

j¼1
xj!ijðx1; . . . ; xk1

; 0; . . . ; 0Þ 2 E ð61Þ

Since !ij is a degree one polynomial in x1; . . . ; xk for
1 � i, j � k1, we can write

!
ð1Þ
ij ¼

Xk

l¼1
Alði; jÞxl ð62Þ

Equations (61) and (62) imply
Pk1

l;j¼1 xjxlAlði; jÞ 2 E for

1 � i, j � k1. By Lemma 5,
Pk1

l;j¼1 xjxlAlði; jÞ ¼ �Pk1

i¼1 x2
i . This implies

Alði; jÞ ¼ 0 for 1 � l 6¼ j < k1; 1 � i � k1 ð63Þ

and

A1ði; 1Þ ¼ A2ði; 2Þ ¼ � � � ¼ Ak1
ði; k1Þ ð64Þ

We claim that all the terms in (64) are also zero. Choose l
so that 1 � l � k1 and l 6¼ i. Then Alði; lÞ ¼ �Alðl; iÞ ¼ 0
by (63). In view of (64) and (63), we have

Alði; jÞ ¼ 0 for 1 � l; i; j � k1 ð65Þ

Observe that Alði; jÞ ¼ @!
ð1Þ
ij =@xl. Therefore (iv) of

Lemma 8 implies

Alði; jÞ þ Ajðl; iÞ þ Aið j; lÞ ¼ 0

for 1 � i; j � k1; k1 þ 1 � l � k

Since Ajðl; iÞ ¼ @!
ð1Þ
li =@xj ¼ 0 and Aið j; lÞ ¼ @!

ð1Þ
jl =@xi ¼ 0

by Theorem 20, we have

Alði; jÞ ¼ 0 for 1 � i; j � k1; k1 þ 1 � l � k ð66Þ

Therefore we have shown that !
ð1Þ
ij ¼ 0 for 1 � i,

j � k1. &

Theorem 22: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

O ¼ ð!ijÞ ¼
Constants P1ðx1; . . . ; xkÞ

P1ðx1; . . . ; xkÞ P1ðxkþ1; . . . ; xnÞ

0@ 1A
(i) !ij is a constant for 1 � i, j � k,

(ii) !ij is a polynomial of degree one in x1; . . . ; xk for
1 � i � k, kþ 1 � j � n or kþ 1 � i � n,
1 � j � k

(iii) !ij is a polynomial of degree one in xkþ1; . . . ; xn

for kþ 1 � i, j � n.

Proof: This is an immediate consequence of Theorems
19, 20 and 21. &

6. Hessian matrix non-decomposition theorem

In this section, we are going to prove that !ij is a
constant for kþ 1 � i, j � n. We shall see that this
statement follows from the weak Hessian matrix non-
decomposition theorem which is a general theorem and
has nothing to do with estimation algebras. The weak
Hessian matrix non-decomposition theorem was first
proved by Wu et al. (2002). In this section, we shall
prove the Hessian matrix non-decomposition theorem,
which is a stronger result than weak Hessian matrix
non-decomposition theorem.

Lemma 11: Suppose that E is a finite dimensional
estimation algebra of maximal rank. Then

ðiÞ
Xn

l¼1
!jl!il �

1

2

@2


@xjxi

2 E for any 1 � i; j � n

ðiiÞ 
 is a polynomial of degree 4:

Proof: (i) follows from (vi) of Lemma 2 and Theorem
19. From (i) and Theorem 19 @2
=@xi@xj is a degree
two polynomial for all 1 � i, j � 
. Therefore 
 is a
polynomial of degree 4.

Lemma 12: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Let k be the quad-
ratic rank. Let 
 ¼ 
4ðxkþ1; . . . ; xnÞþ polynomial of
degree 3 in xkþ1; . . . ; xn variables with coefficients degree
at most 4 polynomials in x1; . . . ; xk variables. Then for
any kþ 1 � i, j � nXn

l¼kþ1
!
ð1Þ
jl !

