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Complete classification of finite-dimensional estimation algebras of maximal rank

STEPHEN S.-T. YAU

The idea of using estimation algebras to construct finite-dimensional non-linear filters was first proposed by Brockett and
Clark, and Mitter independently. In his famous talk at the International Congress of Mathematics in 1983, Brockett
proposed to classify all finite-dimensional estimation algebras. In this paper we explain why the theory of estimation
algebras plays an important role in non-linear filtering. We show how to use the Wei-Norman approach to construct
finite-dimensional filters from finite-dimensional estimation algebras. We survey some results in estimation algebras after
1984. We give a self-contained proof of complete classification of finite-dimensional estimation algebras of maximal rank
in one place. The proof given here is simpler than those proofs scattered in several papers. This provides the readers with
a complete coherent view of the important topic of the classification of finite-dimensional estimation algebras.

Dedicated to Roger Brockett on the occasion of his
65th birthday and to Sanjoy Mitter on the occasion of
his 70th birthday.

1. Introduction

Filtering is concerned with making estimates of
quantities associated with a stochastic process {x,} on
the basis of information gleaned from a related process
{».:}. The process {x,} is called the signal or state pro-
cess and {y,} is the observation process. The goal is the
computation, for each ¢, of least square estimates of
functions of the signal x, given the observation history
{y;:0 <5<}, ie. the computation of conditional
expectations of the form E[¢(x,)/ys, 0 <s < 1] = ¢(x;)
or perhaps even the computation of the entire con-
ditional distributional of x,, given the observation his-
tory. In many (engineering) applications the data come
in sequentially and one does not really want a calculat-
ing procedure which needs all the data y,, 0 <s <71,
every time ¢ that it is desired to find ¢(x;); rather we
would like to have a procedure which uses a statistics m1,
which can be updated using only the new observations
Ve t < s < t' toits value m,, i.e.

my = a(m, t,t' {y;:t <s<t'})

and from which the desired conditional expectation can
be calculated directly, i.c.

¢(x;) = E[p(x))/y5,0 < 5 < 1] = b(t, 1, m,)
Finally to actually implement the filter it would be nice if
m, were a finite dimensional quantity. All this leads to
the (ideal) notion of a finite dimensional recursive filter.
By definition such a filter is a system
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P
d¢ = a(&)dr+ > Bi&)dyy
i=1

driven by the observation y;; y; is the ith component of
y, i=1,...,p; together with an output map

—

B(x,) = (&)

This was solved in the context of linear dynamics by
Kalman and Bucy (1960, 1961) and the resulting
‘Kalman filter’ has of course enjoyed immense success
in a wide variety of applications. Attempts were soon
made to generalize the results to systems with non-linear
dynamics. This is a substantially more difficult problem,
being in general infinite-dimensional, but nevertheless
equations describing the evolution of conditional distri-
butions were obtained by several authors in the mid-
sixties; for example, Bucy (1965), Duncan (1967),
Kushner (1964), Mortensen (1966), Shiryaev (1967),
Stratonovich (1968) and Wonham (1965). Wonham
(1965) studied the important finite-state case and evalu-
ated numerically performance of the optimal non-linear
filter for one example and found the performance to be
better than that of the simpler Wiener filter. Zakai
(1969) obtained these equations in substantially simpler
form using the so-called ‘reference probability’ method
(see Wong (1971)).

Ever since the technique of the Kalman—Bucy filter
was popularized, there has been an intense interest in
finding new classes of finite dimensional recursive filters.
In the 1960s and early 1970s, the basic approach to non-
linear filtering theory was via the ‘innovation methods’
originally proposed by Kailath (1968) and Frost and
Kailath (1971) and subsequently rigorously developed
by Fujisaki et al. (1972). As pointed out by Mitter
(1979), the difficulty with this approach is that the inno-
vation process is not, in general, explicitly computable
(except in the well-known Kalman—Bucy case). In the
late 1970s, Brockett and Clark (1980), Brockett (1981)
and Mitter (1979) proposed the idea of using estimation
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algebras to construct a finite-dimensional non-linear
filter. This Lie algebra approach has several merits.
First, it takes into account of geometrical aspects of
the situation. Second, it explains convincingly why it is
easy to find exact recursive filters for linear dynamical
systems while it is very difficult to filter something like
the cubic sensor described in the work of Hazewinkel
et al. (1998 a). The third, and perhaps most important,
merit of the Lie algebra approach is the following. As
long as the estimation algebra is finite dimensional, not
only can the finite dimensional recursive filter be con-
structed explicitly, but also the filter so constructed is
universal in the sense of Chaleyat-Maurel and Michel
(1984). Moreover, the number of sufficient statistics in
the Lie algebra method, which requires computing the
conditional probability density, is linear in n, where 7 is
the dimension of the state space. This is a consequence
of our classification result (see Corollary 2). Finally the
Lie algebraic methods are useful for classifying equiva-
lence of finite dimensional filters and for indicating when
no finite dimensional filters exist. In those cases where
no finite dimensional representations exist the available
methods must be redirected to the construction of con-
sistent and useful approximate filters (see Marcus (1984)
for an example).

In his talk at the International Congress of
Mathematics in 1983, Brockett proposed the problem
of classifying finite-dimensional estimation algebras.
Since then, the concept of estimation algebra has been
proven to be invaluable tool in the study of non-linear
filtering problems. Nevertheless, the structure and clas-
sification of finite-dimensional estimation algebras were
studied in detail only in the early 1990s by Tam et al.
(1990), Chiou and Yau (1994), Yau (1994), Chen and
Yau (1996, 1997), Chen et al. (1996, 1997), Wu et al.
(2002) and Yau and Hu (preprint). In Wong (1987), the
concept of Q was introduced, which is defined as the
matrix whose (i,/) element is w;; = (9f;/0x;) — (0f;/0x;),
where f is the drift term of the state evolution equation
(1). The programme of classifying finite dimensional
estimation algebras of maximal rank was begun in
1990 by Yau. There are four crucial steps here.

Step 1. In 1990, Yau first observed that Wong’s Q-
matrix plays an important role. As the first
crucial step, he classifies all finite dimensional
estimation algebras of maximal rank if Wong’s
matrix has entries in constant coefficients. His
result was announced in 1990 (Yau 1990) and
the detail of the proof was published in 1994
(Yau 1994). Chiou and Yau (1991) formally
introduced the concept of finite dimensional
estimation algebra of maximal rank and gave
classification when the state space dimension n

is at most 2. Their results were published in 1994
(Chen and Yau 1996).

Step 2. The second crucial step was due to Chen and
Yau in 1996 (Chen and Yau 1997). They devel-
oped quadratic structure theory for finite
dimensional estimation algebra. They laid
down all the ingredients which are needed to
give classification of finite dimensional estima-
tion algebras of maximal rank. In particular,
they introduced the notion of quadratic rank
k. In this way, the Wong’s Q-matrix is divided
into three parts: (1) (wy), 1 <17, j < k; (2) (wy)s
k+1<i, j<n and (3) (w;), 1<i<k,
k+1<j<n, or k+1<i<n 1<j<k.
Chen and Yau (1997) proved among many
other things that part (1) (w;), 1 <i, j <k, is
a matrix with constant coefficients.

Step 3. In their published paper, Chen et al. (1997)
proved the weak Hessian matrix non-
decomposition theorem for n < 4. As a result,
part (2), (w;), k+1 <14, j <n,is a matrix with
constant coefficients. In their paper, Wu et al.
(2002) proved the weak Hessian matrix non-
decomposition theorem for general n. Thus
part (2), (w,-j), k+1<i j<nis also a matrix
with constant coefficients for arbitrary n.

Step 4. This final step was also done in 1997. Yau and
Hu (preprint) used the full power of the quad-
ratic structure theory developed by Chen and
Yau (1997) to prove that the matrix (w;),
1<i<k, k+1<j<n and the matrix (w;),
k+1<i<n, 1 <j<k are with the constant
coefficients.

The above four steps complete the classification of
finite dimensional estimation algebras of maximal rank.
Therefore Yau and his coworkers have proved the
following theorem.

Theorem 1: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-
dimensional estimation algebra with maximal rank, then
f=Vo+ (... ,a,) where ¢ is a smooth function and
a;, 1 <i<n, are affine functions and E is a real vector
space of dimension 2n + 2 with basis given by 1,xy,...,x,,
Dy,...,D, and Ly where D; and Ly are defined in (5)
and (7).

Mitter conjectured a long time ago that all the func-
tions in finite dimensional estimation algebras are poly-
nomial of degree one. As an immediate consequence of
the above theorem, we have the following corollary.

Corollary 1 (Mitter conjecture): Suppose that E is the
finite-dimensional estimation algebra with maximal rank
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corresponding to the filter system (1). Then any function
in E is a polynomial of degree one.

The following corollary is an immediate consequence
of the above theorem and Theorem 7 of Yau (1994) (cf.
Theorem 14 below).

Corollary 2: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-dimen-
sional estimation algebra with maximal rank, then the
number of statistics in order to compute the conditional
density by Lie algebraic methods is n.