ð1Þ
il ¼ 1

2

@2
4
@xj@xi

where 
4 ¼ 
4ðxkþ1; . . . ; xnÞ is a homogeneous poly-
nomials of degree 4 in xkþ1; . . . ; xn variables.

Proof: From Theorem 22 and Lemma 11, we know
that for kþ 1 � i, j � nXn

l¼kþ1
!
ð1Þ
jl !

ð1Þ
il � 1

2

@2
4
@xj@xi
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is the homogeneous polynomial of degree 2 part ofXn

l¼1
!jl!il �

1

2

@2


@xj@xi

in xkþ1; . . . ; xn variables. The result follows immediately
from Lemma 4. &

The following notations and Lemma 13 were used
and observed by Chen et al. (1997). Define

�: ¼ ð!ð1ÞÞil; kþ 1 � i; l � n; an ðn� kÞ

� ðn� kÞ anti-symmetric matrix

¼
Xn

j¼kþ1
Ajxj

where Aj ¼ ðAjðp; qÞÞ, kþ 1 � p, q � n, are ðn� kÞ�
ðn� kÞ anti-symmetric matrix with constant coefficients.
The anti-symmetry of � and Aj follows directly from
that of O.

Lemma 13: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the notations
as above, then

(i) ��T ¼ 1
2 Hð
4Þ, where Hð
4Þ ¼ ð@2
4=@xi@xjÞ,

kþ 1 � i, j � n, is the Hessian matrix of 
4 ¼

4ðxkþ1; . . . ; xnÞ.

(ii) Aið j; lÞ þ Alði; jÞ þ Ajðl; iÞ ¼ 0.

Proof: (i) follows from Lemma 12 while (ii) is a con-
sequence of Lemma 8 (iv). &

The following weak Hessian matrix non-decomposi-
tion theorem is a general mathematical theorem which
has independent interest besides non-linear filtering
theory. For a ðn� kÞ � ðn� kÞ matrix with n� k less
than or equal to 4, the theorem was proved in Chen et
al. (1997).

Theorem 23: Let � ¼
Pn

j¼kþ1 Ajxj be an ðn� kÞ�
ðn� kÞ anti-symmetric matrix where Aj ¼ ðAjðp; qÞÞ,
kþ 1 � p, q � n, is an anti-symmetric matrix with con-
stant coefficients. Suppose

Aið j; lÞ þ Alði; jÞ þ Ajðl; iÞ ¼ 0 for all kþ 1 � i; j; l � n

Let 
4 ¼ 
4ðxkþ1; . . . ; xnÞ be a homogeneous polynomial
of degree 4 in xkþ1; . . . ; xn. Let Hð
4Þ ¼ ð@2
4=@xi@xjÞ,
kþ 1 � i, j � n, be the Hessian matrix of 
4. If ��T ¼
1
2
Hð
4Þ, then � � 0, i.e. Aj ¼ 0 for all kþ 1 � j � n.

The weak Hessian matrix non-decomposition
theorem is a consequence of the following Hessian
matrix non-decomposition theorem.

Theorem 24: Let 
4ðx1; . . . ; xnÞ be a homogeneous
polynomial of degree 4 in x1; . . . ; xn over R. Let
Hð
4Þ ¼ ð@2
4=@xi@xjÞ1�i; j�n be the Hessian matrix of


4. Then Hð
4Þ cannot be decomposed as �ðxÞ�ðxÞT,
where �ðxÞ ¼ ð�ijÞ1�i; j�n is an anti-symmetric matrix
with �ij linear functions in x, unless 
4 and � are trivial,
i.e. Hð
4ÞðxÞ ¼ �ðxÞ�ðxÞT implies � ¼ 0 and 
4 ¼ 0.

Let us write�ðxÞ ¼ A1x1 þ A2x2 þ � � � þ Anxn where
Al is a n� n antisymmetric matrix with real constant
coefficients. Then the equation Hð
4ÞðxÞ ¼ �ðxÞ�ðxÞT
will give us a lot of quadratic equations in Alði; jÞ
(ði; jÞ entry of the matrix Al .), 1 � i; j; l � n. Although
it is possible to prove that these quadratic equations can
have only trivial solution for n � 4 (see Chen et al.
(1997), pp. 1137–1138), it has been a challenging prob-
lem to algebraic geometors whether this system of quad-
ratic equations in Alði; jÞ can only admit trivial solution
over R even for n ¼ 5.

To prove Theorem 24, we need two lemmas.

Lemma 14: Let 
4ðx1; . . . ; xnÞ be a homogeneous poly-
nomial of degree 4 in x1; . . . ; xn over R. Let Hð
4Þ ¼
ð@2
4=@xi@xjÞ1�i; j�n be the Hessian matrix of 
4. Let
�ðxÞ ¼ ð�ijÞ1�i; j�n :¼ A1x1 þ � � � þ Anxn where Al ¼
ðAlði; jÞÞ1�i;j�n are n� n antisymmetric matrices with
coefficient in R. Suppose that Hð
4ÞðxÞ ¼ �ðxÞ�ðxÞT.
ThenXn

l¼1
½Aið j; lÞ�2 ¼

Xn

l¼1
½Ajði; lÞ�2

¼ 1

2

Xn

l¼1
½Aiði; lÞAjð j; lÞ þ Aið j; lÞAjði; lÞ� ð67Þ

Proof: Observe that Hð
4ÞðxÞ ¼ �ðxÞ�ðxÞT implies

@2


@xi@xj

¼
Xn

l¼1
�il�jl ð68Þ

Since

@2

@x2
i

@2


@x2
j

 !
¼ @2

@x2
j

@2


@x2
i

 !
¼ @2

@xi@xj

@2


@xi@xj

 !
we have

@2

@x2
i

Xn

l¼1
�2jl

 !
¼ @2

@x2
j

Xn

l¼1
�2il

 !
¼ @2

@xi@xj

Xn

l¼1
�il�jl

 !
Notice that �ij is linear in x1; . . . ; xn for 1 � i, j � n. This
leads to

2
Xn

l¼1

@�jl

@xi

� �2

¼ 2
Xn

l¼1

@�il

@xj

� �2

¼
Xn

l¼1

@�il

@xi

@�jl

@xj

þ @�il

@xj

@�jl

@xi

� �
ð69Þ

As Aið j; lÞ ¼ @�jl=@xi, we see that (67) is equivalent to
(69) &
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Lemma 15: Let 
ðxÞ be a C1 function of Rn. Let
~

ðxÞ ¼ 
ðRxÞ where R is a n� n matrix. Then
Hð~

ÞðxÞ ¼ RTHð
ÞðRxÞR.

Proof: Let y ¼ Rx where r ¼ ðrijÞ is a n� n matrix.
Then by chain rule, we have

@~



@xiðxÞ
¼
Xn

p¼1

@


@yp

ðRxÞ
@yp

@xi

¼
Xn

p¼1
rpi

@


@yp

ðRxÞ

@2~



@xi@xj

ðxÞ ¼
Xn

p¼1
rpi

@

@xj

@


@yp

ðRxÞ
� �

¼
Xn

p¼1
rpi

Xn

q¼1

@2


@yp@yq

ðRxÞ
@yq

@xj

¼
Xn

p;q¼1
rpi

@2


@ypyq

ðRxÞrqj

Therefore Hð~

ÞðxÞ ¼ RTHð
ÞðRxÞR. &

We are now ready to prove our main theorem by
induction on n. For n ¼ 1, the theorem is trivially true.
For n ¼ 2, by the antisymmetry of the matrice of A1 and
A2, we only need to show that A1ð2; 1Þ ¼ 0 ¼ A2ð1; 2Þ.
But this follows immediately from (67) with ði; jÞ ¼
ð1; 2Þ.