In §2, we recall some basic concepts and notations.
We prove two fundamental results: Ocone theorem
(Theorem 2) and nonexistence solution of over-
determined PDE (Theorem 3 and Corollary 3). We
explain why one wants to work with robust DMZ equa-
tion (3) rather than stochastic partial differential equa-
tion (2). We also recall the gauge transformation of
Mitter and Brockett’s estimation equivalence group in
non-linear filtering. In § 3, we survey some result devel-
oped after the beautiful survey article by Marcus (1984).
We recall Wong’s structure theorem of estimation alge-
bra in case the drift term f(x) is real analytic with some
growth conditions as well as a new class of finite dimen-
sional estimation algebra introduced by Wong. The con-
cept of finite dimensional exact estimation algebra is
introduced. The structure and classification of these
algebras are discussed. We recall Cohen de Lara’s struc-
ture theorem for those finite dimensional estimation
algebras of maximal rank with very strong assumption
on the structure of differential operators in the estima-
tion algebras. We also recall the general construction of
finite dimensional estimation algebra with non-maximal
rank by Rasoulian and Yau. The most recent beautiful
result by Chiou and Chiueh on classification of five-
dimensional estimation algebras is discussed. In §4, we
survey some results obtained in Yau (1994). In particu-
lar, the classification result is proved under the assump-
tion that Q-matrix has constant coefficients. We describe
in detail how to solve the time-varying parabolic partial
differential equation by Wie—Norman theory. We char-
acterize those drift f/(x) for which the Q-matrix has con-
stant coefficients. We use the Wei—-Norman approach to
construct a finite dimensional filter if the estimation
algebra is finite dimensional. In §5, we survey some
results obtained in Chen and Yau (1996). In particular,
quadratic structure theory is developed for finite dimen-
sional estimation algebra. The linear structure of Q-
matrix is proved and the constant structure of the
upper left corner of the Q-matrix is also proved. The
proof given here is different from those in Chen and
Yau (1996). In §6, we survey the result obtained in
Wu et al. (2002). We prove the constant structure of
the lower right corner of the Q-matrix. In §7, we survey

some results obtained in Yau and Hu (preprint). We
prove the constant structure of the lower left corner
and the upper right corner of the Q-matrix.

2. Some basic concepts, fundamental tools and
equivalent filtering problems

The filtering problem considered here is based on the
signal observation model

dx(r) = f(x(1)) dr = g(x(2)) dv(z),  x(0) = xo } 0
dy(t) = h(x(z))dt + dw(z), »(0)=0

Here x, v, y and w are respectively R", R”, R" and R"
valued processes, and v and w have components which
are independent, standard Brownian processes. We
assume that n = p; f, h are C* smooth; and g is an
orthogonal matrix. We refer to x(¢) as the state of the
system at time ¢ and to y(¢) as the observation at time .
Let p(¢, x) denote the conditional probability density
of the state given the observation {y(s): 0 <s < r}. Itis
well known (see, e.g. Davis and Marcus 1981) that
p(t,x) is given by normalizing o(¢,x), i.e.
p(t,x) =o(t,x)/ [o(t,x)dx, which  satisfies the
Duncan—Mortensen—Zakai (DMZ) equation

m

do(t,x) = Lyo(t,x)dx + ZL,-U(t, x)dy;(1)

(2)
o(0,x) = oy
where
1 n 62 n a n af 1 m
Li==Y — N f—— LN R
0 2;8;@ ;fl Ox; 4 0x; 2; !
and, for i=1,...,m, L; is the zero degree differential

operator of multiplication by 4;. The term o, is the
probability density of the initial point x;.

Equation (2) is a stochastic partial differential equa-
tion (with as probability space a space of paths {y}) and
as such a solution is in principle only defined apart from
a set of measure zero. On the other hand, actual obser-
vations will always consist of piecewise smooth sample
paths y(¢) and the class of all such path is of measure
zero. Thus there arises the question whether there exist a
version of (2) which can be interpreted pathwise for all
»(¢) and for which the solution of (2) for piecewise
smooth y(f) carry (approximate) information. This
means that in real applications, we are interested in con-
structing robust state estimators from observed sample
paths with some property of robustness. Davis (1980)
studied this problem and proposed some robust algor-
ithms. In our case, his basic idea reduces to defining a
new unnormalized density
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u(t,x) = exp <Z h,«<x>y,»<r>> o(t,%)
i=1

Davis reduced (2) to the following time-varying partial
differential equation, which is called the robust DMZ
equation

61/{ m
8t( ) LOM [ X +Zyz L07L] (Z,X)

i=1

% i yi(0)y;(O[[Lo, L, LJu(t, x) (3)

ij=—1

u(07 X) = UO(X)

which is a time-varying partial differential equation.
Here we have used the following notation.

Definition 1: If X and Y are differential operators,
the Lie bracket of X and Y, [X,Y], is defined by
[X,Y]¢p =X (Y¢) — Y(X¢) for any C* function ¢.

Recall that a real vector space F, with an operation
F xF — F denoted (x,y)—[x,y] (called the Lie
bracket of x and y), is called a Lie algebra if the follow-
ing axioms are satisfied:

(1) The Lie bracket operation is bilinear;
(i) [x,y] =0 for all x € F;
i) [x, 2]+, X))+ [z Xy =0 (x,p,z € F).

Definition 2: The estimation algebra E of a filtering
system (1) is defined as the Lie algebra generated by
{Lo,Li,...,Ly} denoted by {Lo,Li,...,Ln}; 4. E is
said to be an estimation algebra of maximal rank if]
for any 1 < i< n, there exists a constant ¢; such that
Xi+ ¢ 1sin E.

Definition 3: Wong’s matrix of a filtering system (1)
is a n x n matrix Q = (w;;) defined by

O

v 5‘xi 8)(,' ’

Vi<ij<n (4)

We remark that clearly Q is a skew symmatric matrix
with the cyclic conditions

8ij 8&]]”‘ Bwlj L.
L it/ 1< k<
Ox;  Ox;  Oxg 0 Visijksn
Define
0
D,=——f
1 axi ﬁ (5>

m

BN DWW ©)

Then

—%(iﬁ—n) (7)

For the convenience of the readers, we list the fol-
lowing elementary lemmas without proof. The lemmas
were proven in Chiou and Yau (1994) and Yau (1994).

Lemma 1:
(i) [XY,Z]=X[Y,Z]+[X,Z]Y where X, Y and
Z are differential operators
(ii) [gD;, h] = g——,where g, h are any function
defined on R"

Oh 10)
(iii) [gD;, hD;] ghw@-,»+g<—>Dj h( g)D

axi a‘C
©of
where w;; = [DiDj] — % _ a_i(/

(iv) gD}, ] —2g< ) < >
(v) [Di,hD)] = ( ) — 2hw;D

(5ol

(vi) [D}, Dj] = 4w;D;D; +2(8x )D +2<g°; >D

Y D+82 )
ax; 0x;0x; i

ik~ k) iy
J ale 7

8wjk awjk
(%), (25,
iy P wi
+h <a—x/(> Dj +h (aXian

oh oh
(viii) [gD;D;,hD;] = g (a—x]) DDy +¢g (8_x,> D;D
+ ghwk,-Di + ghwk[Dj

h Oy

0g
_h<8x )DD
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Lemma 2:
() (Lo, +¢]=D;; 1<j<n
(i) [Dixj + ¢l =05 1<i j<n
(iii) [0 D)) = ws, 1 <i j<n
. n lawji 1 877
(iv) Y; = [Lo, Dj| = ;(wﬁDﬁrza—x[) "oy

_1 n 52%‘1’ _l 6277
242 0x0x;  20x,0x;”

1 <jk<n

The following theorem due to Ocone (1980) is the
first result which allows us to understand what kind of
functions can appear in finite dimensional estimation
algebra.

Theorem 2 (Ocone): Let E be a finite-dimensional esti-
mation algebra. If a function £ is in E, then £ is a poly-
nomial of degree at most (2).

Proof: Let Ady, (&) = [Lo.&] and Adj & = [Lo, Ad}; ' (€)].
Then it is easy to see that

n 8k§
Ady,(€) = Z mDi’ ...Dy + (k—=1)th
i =1 O O
order differential operator

Since Ad,lfo (€) isin E for all k, the finite dimensionality of £

implies that 6k§/8x,~, . 0xy =0, for 1 <ip,....0 <nifk

is large enough. It follows that £ is a polynomial.
Observe that £ € E implies

S (2= e ge 8

i=1

The facts that £ is a polynomial and E is finite dimen-
sional imply £ is a polynomial of degree at most 2. []

We shall now prove a very useful theorem in PDE
which can be found in Yau (1994).

Theorem 3: Let F(xi,...,x,) be a C* function on R".
Suppose that there exists a path ¢: R—R" and 6 > 0
such that lim, . [|c(?)|| = oo and lim, . supg, () F = —0,
where Bs(c(t)) = {x € R": ||x — c(¢)|| < 6}. Then there
are no C* functions fi,fa,...,.fn on R" satisfying the
equation

~Ofi N~

Proof: Let ¢ € Ci° be any C* function with compact
support. Multiplying (8) with ¢? and integrating the
equation of R", we get

| wiv | vrn=| re

R R"

where f = (f,....f,) and divf=>"",(0f;/0x;). In

view of divergence theorem, we have

JR”F%/JZ = —MRH2¢V¢-f:J¢2(f.f)

> |vw|2—j w2<f~f>+Jw2<f-f>
R R

=—| vy’
J RH
Therefore we get
J Fy? +J IVy* =0 )
R’ R"

for all ¢ € Cy°. Take any non-zero C* function 6 with
compact support in the ball Bs(0) of radius 6. Define ¢
to be 6 followed by a translation by ¢(z). Observe that
Jr |V is independent of the translation selected. On
the other hand, [g. Fy?* — —0o as t— oo by our
assumptions. This leads to a contradiction to (9). [

Corollary 3: Let F(xy,...,x,) be a polynomial R".
Suppose that degree of F is odd. Then there are no C*

Sfunctions fi, ..., [, on R" satisfying the equation
n 8f‘ n ’
)i 2 _F
axi + Zfl

i=1 i=1

The estimation algebra can be useful in recognizing
equivalent filtering problems in the sense that E is invar-
iant under certain transformations of a filtering prob-
lem. First, note that if we perform a ‘change of scale’ on
the unnormalized conditioned density function, multi-
plying it by a non-negative function (x) taking
o — & = ¢(x)o, the DMZ equation becomes

dé (1, x) = p(x) Loy~ (x)6(1, X) dxx + Y Li6(1, x) dy (1)
i1

This transformation takes Ly—Loty~ and hy—iphap™' =

h;, 1 <i<m and the corresponding Lie algebras are

isomorphic. Specifically we have the following theorem.