We shall assume by induction hypothesis that our
main theorem is true for n� 1. For any n� n orthogo-
nal matrix R, we have

�ðxÞ�ðxÞT¼Hð
ÞðxÞ

)RT�ðRxÞRRT�ðRxÞTR¼RTHð
ÞðRxÞR

) ~��ðxÞ ~��ðxÞT¼Hð~

ÞðxÞ by Lemma 12 ð70Þ

where

~

ðxÞ ¼ 
ðRxÞ ð71Þ

~��ðxÞ ¼ RT�ðRxÞR

¼ RT½A1ðr11x1 þ r12x2 þ � � � þ r1nxnÞ þ � � �

þ Anðrn1x1 þ rn2x2 þ � � � þ rnnxnÞ�R

¼ ~AA1x1 þ ~AA2x2 þ � � � þ ~AAnxn ð72Þ

where

~AAl ¼ RTA1Rr1l þ RTA2Rr2l þ � � � þ RTAnRrnl ;

1 � l � n ð73Þ

~AAT
l ¼ � ~AAl ð74Þ

If ðA1ð1; 2Þ;A1ð1; 3Þ; . . . ;A1ð1; nÞÞ 6¼ 0, then we shall
take

R ¼

1 0 0 � � � 0

0

0 ~RR

..

.

0

0BBBBBBBBBB@

1CCCCCCCCCCA
where ~RR is a ðn� 1Þ � ðn� 1Þ orthogonal matrix such that

ðA1ð1; 2Þ;A1ð1; 3Þ; . . . ;A1ð1; nÞÞ � ~RR ¼ ða; 0; . . . ; 0Þ; a 6¼ 0

Then

~AA1 ¼ RTA1R ¼ RT

0 A1ð1; 2Þ � � �A1ð1; nÞ

A1ð2; 1Þ
..
.

B1

A1ðn; 1Þ

0BBBBBBB@

1CCCCCCCA

R ¼

0 a 0 � � � 0

�a

0 ~RRTB1R

..

.

0

0BBBBBBBBBB@

1CCCCCCCCCCA
i.e. ð ~AA1ð1; 2Þ; ~AA1ð1; 3Þ; . . . ; ~AA1ð1; nÞÞ ¼ ða; 0; . . . ; 0Þ. By
applying Lemma 11 to (70), we have

Xn

l¼1
½ ~AA1ð2; lÞ�2¼

Xn

l¼1
½ ~AA2ð1; lÞ�2¼

1

2

Xn

l¼1
½ ~AA1ð1; lÞ ~AA2ð2; lÞ

þ ~AA1ð2; lÞ ~AA2ð1; lÞ�

¼ 1

2

Xn

l¼1

~AA1ð2; lÞ ~AA2ð1; lÞ

� 1

4

Xn

l¼1
½ ~AA1ð2; lÞ�2þ

1

4

Xn

l¼1
½ ~AA2ð1; lÞ�2

) 3

4

Xn

l¼1
½ ~AA1ð2; lÞ�2�

1

4

Xn

l¼1
½ ~AA2ð1; lÞ�2;

3

4

Xn

l¼1
½ ~AA21; lÞ2�

1

4

Xn

l¼1
½ ~AA1ð2; lÞ�2

)
Xn

l¼1
½ ~AA1ð2; lÞ�2¼ 0

) ~AA1ð1;2Þ¼� ~AA1ð2;1Þ¼ 0
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This contradicts the fact that ~AA1ð1; 2Þ ¼ a 6¼ 0.
Therefore we conclude that A1ð1; lÞ ¼ 0, 1 � l � n.
Now we apply Lemma 11 with i ¼ 1, 2 � j � n. Then
we get

Xn

l¼1
½A1ð j; lÞ�2 ¼

Xn

l¼1
½Ajð1; lÞ�2 ¼

1

2

Xn

l¼1
A1ð j; lÞAjð1; lÞ

� 1

4

Xn

l¼1
½A1ð j; lÞ2þ

1

4

Xn

l¼1
½Ajð1; lÞ�2

) 3

4

Xn

l¼1
½A1ð j; lÞ�2 �

1

4

Xn

l¼1
½A1ð j; lÞ�2;

3

4

Xn

l¼1
½Ajð1; lÞ�2 �

1

4

Xn

l¼1
½A1ð j; lÞ�2

)
Xn

l¼1
½A1ð j; lÞ�2 ¼ 0¼

Xn

l¼1
½Ajð1; lÞ�2

)A1 ¼ 0 and

Al ¼

0 0 � � � 0

0

..

.
Bl

0

0BBBBBBB@

1CCCCCCCA 2� l � n

where Bl is a ðn� 1Þ � ðn� 1Þ antisymmetric matrix.
Let �xx ¼ ðx2; . . . ; xnÞ and ���ð�xxÞ ¼ B2x2 þ � � � þ Blxl.

Then

�ðxÞ ¼

0 0 � � � 0

0

..

.
���ð�xxÞ

0

0BBBBBBB@

1CCCCCCCA
Since

Hð
4Þ ¼ �ðxÞ�ðxÞT ¼

0 0 � � � 0

0

..

.
���ð�xxÞ ���ð�xxÞT

0

0BBBBBBB@

1CCCCCCCA
we have

@2
4
@x1@xl

¼ 0 1 � l � n

Thus 
4 is independent of x1 variable. Denote �

4 ¼

4ðx2; . . . ; xnÞ. Then we have

Hð�

4Þ ¼
@2


@xi@xj

 !
2�i; j�n

¼ ���ð�xxÞ ���ð�xxÞT

By induction hypothesis, we have ���ð�xxÞ ¼ 0. Therefore
�ðxÞ ¼ 0. &

7. Proof of the classification theorem

In this last section, we shall only outline the proof
that !ij is a constant for 1 � i � k, kþ 1 � j � n or
kþ 1 � i � n, 1 � j � k. The details of the proof of
the Lemmas and Propositions below can be found in
Yau and Hu (preprint). Let Ui be the space of differen-
tial operators with order at most i. The following
Propositions and Lemmas will facilitate the proof of
our classification theorem.

Lemma 16: Let Di ¼ ð@=@xiÞ � fi and g, h be functions
defined on R

n. Then

½gDi1
1 . . .D

is
s ; hD j1

1 . . .D
jt
t �

¼ i1g
@h

@x1

Di1�1
1 Di2

2 . . .D
is
s D j1

1 . . .D
jt
t

þisg
@h

@xs

Di1
1 . . .D

is�1
s�1D

is�1
s�1 D j1

1 . . .D
jt
t

�j1h
@g

@x1

D
i1
1 . . .D

is
s D

j1�1
1 D

j2
2 . . .D

jt
t

� � � � � jth
@g

@xt

Di1
1 . . .D

is
s D j1

1 . . .D
jt�1
t�1D

jt�1
t

ðmod Ui;þ���þisþj1þ���þji�2Þ

Lemma 17: Let E be a finite-dimensional estimation
algebra with maximal rank. Let k be the quadratic rank
of E. Then @!il=@xj ¼ @!jl=@xi for all kþ 1 � l � n
and 1 � i; j � k:

Proposition 1: If x2
kp�1þ1 þ � � � þ x2

kp
is a basic quadra-

tic form in E (cf. (41)) and @!jl=@xi ¼ 0 for all
kþ 1 � l � n, kp�1 þ 1 � i, j � kp and i 6¼ j, then
@!il=@xi ¼ 0 for all kp�1 þ 1 � i � kp.