Theorem 4: If ¢: R" — R is smooth and positive, then
the Lie algebra E generated by Ly, hy,...,h, and the
Lie algebra E generated by 1Lyp™", hy,..., h, are iso-
morphic with an isomorphism ¢: A — YAy~ for all
A€E.

The proof of Theorem 4 can be found for example in
Marcus (1984). The transformation in Theorem 4 is
called gauge transformation by Mitter (1978).
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A related phenomenon occurs when one performs a
smooth non-singular change of variables z = «(x) with
inverse x = (3(z). Then Brockett (1979) proved the fol-
lowing theorem.

Theorem 5: [f the estimation problem (1), (2) is trans-

formed by a smooth non-singular change of coordinates

z; = a(x;), so that {z;} has generator Ly, then the
mapping
¢: Ly — Lo, ¢:hp—hiof, 1<i<m

extends to an isomorphism of the Lie algebras
{Lo,hy,....hyu}, 4 and {Lo,,hy o B,... hy, 0 hB} 4.

Since the set of all transformations consisting of suc-
cessive applications of the two types of transformations
described in Theorems 4 and 5 forms a group under
composition, Brockett (1979) has called this the estima-
tion equivalence group and he has termed two estimation
problems equivalent if their estimation algebras can be
transformed into one another by elements of this group.
This group is also called the (stochastic) invariance
group by Hijab (1980).

3. Structures of finite-dimensional estimation algebras

The concept of the estimation algebra has played a
very important role in the recent studies of non-linear
filtering systems. The beautiful survey article by Marcus
(1984) has provided a detail account of many develop-
ments that involve the estimation algebra. In this sec-
tion, we shall survey some estimation algebra related
results developed after Marcus (1984). Wong (1987 a)
proved several theorems concerning the structure of
finite dimensional estimation algebras. Among other
things, these results together with his other results in
Wong (1987 b) shed new light on the classification prob-
lem of finite dimensional estimation algebras. The struc-
ture theorem of Wong (1987 a) can be stated as follows.

Theorem 6: Assume that h and f in (1) are real analy-
tic functions on R", and f satisfies the growth condition

for any i, all the first, second, and third order partial de-

rivatives of f; are bounded functions:

(1) If the degree of h in x is greater than 1, then the
estimation of (1) is infinite dimensional.

(2) If the estimation algebra of (1) is finite dimen-
sional, then it has no differential operator of
degree higher than two. It has a basis consisting
of one second degree differential operator, Ly, first
degree operator(s) of the form Y., a;D;+
S0 Bi(On/Ox;) where «;, B; are constants, and
zero degree differential operator(s) affine in x.

(3) All finite dimensional estimation algebras (1) are
solvable.

The growth condition in Theorem 6 guarantees that
(1) has a well-defined solution for all time. It also implies
that for all i, f;=0(]x|) at infinity. (We say
a(x) = O(b(x)) at infinity if there exist constants M
and N such that |a(x)| < M|b(x)| for |x| > N).

Wong (1987b) introduced a new class of solvable
finite dimensional estimation algebras. Using either the
Wei and Norman (1964) method or the function-space
integral approach of Benés (1981), one can derive from
these results new finite dimensional non-linear filters.
In our case, Wong’s (1987b) result can be stated as
follows.

Theorem 7: Let h; = H'x where H' = (Hy, ..., H;)
is a constant vector, 1 <i<mn. Let Q be the skew-
symmetric matrix defined in Definition 3 and
Jy = (0°n/0x;0x;) denote the Hessian of 1. Define
Vn = (n/dx1,...,0n/0x)" and D= (Di,...,D,)".
Let U denote the associative algebra of n by n matrix-
valued function of x over R generated by {Q,J,, 1},
where I stands for the identity matrix. If HI'T is a vec-
tor of constant functions for any i and any I' in U, then
the dimension of the estimation algebra of (1) is bounded
above by 2n+ m + 2.

Tam et al. (1990) introduced the concept of an exact
estimation algebra, i.e. estimation algebra with f = V¢
for some smooth function ¢ defined on R". A simple
algebraic necessary and sufficient condition was proved
for an exact estimation algebra to be finite-dimensional.
They also provided a detailed examination of the rela-
tionship between finite-dimensional exact estimation
algebras and finite-dimensional non-linear filters. More
specifically they proved the following structure
theorems.

Theorem 8: Let E be a finite-dimensional exact estima-
tion algebra. Then:

(1) hy,...,h, are polynomials of degree at most one.

(2) E has a basis consisting of one second-degree dif-
ferential operator Ly, first-degree differential
operator(s) with constant coefficients for the
0/0x; terms, and zero-degree differential opera-
tor(s) affine in x. Moreover, if X and Y are in
E with degree less than or equal to one, then
[X, Y] is a constant.

(3) E is a solvable Lie algebra.

Theorem 9: Suppose E is an exact estimation algebra.
Then E is finite-dimensional if and only if Vh,TJ% is a
constant for 1 <i<m and all j =0,1,..., where J, is
the Hessian matrix of 0.

Given the importance of the estimation algebra, a
natural question arises as to whether we can classify
all finite-dimensional exact estimation algebras up to
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Lie algebraic isomorphism. Theorems 8 and 9 provide a
starting point for solving this problem. Dong et al.
(1991) provided a more explicit structure theorem for
an important subclass of finite-dimensional exact esti-
mation algebras as follows.

Theorem 10: Suppose E is a finite-dimensional exact
estimation algebras of maximal rank. Then it is a real
vector space of dimension 2n + 2 with basis given by 1,
X1, X2,-.-,Xn, Di1,....D, and Ly. Moreover, n is a
polynomial of degree at most two and the quadratic part
of n— Y1, h? is positive semidefinite.

A next question that arises naturally is whether we
can classify all filtering systems with finite-dimensional
exact estimation algebras up to state-space diffeomorph-
ism. This is apparently a very difficult problem and
requires a careful study of partial differential equations
of type (8) with f; = d¢/0x;. The connection between
these types of equations and the non-linear filtering
problem was first noted by Benés (1981). The properties
of these equations, however, are not well-known. In
Dong et al. (1991), the authors provided some answers
in regard to the existence and uniqueness of the sol-
utions of these types of equations.

Cohen de Lara (1997) proved a structure theorem
under a severe assumption of estimation algebra as
follows.

Theorem 11: Suppose E is a finite-dimensional estima-
tion algebra of the form RLy&® F, where F is a finite-
dimensional Lie algebra consisting of linear partial
differential operators of order less than or equal to one.
If E is of maximal rank, then

(1) hyy... h, are polynomials of degree less than or
equal to one,

(2) there exists a skew-symmetric matrix K and a
smooth function ¢ such that

a. the drift f may be written as f(x) = Vo (x) + Kx

b. the function Vo + |V + Kx||* is quadratic.
Rasoulian and Yau (1997) studied finite-dimensional
estimation algebras of non-maximal rank. They gave
general construction of finite-dimensional estimation
algebras of non-maximal rank. Suppose that E is the

finite-dimensional estimation algebra of (1). Consider
the enlarged filter system

a5(1) = F(2(0)) di + §(2(0) di(0),  %(0) = xo
dy(t) = h(x(2)) dt + dw(z), y(0)=0

(10)

Here x= (xla'"axnaxn+la"'7xn+k)> f(x-(t)) =
Pty e X))y frn (X0 e e s X0)s St (Kt e v s Xk )y - o
Stk Xty -+ oy Xpei))s &(%(1)) = orthogonal matrix, h(X(¢)) =
h(xy,...,x,), and ¥ and w have components which are

independent, standard Brownian processes. Let E be the
estimation algebra associated to (10). Rasoulian and
Yau showed that E is isomorphic to E. Note that
although E is of maximal rank with respect to (1), E is
of non-maximal rank with respect to (10) in general.
They suspected that all finite dimensional estimation
algebras of non-maximal rank are essentially arising in
this way. In Yau and Rasoulian, they classified all esti-
mation algebras of dimension at most four. In a recent
preprint of Chiou and Chiueh (preprint), the authors
have done spectacular works on five-dimensional esti-
mation algebra. Specifically, they have proved the fol-
lowing theorem.

Theorem 12: The five-dimensional estimation algebra
is isomorphic to a Lie algebra having a basis given by
{l,xl,Dl, Y],L()} where

0 L 1 On
Di=+——fi, Yi=[LyD]=) wiDits
"= o /1, 1 = [Lo, D] i:1w11 ’+28x1’

Ly= % (EnjD? - n)
i=1

Moreover wy; = constant (# 0, for somej=2,...,n),n=
ax? + B(xa, ..oy x,)x1 +v(x2,. .., x,), where B(xq,...,X,)
and v (xp,...,x,) are C™ functions. In particular,
f1,- - [fn have to satisfy the equations
n af n
p) : +Zf;2 = (O[— l)x% +ﬂ(x25"'axn)xl
—1 9Xi o
+ ’Y(X2, s axn)
19p - .
Eax:clwl,«—i—Zwaﬁ, 122,...,7’1
i j=1

e
jq. — 2
= ey
n
22
Zwlji = C3ﬂ(3€2, . '7xn) + ¢y
=1 8XJ

where «, ¢1, ¢o, ¢3 and ¢4 are constants, and o > 1.