Lemma 18: Let x2
kr�1þ1 þ � � � þ x2

kr
and x2

ks�1þ1 þ � � � þ x2
ks

be the basic forms in E (cf. (41)), where kr�1 <
kr � ks�1 < ks. Let �ij ¼

Pn
l¼kþ1ð@!jl=@xiÞDl. SupposePks

j¼ks�1þ1 �pj�qj ¼ 0 for all kr�1 þ 1 � p, q � kr, p 6¼ q.
Then @!jl=@xi ¼ 0 for all kþ 1 � l � n, kr�1 þ 1 �
i � kr and ks�1 þ 1 � j � ks.

Lemma 19: Let x2
kr�1þ1 þ � � � þ x2

kr
and x2

ks�1þ1 þ � � � þ x2
ks

be the basic quadratic forms in E (cf. (41)), where
kr�1 < kr � ks�1 < ks. Let �ij ¼

Pn
l¼kþ1ð@!jl=@xiÞDl.

Then
Pks

j¼ks�1þ1 �pj�qj ¼ 0 for all kr�1 þ 1 � p, q � kr,
p 6¼ q if and only if

Pks

j¼ks�1þ1 a
p
jl1

a
q
jl2
¼ 0 for all

kþ 1 � l1, l2 � n, kr�1 þ 1 � p, q � kr, p 6¼ q, where
a

p
jl1
¼ @!jl1=@xp.
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Lemma 20: Let x2
kr�1þ1 þ � � � þ x2

kr
and x2

ks�1þ1 þ � � � þ x2
ks

be the basic quadratic forms in E (cf. (41)), where kr�1 <
kr � ks�1 < ks. Assume that Ql ¼

Pkr

i¼kr�1þ1
Pks

j¼ks�1þ1
ai

jlxixj 2 E for all kþ 1 � l � n, where ai
jl ¼ @!jl=@xi.

Then
Pks

j¼ks�1þ1 a
p
jl1

a
q
jl2
¼ 0 for all kþ 1 � l1, l2 � n,

kr�1 þ 1 � p, q � kr.

Proposition 2: Let x2
kr�1þ1 þ � � � þ x2

kr
and x2

ks�1þ1þ
� � � þ x2

ks
be the basic quadratic forms in E (cf, (41)),

where kr�1 < kr � ks�1 < ks. Then @!jl=@xi ¼ 0 for all
kþ 1 � l � n, kr�1 þ 1 � i � kr and ks�1 þ 1 � j � ks.

Proposition 3: Let x2
kr�1þ1 þ � � � þ x2

kr
be a basic quad-

ratic form in E (cf. (41)). Then @!jl=@xi ¼ 0 for all
kþ 1 � l � n, kr�1 þ 1 � i, j � kr and i 6¼ j.

Theorem 25: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then O ¼ ð!ijÞ is a
matrix with constant coefficients.

Proof: Theorem 24, we only need to prove !ij are
constant functions 1 � i � k, kþ 1 � j � n. This
follows from Propositions 1–3. &

The following is the classification theorem of finite-
dimensional estimation algebra of maximal rank.

Theorem 26: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-
dimensional estimation algebra with maximal rank, then
f ¼ r�þ ð�1; . . . ; �nÞ where � is a smooth function and
�i, 1 � i � n, are affine functions and E is a real vector
space of dimension 2nþ 2 with basis given by 1,
x1; . . . ; xn, D1; . . . ;Dn and L0.

Proof: This follows from Theorems 13 and 25. &

8. Conclusion

In this paper we explain why the theory of estimation
algebras plays an important role in non-linear filtering.
We show how to use the Wei–Norman approach to
construct finite dimensional filters from finite dimen-
sional estimation algebras. We survey some results in
estimation algebras after 1984. We give a self-contained
proof of complete classification of finite-dimensional
estimation algebras of maximal rank in one place. The
proof given here is simpler than those proofs scattering
in several papers. This provides the readers with a com-
plete coherent view of the important topic on classifica-
tion of finite-dimensional estimation algebras.
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