4. Estimation algebras of maximal rank with £2-matrix
in constant coefficients and Wei—-Norman approach
to construct finite dimensional filters

The application of the Lie algebra method to non-
linear filtering problems has led to a number of new
results concerning finite dimensional filters and to a dee-
per understanding of the structure of non-linear filtering
problems in general. In this section we shall show how
to construct finite dimensional filter by Lie algebra
method via Wei-Norman approach.
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We begin with the following general lemma observed
in Yau (1994)

Lemma 3: Let E be a finite dimensional estimation al-
gebra with maximal rank. Then E D {(1,x1,...,X,,
Dy,...,D,, Ly) and w; € E is a polynomial of degree 2

forall 1 <i, j<n.

Proof: This is an immediate consequence of Lemma
2 and Theorem 2. O

We now prove the following theorem (Yau 1994)
which plays a fundamental role in the classification of
finite-dimensional estimation algebras of maximal rank.

Theorem 13: Let E be a finite-dimensional estimation
algebra of (1) such that w; = (0f;/0x;) — (0fi/0x;) =
constant c;. If E is of maximal rank, then E is a real
vector space of dimension 2n+ 2 with basis given by
1,x1,...,Xy, D1,...,D, and Ly and n defined in (6) is a
polynomial of degree 2.

Proof: Since E is of maximal rank, there are con-
stants ¢;s such that x; +¢; is in E for i=1,...,n. In
view of Lemma 2, the following elements are in E

[Lo,x,»—l—C,-]:D,-EE (11)
[Dl-,x,» + Ci] = 611 cFE (12)
n 1 67]

[LOaDi]—;Ciij‘f'za—x[EE (13)

Equations (11) and (13) imply that dn/0x; is in E for all
1 < i < n. Ifnisa quadratic polynomial, then in view of
(11), (12) and (13), we see easily that E is a finite dimen-
sional real vector space spanned by 1,x,...,X,,
Dy,...,D, and L,. Therefore to finish the proof of
this theorem, we only need to prove that n is a poly-
nomial of degree at most 2.

To see that n is a quadratic polynomial, we first
observe that by Theorem 2, 9n/dx;, for all 1 <i<mn,
are polynomials of degree at most two because
On/0x; € E by (13). Tt follows that n is a polynomial
at most three. If the homogeneous degree 3 part of 7
is non-zero, then clearly there exists a straight line ¢(¢)
passing through the origin such that lim,_, ., n(c()) = —oc.
In particular

lim (n - ;h?) (c(1)) = —o0
Recall that
m n a ' n
==Ly
i=1 i=1 : i=1

In view of Corollary 3, we get a contradiction. Therefore
the homogeneous degree 3 part of n must be zero. [

Constructing a robust finite-dimensional filter to (1)
is equivalent to finding a smooth manifold M, complete
C™ vector fields p; on M, C™ function v on M x R",
and w;s on R™ such that u(¢, x) in (3) can be represented
in the form

dz k

0= Zui(Z(t))wi(y(t))a z(0)e M (14)

u(t, x) = v(z(1), 1, x) (15)

Following Chaleyat-Maurel and Michel (1984), we say
that system (1) has a robust universal finite-dimensional
filter if, for each initial probability density oy, there
exists a zo such that (14) and (15) hold if z(0) = z, and
1, w; are independent of oy,.

The method of Wei and Norman (1964) of using Lie
algebraic ideas to solve time-varying linear differential
equations is roughly as follows. Consider the equation

%X(z) = A()X(1) = ;ai(t)AiX(l) X(0) = X,

where X and A;s are n x n matrices and the g;s are
scalar-valued functions. Let By, ..., B, be a basis of the
Lie algebra generated by A4;,...,4,,. Then the Wei—
Norman theorem states that, locally in 7, X(¢) has a
representation of the form

X(1) = (B .eb[(f)B[Xo

where the b;s satisfy an ordinary differential equation of
the form

%:Ci(bl,...,b[), b,(O):O, ISZSI
dt

The functions ¢;, 1 <i<n in the above equation are
determined by the structure constants of the Lie algebra
(generated by the A;s) relative to the basis {B, ..., B;}.

The extension of Wei and Norman’s approach to the
non-linear filtering problem is much more complicated.
Instead of an ordinary differential equation, we have to
solve the robust DMZ equation, which is a time-varying
differential equation.

Suppose that the Wei—-Norman theory is applied to
solve partial differential equations of the form

ou
—=a A+ -+ a,A,u (16)
ot
where the A4;, 1 < u < m, are linear partial differential
operators in xy,...,x,, and the ¢;, 1 <i < m, are given

functions of time . The idea is to solve (16) in terms of
solutions of the simpler equations

ou _
or

which we write as

Aju, 1<i<m (17)
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u(t,x) = e®ip(x)

B =u(0,x)  (18)

We shall assume that the Lie algebra generated by the
operators Aj,...,A,, in (16) is finite dimensional. By
setting, if necessary, some of the «,;(f) equal to zero,
and by combining other a;(¢) in case of linear depen-
dence among the operators on the r.h.s. of (16), without
loss of generality, we can assume that we are dealing
with equation (16) with the additional property that

A5, 4] Zy,j Ay .ij=1,....m  (19)

for suitable real constants 'y,j, 1<ijk<m.
The central idea of Wei—Norman theory is now to
try for a solution of the form

u(t) — egl(f>A1 egz(f)Az . .egm([)Am,l/) (20)
where the g;, 1 < i < m, are still to be determined func-
tions of time. The next step is to insert (20) into (16), to
obtain

a — glAl eglAl . egmAmd} + eglAlg'zAzegZAZ . egmAm/lp + .
+efd egnmAanmAm egmAmw (21)

Now for i =2,...,n insert a term

e &1dicn  amsidr qgidr o8 din

just behind g;4; in the ith term of (21). Then use the
adjoint representation formula

L 4,8+

e'Be™ = B+ [4,B] + 5

(22)

and (19) repeatedly, and use the linear independence of
the A4,,...,A4,, to obtain a system of ordinary differen-
tial equations for the gy,..., g, (with initial conditions
g1(0)=0=g,(0)=---=g,(0)). These system of
ODEs are always solvable for small time. However
they may not be solvable for all time, meaning that finite
escape time phenomena may occur.

Fortunately, Theorem 13 above will allow us to
prove the following theorem which shows in particular
how to construct finite dimensional filters from finite-
dimensional estimation algebras. Since the estimation
algebra is solvable, the corresponding system of ODEs
are solvable for all 7 > 0. The detail can be found in Yau
(1994).

Theorem 14: Let E be an estimation algebra of (1)
satisfying (0f;/0x;) — (0fi/0x:) = c;, where the c;s are
constants for all 1 <i, j < n. Suppose that E is a finite
dimensional estimation algebra of maximal rank. Then
E has a basis of the form 1, xy,...,x,, Di,...,D,, and
Lg and

R EDWEDW
i=1

is a degree two polynomial

n n
E al;,xix/ + E b,~x,~ + d
ij=1 i=1

The robust DMZ equation (3) has a solution for all t > 0
of the form

U(t, X) — eT(t)ern(t)xu . e’l( )Yl eSII< )Dn ..

where T(t),r(t),...,r,(2), $1(2),-..,
ordinary differential equations

ds Z

e’ (1)D, etLO oo

s,(1) satisfies the

Jei+ > (1), 1<i<n (23)
k=1

dr~ l
E = H(a;+a;), 1<j<n (24)
i=1
dT 1 1 n n n
5305358030 )+ X0
i=1 j=1 i=1
(25)
n j
D se+ D0 sisi(o)
=2 =1 1<i<k<n
2 1
X Cij jk+2( ik+aki)
J=1
1 n m
+§ S/ Zyz y/ thkh/k

- Zsi(l)rj(l)(’j
i—=1

where hi(x) = 27:1 higx; + e, 1 <k <m, hy; and ey are
constants. In particular, a universal finite-dimensional
filter exists.

The following theorem in Yau (1994) gives a char-
acterization when the drift term f(x) satisfies the
conditions (9f;/0x;) — (0f;/0x;) = c;, where ¢; are
constants for all 1 <i,j <n.

Theorem 15: (9f;/0x;) — (0fi/0x;) = ¢ are constants
for all i and j if and only if

(fl,...,,1):(117...,1,1)—1—((%7...,%) (26)

ij

where [y, ...,
C*™ function.

1, are polynomials of degree one and v is a

Proof: It is clear that if (26) is satisfied, then
(0f;/0x;) — (0fi/0xj) = ¢;; are constants for all i and j.
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Conversely, suppose that (0f;/0x;) — (0f;/0x;) = ¢;

are constants for all 1 < i, j < n. Observe that Cj = —Cj.
Let b; = —1c¢;. Then we have

Let ll(x) = Z?:l bl]x] for 1 S i S n

- o I
d (Z;; dxj> => (8_)(] — a_j:,) dx; A dx;
=

i<j

i<j

d(i h dx./) =2 (b= by)dxndy  (29)
=

i<j

In view of (27), (28) and (29) we have

d(iﬁdxj - izjdxj) —0
Jj=1 Jj=1

Since every d-closed differential form on R” are d-exact,
there exists a C* function v such that

i]}dxj—il/dx/:dw:i%dxj n
= = = 0x;

5. Structures of quadratic forms and linear structure of
-matrix

We shall recall the theory of quadratic forms in esti-
mation algebras developed by Chan and Yau (1996). We
first introduce the notion of quadratic rank & for any
estimation algebra. This concept plays a fundamental
role in the theory of classification of finite dimensional
estimation algebras. We show that any quadratic poly-
nomial in the estimation algebra depends on the vari-
ables only up to quadratic rank & (cf. Lemma 4).

We show that there is a natural decomposition
{1,2,...,k} into disjoint union of S;, where S; is
described in (39) below. For each S;, we associate a
basic quadratic polynomial p; (cf. (41) below) in the
estimation algebra. We show some important properties
of quadratic polynomials in the estimation algebras in
terms of this decomposition (cf. Lemmas 5-7). These
properties of quadratic polynomials are used to prove
the constant structure of the k x k left upper corner of
the 2 matrix (cf. Lemma 10, Theorem 20 and Theorem
21). The proofs given are easier than those in Chen and
Yau (1996). Quadratic polynomial properties were also
used to prove the constant structure of the k x (n — k)
right upper corner of the Q matrix (cf. §7). In §5, we
also develop a new simple proof of linear structure of 2
matrix than those given in Chen and Yau (1996). The

proof given here depends on some special properties of
partial Euler operators developed in Theorems 16—18.

Let Q be the space of quadratic forms in » variables,
that is, real vector space spanned by x;x;, with
1<i<j<n Let X = (xl,xz,...,xn)T and let M,(R)
be the group of n x n matrices.

Definition 4: For any quadratic form p € Q, there ex-
ists a symmatric matrix 4 such that p(x) = XTAX.
The rank of the quadratic form p is denoted by r(p)
and is defined to be the rank of the matrix 4. A funda-
mental quadratic form of the estimation algebra FE is
an element py € EN Q with the greatest positive rank,
that is, r(po) > r(p) for any p € EN Q. The maximal
rank of quadratic forms in the estimation algebra E is
defined to be k = r(pg) and is called the quadratic rank
of E.

After an orthogonal transformation on x, p, can be
written as

pozclx%+c2x§+---+ckx,2m ¢ #0, 0<k<nm
(30)

From py(x), we can construct a sequence of quadratic
forms in ENQ as

qo(x) = po(x) (31)

k
.
qj(x) = [[LOan71]>q0] = Z4chi+ x% (32)
i=1
In view of the invertibility of the Vandermonde matrix,
we can assume that

poX)=xi+x3+ --+xtekE

Lemma 4: [If p is a quadratic form in the estimation
algebra E, then p is independent of x; for j >k, where
k = r(po). In other words, Op/0x; =0 for k+1 <j <n.

Proof: Suppose on the contrary that dp/dx; # 0 for
some j > k. Let 4 be a symmetric matrix such that
p=XTAX. A can be written as

Ay A
A= (33)
A A,

where A4; is a k X k symmetric matrix and A4 is an
(n—k) x (n—k) symmetric matrix. There is a k x k
orthogonal matrix S; and an (n — k) x (n — k) orthogo-
nal matrix S, such that S} 4,S, and S; 4,5, are diago-
nal matrices. So we can assume that 4, and A, are
diagonal matrices. dp/0x; # 0 for some j > k implies
A, #0 or A4 # 0. Since

)\I + UAI O'A2
r(Apg + op) = rank (34)
JAE oAy

if we choose A large enough, it is easy to see that
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r(Apg + op) > k (35)
This contradicts the greatest positive rank assumption
of Do- O

Let p; € ENQ be an element with least positive
rank, that is 0<r(p;) <r(q) for any non-zero
g € ENQ. After an orthogonal transform that fixes
X41,---,X, variables (i.e. an orthogonal transform on
X1, Xa,...,X;) and the Vandermonde matrix procedure
as above, we can assume

ki
pi=)_x€E, 1<k <k (36)

i1
Note that the orthogonal transform on xj,...,x;
leaves po invariant. In summary, we deduce that p, =

Zk:1 x? has the greatest positive rank and p, = Zfll x?

has the least positive rank. Define
Sy ={1,2,....kycS={1,2,....k}  (37)
and Q; =real vector space spanned by {x;x;: k; +1 <
i<j<k}CO.
If k| <k, then Q; N E is a non-trivial space, since

p—po € EUQ. In a similar procedure as above, there
exists

ky
P2 = ZX?GEle (38)
=k +1

with the least positive rank in £ N Q. By induction, we
construct a series of S;, Q; and p; such that

Si:{kifl—’—lw"?ki}? k():(), k,gk (39)
and

Q,; = real vector space spanned by
k;

pi = Z xf:fo, i>0 (41)

J=ki+1 JES;
and p; has the least positive rank in EN Q;_; for i > 0.
Lemma5: Ifpe ENQ, then
(0, ,0x,, 41,03 Xk,,0,...,0) = Ap; fori>0

Proof: In view of Lemma 1 and the fact that
[Lo, pi] € E, [Lo,po — pi] € E, we have

Y xD€E, )Y xDEE (42)

jes; jés=s;
Hence
> xDy,p| — [ > Dy | > xDyp
= jes—s; =

:2p(0,...,0,xk171+1,...,Xk’_,o,...,o) cFE

Because p; has the least positive rank for polynomials in
Xk, ,+1,- -+, Xg,» there is a A such that

PO, .0, X i1y Xp, 0,...,0) = Ap; O
Similarly, we also have the following lemma.
Lemma 6: ifpe ENQ, then
(X1, Xk 50,00, X, 1y, X)) €E for i >0

Proof: The lemma follows immediately from the
formula

p(xl7"'7xk,v,|707"'707xk,~+la"'7xk)
=pr- [ > XD > xDp
jes—S; JES;
_p(oa"'707xk,»,1+la"'7xk,»707"')0) ]

Lemma 7: Let p=3 s Djcs, 245X € E, ¥/here
a; €R and | <bh. Let X;= (Xt 41, .,th.) be
a (ki — ki_1)-vector. Under this notation, p can be writ-

ten as
T T 0 4 X,1
p=(X,, Xp,) T (43)
A 0 X,z

Then |S;,| = |S,| and A = bT, where b is a constant and T
is an orthogonal matrix

Proof: [Lo,p| =23 s, Yjes, @ii(xiDj+x;Di) € E. Hence

[[Lo,p),p] =4 Z Z i [X;Dj + X; Dy, X,,X)]

LmESy j,lES),

=4 Z Z il

L,meSy, jI€S),

X (XX S 4 XX 0 4 XX 04 + X X001

=4E E a;ja;x;x;

€Sy, jI€S),

+4 E E azjamjxixm

i,meS;, JES,

+4 Z Z ;XX

ieS,l /',[eS,2

+4 E E aijamixjxm

i,meS,1 JES,

Since [[Ly,p],p] € E, from Lemma 5, we have

Z Z Ajjpj | XiXm = )‘lpll (44)

L,meS; \JjES),

Z Z agdi | XX = )‘Zplz (45)

JIES;, \i€S,
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Equations (44) and (45) show that the rows of 4 are
mutually orthogonal and so are the columns. Since for
any matrix the row rank is equal to column rank, we
have |S, | = |S,|. As the column vectors have the same
Euclidean length, it follows that A is a constant multiple
of an orthogonal matrix. O

If E is a finite dimensional estimation algebra with

maximal rank, then Lemma 3 says that w; € E'is a poly-

nomlal of degree at most 2 for all I <4, j < n. Let w;; ),

w;i ) be the homogeneous part of degree 2, and 1 of wj
respectively. Then we have the following lemma.

Lemma 8: Suppose that E is a finite dimensional esti-
mation algebra of maximal rank. Then

(1) wf»j2> depends only on xy,...,x; fori<korj<k

(if) wﬁ?:o fork+1<i j<n

g jl li T
(111) axl 9X,~ ) : fOV SL,Esn

ol ol g
: ij Jjl li ..
+ + =0 1 < [ <
(iv) 0x; Ox; ox; Jor L<ijl<n

Proof: Since E is finite dimensional of maximal rank
and wj; € E, it follows that w >€ E. Hence wsz) de-
pends only on xi,...,x; by Lemma 4. The cyclic con-
ditions of part (iii) and part (iv) of this Lemma follow
from the corresponding cyclic conditions

&u, 6Xi Ox

J

=0 (46)

Let k+ 1<i, j<n, and 1<[<k. Then (iii) gives
P /ox;=0. It follows that wj’ =0 for k+1<i,
J S n. O
The following three theorems are due to Yau and
Rasoulian (1999)

Theorem 16: Let E; = Z/ , X;(0/0x;) be a Euler
operator in Xxi,...,x; variables. Suppose that m is an
integer and € is a C* function on R" such that
Ex (&) + m& is a polynomial of degree r, r a positive inte-
ger, in Xy,...,xy variables with coefficients in C*> func-
tions of Xii1,-..,Xx, variables. If r+m >0, then £ is a
polynomial of degree r in xi,...,x; variables with co-
efficients in C* functions of Xii1,...,Xy. If r+m <0,
then & is a polynomial of degree at most —m in

X1, ..., Xk variables with coefficients in C* functions of

Xi+1y -+« 5 Xn-

Proof: First let r +m > 0, thatis, r +m + 1 > 0. Also
let D= (9/0x))™" - (8/0x)™, aj+ - +ar=r+1
be a differential operator of order r+ 1. Since
Ei (&) + mE is a polynomial of degree r in xy,xs,..., X%

variables with coefficients in C*-functions of

Xki1,---,X, variables, we have D[E(¢) +m&] =0. On
the other hand, in view of
0 0 0
_— = — <i<
8xi Ek Ek 8xi + axj for 1 SUs k

it is easy to see by induction that

) a o X1 0 o
DIE,(§) + m&] = (a_x]> (M) (630)

x [Ex(§) +m¢]

o))
(R e m(2)]

:E]((D€)+(C¥1 ++ak+m)D§

So we have E; (D) + (r+ 1 + m)DE = 0. Observe that
EL1DE = (-4 1 m)f 1 DE + B (Dg)

= X{TE(DE) + (r+ 1+ m)DE =0
Denote ¢ = x| D¢. Because r + 1 +m > 0, we have

¢(x17"'7xlmxk+lv'~7xn) _¢(€X1,...,ka,xk+1,...,xn)

J d¢ (txy, ..

qo Xy Xj 1y -+ vy Xpy) A

1 8¢
= X1 Xy o Xy Xfea gy e ooy Xpy) 00
[T SIS

€

Xy X gy - - ,x,,)] dt

11 1
:J 7(Ek¢)(tx1,...,txk,xkﬂ,...,x,,)dt:J gdlzo

for ¢ > 0. Now let ¢ — 0. Then we get ¢(xy,...,x,
X1y -+, %,) = 0. This implies that

6 [e%) 8 oy
- ()" () e

forall o+ ---+a,=r+1and a; >0,...,040 > 0. In
other words £ is a polynomial of degree at most r in
X1,...,X; variables with coefficients in C*-functions
of X441,...,x, variables. Now by two methods we can
prove that £ is a polynomial of degree r. One method is
by induction on r and using the same method as above;
the other method is by assumption that

§ = Z aj, i, (xk+17 LR xn)xlll s XZ, s<r

0<iy++ip <s
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is a polynomial of degree s, and then using the definition
of E,(§) + m¢ and the hypothesis that the last one is a
degree r polynomial. We provide the proof using the
second method. Let £ by a polynomial of degree s

Ek(g) +m€: Ek( Z ai(xkﬂa'"7)(:n)xiI "'xik> +m

0<[i|<s

i i
X E Ai(Xpi1y ooy X)X L X
0<|il<s

= Z \i|a,»(xk+1,...,xn)x’i‘...xZ’—Fm

0<|i|<s
X Z a[(xkﬂ,...,x,,)xil‘ xZ
0<li|<s

= Z (|l| + m)ai(karla U 7xn>xlll . .XZ(
0<|i|<s
+ maO(xk+la ) 7xn)

= Z bi(Xpats--- ,xn)x’i1 .. .xZ
0<i<r

where i= (i,...,i) and |ii=i+---+i and

bi(Xpy1s---,X,) 18 C*. By looking at the coefficients
on both sides we see that s = r and (|i| + m)a; = b; for
all 7, 0 < |i| <r. That is, £ is a polynomial of degree r in
Xi,...,X; variables with coefficients being C* functions
in Xiegls - oo s Xp-

Now let » +m < 0. In this case m is a negative inte-
ger. Let m = —m', m' > 0. Then E(&) +mé = E(&)—
m'¢ = P, where P, is a polynomial of degree r in

Xi,...,X; variables with coefficients in C* functions
of xj41,...,x,. We have
0 ; 0
E — =—2P. =P, 1<i <k
8xil [ k(g) m f] 336,'1 [ r—1 SIS
23 / 23
= E — -1 =P,
()~ == P

where P,_; is a polynomial of degree r — 1. Using the
same technique, we get

9 23 / 9 9 .
. — — = =P, <i <
8.’(,'2 |:E1\ <8x,-2> (’n 1) 8)([] 8x,- Py P, 1< h= k

2

¢ / ¢
= L (69{,-1 8x,-z> —m=2) ox; 0x;, Fra

where P,_, is a polynomial of degree r — 2. After m’ — 1
times, we have

8m/7lf 8m’71€
E/C (8)(1'] Ce 8xl‘m/]> - 8x,—1 Ce 8)(1' B P,~,(m/71>7

m' 1

1<i, <k

where P,_(,_y) is a polynomial of degree 0 in xy,. .., x;
variables, i.e. a C*-function in x;,...,X,.
Once more, we have

9 8’",715 8/11'715
E — =0 1<i, <k
8)6,-1”, |: k (ax,-l e (9)6,4’,1,]) ax,-l e 8x,4m/7] =t =

o'
= Ek <ax,-l ...axim,> =0

Now let € > 0. By the same technique we have

am'g
v (X1s e ey Xy X1y -+« 5 X))
13 N lm/
"¢
—W(Oﬁ,-~-,6Xk7xk+17---7xm)
i i

]d am
:J dr [ﬁ(”ﬁw--,txk7xk+1v~~-vxn) dr

byt

Lyt

1 '
I o'
=| —E | m————(tx{,..., D dr
Lt k[c{)xil...ax (861 065 Xt ’xnl

1
:J 9dt:0

€

Let € — 0. Then

_ o
Ox; ...0x

Lyt

(X175 ey Xy X1y -+ 5 X))

e
N Ox; ...0x

Iyt

(0,..,0, X341y -5 X,)

The right-hand side is a function of x;,y,...,x,. This
means that 9" *15/6xl~l ...0x; , is a linear function of
Xi,...,X; with coefficients in C*-functions of
Xjy1y - -+, X, Now by induction, we conclude that ¢ is
a polynomial of degree at most m' in x, ..., x; variables
with coefficients in C*-functions of x;_,. .., x,.

O

Theorem 17:  Let Ej = x1(8/0x;) + - - - + xx(8/0xy) be
an Euler operator in xy,...,x; variables. Suppose that
m is a positive constant and & is a C*™ function on R"
such that Ep(§) +mé is a polynomial of degree r in
X1,-..,Xy, variables. Then £ is a polynomial of degree r
in xy,...,x, variables.

Proof: By Theorem 16, £ = ZO§|a\§r Ao (Xpes1y - ooy X)X
.. xg%, where o= (ap,...,a;) and |of =a;+ -+ o
and a,(Xgi1,. .., X,) 18 C.

Hence we have
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Ek(g) + m£ = z |a‘a0¢(xk+la s 7xn)x(llk e 'xzk

0<|ar|<r
o e
+m E Ao (Xpi1y -y X)X X
0<|a|<r
— Qg Qe
= E (laf +m)ag, (X155 X)X XY
0<|a|<r
+ maO(karlv cee 7xn)
— ) Qe
= g Do Xps1s -y X)X LX)
0<|ar|<r
where p,(Xji1,...,X,)s are polynomials in xi ,...,x,
(because Ej (&) +mé is a polynomial in xq,...,x,, SO
we may assume that it is a polynomial in xq,...,x;
with coefficients being polynomials in Xx;,q,...,X,).

Now, looking at both sides, we conclude that
(la| + m)a, = p,, for all a = (ay,..., o), 0 < |a| <73
in other words all a,, 0 < || < r are polynomials and
also ay = (1/m)p, is a polynomial, and hence ¢ is a poly-
nomial. O

Remark: Theorem 17 is false if m = 0. It is possible
that Er(§) is a polynomial of degree r in xi,...,x,
variables, but ¢ is not a degree r polynomial in
X1,...,X, variables. For example, we can simply take &
to be any degree r polynomial in xi,...,x, variables
plus a transcendental function in x4, ..., X, variables.

Theorem 18: Let

R A
k_“la)Cl /caxk

be an Euler operator in xy, ..., x; variables. Suppose that &
is a C* function on R" such that E(£) is a polynomial of
degree r in xy, ..., x, variables. Then £ = P.(xy,...,x,)+

a(Xgi1y.--,%x,) where P.(xy,...,x,) is a polynomial of
degree r and a(xpyq,...,x,) is a C> function in
R P

Proof: In view of . Theorem 16, = > <

o .
Ao (X155 X0) X7 . XY, where o= (ov,..., ) and
ol = a1+ -+ o and an(agir,...,x,) is C®. Then
— (o3| (73 : 1

E (&) = qua\gr \a|aa(xk+.1, co X)X XS which is
a polynomial of degree r in xy,...,x, variables. There-
fore au(Xk41,...,x,) for |a| > 1, are polynomials.
Theorem 18 follows immediately. O

Lemma 9: Let E be a finite-dimensional estimation
algebra of maximal rank. Let k be the quadratic rank of
E. For 1<i, j<n, wj and o; = Zle Xjw; € E are
polynomials of degree 2 in xy,...,x, variables. Further-
more, we have the following relationships:

Yau

00[,' (9a/

(i) Ep(wy) + 2wy = ox, o’ V1 <ijek;
. Oa; O . )
(ii) Ek(w,-,-)—kwi,-:a—x;—a—xi, Vi<i<k, k+1<j<n
C Ba,
da; Doy

(iv) Ex(wy) = Vk+1<ij<n

ax;

j o Ox’
Proof: By Lemma 2, we have wj € E and o; =
21[Lo, Dy}, po] € E where py is defined by (11). Theorem
2 implies that w; and o; are polynomials of degree 2
in xp,...,x; variables. The relationships (i)—(iv) follow
immediately from the definition of Ej(w;) and «;. For
example, we give the proof of (i) here

Oa; 3 0(x;wy) 5 Owy
o Ly

. Bas k dwy  Ow;
g T - gL Uil
ox;  0x; 2+ ) <8xi 8xj)

] =1

k
aLU‘[ &ul«
:ZW'i+ E X[( / —|——1)
/ =1 3x, ﬁxj

ko Oy
J_
= 2wji + ?:1: %, 2wj; + E(wji)

Corollary 4: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

Pl(xl>"'>x11) ‘ Pl(xl>"'>xn)
Q= (wy) =
Pl(x17"'7xn) ’ Pl(xh'"7xn)+P2(xk+l7"'7xn)

i.e. wys are polynomials of degree 1 in xy, ..., x, variables
Jor 1 <i<k or1<j<k and wy are polynomials of
degree 1 in xy,. .., x, variables plus polynomials of degree

2in Xpyq,-..,x, variables for k+1 < i, j < n.

Proof: This follows from Theorems 17 and 18 and
Lemma 9 O

Theorem 19: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

Pl(x17"‘7xk) ‘ Pl(xla'~~7xk)

Pl(xla"'axk) ‘ Pl(karlv"'axn)

ie.

() wy; is a polynomial of degree 1 in xy,...,x; for
1<i<kor1<j<k
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(i) wy is a polynomial degree 1 in Xiii,...,x, for
k+1<ijen.
Proof: Since «; = Zﬁ:l Xjw; s a quadratic poly-
nomial in F by Lemma 9, it cannot depend on
Xka1,---,X, variables for 1<i<n according to
Lemma 4, (i) follows immediately. If k+1<i, j <mn,
by using the cyclic relationship

Oy Owy | Oy

ox;  Ox;  Ox; =0

we have dw;;/0x; = 0 for 1 </ < k. This means that w;
are independent of xy,...,x;, for k+1 < i, j <n. Now
wij = P1(Xests -0 %) F P2 Xpsrs 0005 X,) for k41 <1,
J <n. Since w;;" € E as a quadratic polynomial in £

cannot depend on x;,,...,x, variables for k+1 <1,
j<n according to Theorem 2, it follows that
pZ(x/ﬁLl?"‘axn):o' O

Lemma 10: Suppose that E is a finite-dimensional esti-
mation algebra of maximal rank. With the same nota-
tion as in (39), if

Doy =0 (47)
[IS\Y]
where ;s are homogeneous polynomials of degree 2 in E,
then o; =0 for all i € S,.

Proof: Let X;= (k,_ 11Xk 42,--- ,xk,.)T and X =
X1, X%, ... ,xn)T. Without loss of generality, we assume
that / = 1. Let XT = (X], XT) where X; is the comple-
menting variable of X; in X. Write

Oé,'(X) = ai(XhO) +ai(0ayl)
+ [ai - Oé,'(Xl,O) - 0(,-(0,/\71)] (48)

Hence (47) is still true if we replace «; in (47) by one of
the three terms on the right-hand side of (48). We see
immediately that

a;(0,X;) =0 Vie S (49)
By Lemma 5, we have
o;(X1,0) = Aipy (50)
So the corresponding equation of (47) for a;(X7,0) gives
in)‘ipl =0 (51)
ics

It follows that A; = 0, that is,
a;(X1,0) =0 Vi e S (52)

Finally, oy — a;(X,,0) — a;(0, X;) is a sum of 2X{ R, X,
for [ > 2 and R; is a constant multiple of an orthogonal
matrix. Therefore the corresponding equation of (47) for
a; — a;(X1,0) — (0, X,) gives

ZX]T <Z 2xiR"> X = foszlTRﬂXl =0 (53)

>2 ies, i€s, 1>2

This implies

XF<§:2XJQ>«_O vi>2 (54)

ics,
Fix iy € S, and let x;, = 1 and x; = 0 for i # ;. Then
(54) becomes

0,...,0,1,0,...,00R,; =0 W[ >2  (55)

Since R;; is a constant multiple of an orthogonal matrix,
we see that R;; =0, V/ > 2. This is true for all i, € S.
Thus

a; — a;(X1,0) — ;(0,X,) =0 (56)
So we have proved «; = 0 by (49), (52) and (56) O

Theorem 20: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the same no-
tation as in (39), if p#q and i € S, j € S, then wy is
a constant.

Proof: Recall that from (42), we have s, x;D; and
> jes, XiDj in E. Hence

sz"xfwii = — Zx,—D,-, ijDj cE (57)

i€S, jes, i€S, jes,

In view of Theorems 2 and 19, equation (57) implies

YIPINSRIE SN DIRe]

icS, jes, ics,  \Jjes,

:ij Zx,;wl(-jn =0 (58)

JES, €S,

Hence Wz(‘/]) depends only on x,,, where m € S, U S, for
i€s, andj € S, Since E is of maximal rank, D; € E for
any j. In particular, [Ziesp x;D;,D;] € E for j € S,, and
[ZieSq x;D;, D] € E for i € S,. In view of (iii) of Lemma
1, we have
Zx,-w,(jl) €Lk forjes,
ics,

and Zx/wg;) €E foricsS, (39)

j€s,

Equations (58), (59) and Lemma 10 simply

inngl) =0 forjes,
i€,
and ijwy) =0 foriesS, (60)

JES,
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The first equation of (60) says that, fori € S, and j € S,
) does not depend on the variable x,, for meS,. The
second equation of (60) says that, for i € S, and] €S,
does not depend on the variable x,, for m e S
Hence wm 0 D

Theorem 21: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the same
notation as in (39), if i, j € Sy, then wy is a constant.

Proof: Without loss of generality, we shall assume
that /=1. For 1 <i<ky, a; = Zlexjwy is in E by
Lemma 9. In view of Theorem 20, we have

ki
o = XJWU EE = Oéi(Xk,...,XklO,...,O)
J=1
ky
:Z.ijl'/‘(xl,...,Xk],o,...,o)EE (61)
J=1
Since wj; is a degree one polynomial in xy,...,x; for

1 <1i,j <k, wecan write

k
D= ;Al(ivj)xl (62)

Equations (61) and (62) imply Z,/ L\ x5x4,(i,j) € E for
1<i j<k1 By Lemma 35, Z,/ VXA (i) = A
Zk ' x7. This implies

and

A1 (6, 1) = Ay(0,2) = - - = Ay, (i, ky) (64)

We claim that all the terms in (64) are also zero. Choose /
sothat 1 </ <k and/#i Then 4,(i,/) = —A,(1,i) =0
by (63). In view of (64) and (63), we have

A(i,j)=0 for 1 <1 ij<k (65)

Observe that A,;(i,j) = &ufjl)/ax,. Therefore (iv) of
Lemma 8 implies
A)(i,j) + A;(1,0) + 4,(j,1) =0

for1 <i,j<k;, ki+1<I<k

Since 4;(1,i) = o\’ /Ox; = 0 and A4(j, 1)
by Theorem 20, we have

= 3wj(ll>/8xi =0

Therefore we have shown that w,(]) =0 for 1<,

Jj<ky. O

Theorem 22: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then

Constants ’ Pi(xy,. .., xg)

Pl(xl,...,xk) ’ Pl(xkﬂ,...,xn)

() wjj is a constant for 1 <1i,j <k,

(i) wy is a polynomial of degree one in xy, ..., x; for
1<i<k, k+1<j<n or k+1<i<n,
1<j<k

(i) wy is a polynomial of degree one in Xiyy,...,x,

fork+1<i,j<n.

Proof: This is an immediate consequence of Theorems
19, 20 and 21. O

6. Hessian matrix non-decomposition theorem

In this section, we are going to prove that wj; is a
constant for k+ 1 <, j<n. We shall see that this
statement follows from the weak Hessian matrix non-
decomposition theorem which is a general theorem and
has nothing to do with estimation algebras. The weak
Hessian matrix non-decomposition theorem was first
proved by Wu et al. (2002). In this section, we shall
prove the Hessian matrix non-decomposition theorem,
which is a stronger result than weak Hessian matrix
non-decomposition theorem.

Lemma 11: Suppose that E is a finite dimensional
estimation algebra of maximal rank. Then

2
ZM, T
l

(i1) n is a polynomial of degree 4.

Proof: (i) follows from (vi) of Lemma 2 and Theorem
19. From (i) and Theorem 19 9%1/0x;0x; is a degree
two polynomial for all 1 <i, j <m. Therefore n is a
polynomial of degree 4.

Lemma 12: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Let k be the quad-
ratic rank. Let 1= na(Xks1,...,X,)+ polynomial of
degree 3 in Xyy1,...,x, variables with coefficients degree
at most 4 polynomials in xi,...,x; variables. Then for
any k+1<i,j<n

zn: w(l)w(l> = 1—82774
i Wil =
i it 2 9x;0x;

where 1y = n4(Xpq1,---,X,) IS a homogeneous poly-
nomials of degree 4 in xi,...,Xx, variables.

Proof: From Theorem 22 and Lemma 11, we know
that fork+1<i,j<n

S L O
i1~ Wit
Pt S 20x;0x;
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is the homogeneous polynomial of degree 2 part of

JI%il T R ao
=1 28X]ax,

in x4,1,...,X, variables. The result follows immediately
from Lemma 4. O

The following notations and Lemma 13 were used
and observed by Chen et al. (1997). Define

Ar= (W), k+1<i I <nan (n—k)

x (n — k) anti-symmetric matrix

= 2 A
J=k+1
where 4; = (4;(p,q)), k+1<p, ¢<n, are (n—k)x
(n — k) anti-symmetric matrix with constant coefficients.
The anti-symmetry of A and 4; follows directly from
that of Q.

Lemma 13: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. With the notations
as above, then

(i) AAT = 11"1(774) where  H(n) = (‘92774/5961'3)9))
k+1<i, j<mn, is the Hessian matrix of n, =
Na(Xpt1s oy Xp)-

(i) A;(j, 1) + A)(i,j) + A;(1,i) =0

Proof: (i) follows from Lemma 12 while (ii) is a con-
sequence of Lemma 8 (iv). O

The following weak Hessian matrix non-decomposi-
tion theorem is a general mathematical theorem which
has independent interest besides non-linear filtering
theory. For a (n—k) x (n— k) matrix with n — k less
than or equal to 4, the theorem was proved in Chen et
al. (1997).

Theorem 23: Let A=37",. Apx; be an (n—k)x
(n—k) anti-symmetric matrix where A; = (A4;(p,q)),
k+1<p, g<n,is an anti-symmetric matrix with con-

stant coefficients. Suppose
Ai(J, 1)+ A(i,)) + A;(1,i) =0 forall k+1<1ijl<n

Let ng = n4(Xpy1,---,X,) be a homogeneouv polynomial

of degree 4 in X y,...,x,. Let H(ny) = (8 N4/0x; 8x)

k + 1 <, j <n, be the Hessian matrix of 1. If AAT =
H(ny), then A =0, ie. A;=0 for all k+1<j<n.

The weak Hessian matrix non-decomposition
theorem is a consequence of the following Hessian
matrix non-decomposition theorem.

Theorem 24: Let n4(xi,...,X,) be a homogeneous
polynomial of degree 4 in xi,...,x, over R. Let

H(my) = (82n4/8x,0x,~)1g’j§n be the Hessian matrix of

na. Then H(ns) cannot be decomposed as A(x)A(x)",
where A(x) = (By)<; j<n is an anti-symmetric matrix

with (3 linear funcllons in x unless ny and A are trivial,
ie. H(ng)(x) = A(x)A(x)" implies A = 0 and ng = 0.

Let us write A(x) = A;x; + A>x, + - - - + A,x,, where
A; is a n X n antisymmetric matrix with real constant
coefficients. Then the equation H(n,)(x) = A(x)A(x)"
will give us a lot of quadratic equations in A,(i,j)
((i,)) entry of the matrix 4,.), 1 <i,j,I < n. Although
it is possible to prove that these quadratic equations can
have only trivial solution for n <4 (see Chen et al.
(1997), pp. 1137-1138), it has been a challenging prob-
lem to algebraic geometors whether this system of quad-
ratic equations in 4,(i,j) can only admit trivial solution
over R even for n = 5.

To prove Theorem 24, we need two lemmas.

Lemma 14: Let n4(x1,...,x,) be a homogeneous poly-
nomial of degree 4 in xy,...,x, over R. Let H(ny) =
(8°14/0xi0X;)\<; j<, be the Hessian matrix of 14. Let
AWX) = (Bi)i<i, jan = Arx1 + -+ AuXy where  Aj =
(A1(i,))1<ij<n are nxn antisymmetric matrices with
coefficient in R. Suppose that H(ng)(x) = A(x)A(x)".
Then

n

SUAGE = 34,6 0F
=1

=1

22[A D+ 4G DAGD] - (67)

Proof: Observe that H (774)(x) = A(x)A(x)" implies

8v 8)6 Zﬂllﬁﬂ (68)

Since

O (30 _ & (#0\_ & (o
Oxz\0x? ) ox?\Ox7 )  Ox;0x; \ Ox;0x;
we have
82 n 5
2 (55)-
ox? (; /

Notice that 3; is linear in xy, ...,
leads to

N AN A
26 2 5)

(084981 95408
- /z_l:(axi 0x; + Ox; Ox; (69)

32 n ) 82 n
o (; m) = o, (lzlj ﬂﬂﬂﬂ>

x, for 1 <i,j < n. This

As A;(j,1) = 0B;/0x;, we see that (67) is equivalent to
(69) O
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Lemma 15: Let n(x) be a C* function of R". Let
7(x) =n(Rx) where R is a nxn matrix. Then
H(i)(x) = RTH () (Rx)R.

Proof: Let y = Rx where r = (r;) is a n x n matrix.
Then by chain rule, we have

Therefore H(7)(x) = R"H(n)(Rx)R. O

We are now ready to prove our main theorem by
induction on n. For n = 1, the theorem is trivially true.
For n = 2, by the antisymmetry of the matrice of 4; and
A,, we only need to show that 4,(2,1) =0 = 4,(1,2).
But this follows immediately from (67) with (i,j) =
(1,2).

We shall assume by induction hypothesis that our
main theorem is true for n — 1. For any n x n orthogo-
nal matrix R, we have

AX)AX)" =H(n)(x)
= R"A(Rx)RR"A(Rx)"R=R"H(n)(Rx)R
= A(x)A(x)" = H(7)(x) by Lemma 12 (70)
where
7(x) = n(Rx) (71)
A(x) = RTA(Rx)R
= R[4, (r X1 + riaxa + -+ FipXp) + -
+ A, (raxy +rpxs + o 4 xR
= A\x; + Ayxy + -+ Ayx, (72)
where
A= R'A\Rry;+ R"AyRry + -+ + R" 4, Rr,
1<i<n (73)
Aj = -4, (74)

If (4:(1,2),4,(1,3),...,4,(1,n)) #0, then we shall
take

Yau

0

where Ris a (n— 1) x (n — 1) orthogonal matrix such that

(4,(1,2), 4,(1,3),...,4,(1,n)) - R = (4,0,...,0), a#0

Then
0 A1(172)A1(17n)
~ A1(271)
A, =R'4,R=R"
B,
Al(nvl)

0 a 0 0

—d
R=1] 0 R'B\R

0

ie. (4:(1,2),4,(1,3),...,4,(1,n)) = (a,0,...,0). By
applying Lemma 11 to (70), we have

SO QNP =3 (LD =SS (A (LD A (2.0
=1

=1 =1

+4,(2,1)45(1,1)]

:%EZANLDAALO
I=1

<SSP+ P
=1 =1
D NCN S g F A
=1 =1
3¢ 2 IS 2
AN <72 [A4i(2.0)]
=1 =1
=S AP =0
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This contradicts the fact that A,(1,2)=a#0.
1<iI<n.
Now we apply Lemma 11 with i=1, 2 <j <n. Then

Therefore we conclude that A,(1,/) =0

we get

1
SZ: 4z 4Z

Z[A G, D)

where B, is a (n — 1) x (n — 1) antisymmetric matrix.

Let x = (Xz, ce ,Xn) and A(X) = BzXz —+ -+ B[X].
Then
0 0 0
0
A(x) = B
A(x)
0
Since
0 0 0
T 0
H(ny) = AX)A(x)" = I
A(xX)A(x)
0
we have
82774
= 1<I<
(‘3x18x, ==

Thus 74 is independent of x; variable. Denote 7, =

N4(X2, ..., x,). Then we have

2
Hny) = (afing_)W’z— A®AET

By induction hypothesis, we have A(x) = 0. Therefore
A(x) =0. O

7. Proof of the classification theorem

In this last section, we shall only outline the proof
that w; is a constant for 1 <i<k, k+1<j<n or
k+1<i<n, 1 <j<k The details of the proof of
the Lemmas and Propositions below can be found in
Yau and Hu (preprint). Let U; be the space of differen-
tial operators with order at most i. The following
Propositions and Lemmas will facilitate the proof of
our classification theorem.

Lemma 16: Ler D; = (0/0x;) — f; and g, h be functions
defined on R". Then

(gD ... Dk hD ... D]

Oh :
=gy Dy'Dy ... DEDY ... DY

a 7 N ii—1 j ]
4—zsga ! ...D\DY DY .. DY
8g is ph—1 pi i
*]1}18 D ...D:D)'DE ... D)
e o _—
— —jthafiD’l‘ _..DiD) .. DI D!

(mod Uj ..t ) 4-tj—2)

Lemma 17: Let E be a finite-dimensional estimation
algebra with maximal rank. Let k be the quadratic rank
of E. Then Owy/0x; = 0wy/0x; for all k+1<I1<n
and 1 <ij<k.

Proposition 1: If xk Tt xk is a basic quadra-
tic form in E (cf. (41)) and &u,//ax, =0 for all
k+1<I1<n, k,1+1<i, j<k, and i#j, then
Owi/Ox; = 0 for all ky_y +1 <i<k,.

Lemma 18: Let Y,_ gttt xk and xk 1t —|—xk
be the basic forms in E (cf. (41)), where ke <
k; kgks_l <ky. Let & =] 1.1 (0wi/0x;)D;. Suppose
Ditkst Sp€a =0 for all ke +1<p, <k, p#q.
Then Owj/0x; =0 for all k+1<I<mn, k_1+1<
i<k and ke +1<j<k,.

Lemma 19: Let xj  +---+x; and Xj_ .+ +x;
be the basic quadrallc forms in E (cf (41)), where
ko <k <k <ks. Let &= Ik+1( Owji/0x;)D;.
Then Z’ k1 Eby =0 for all k, L+ 1<p g<k,
p#q zf and only if Z/ SR /11 /12—0 for all
k+1<1, hHh<n, k,1—|—1<p q<k., p+#q, where
ap awlll/axl’

Jh
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Lemma 20: Let x; .+ +xp and Xj_ .+ +x;
be the basic quadratic forms in E (cf. (41)), where k,_; <
ky <kgy <ky. Assume that Q= Zf’lk,.,ﬁ—l Zj‘lkmﬁ-l
a;xix; € I;Z Jor all k+1<1<n, where a;= 0wy/0x;.
Then Y07y 4 aj’,}q;’h =0 for all k+1<1l, L<n,
kr—l +1 §P, q < kr-

Proposition 2: Let x{ . +---+x; and x; .+
---—|—xi\ be the basic quadratic forms in E (cf., (41)),
where k,_y < k, < ks < ky. Then Ow;i/0x; =0 for all
k+1<I<n k1 +1<i<k andks_,+1<j<k.

Proposition 3:  Let x; ., +---+x; be a basic quad-

ratic form in E (cf. (41)). Then Ow;/0x; =0 for all
k+1<iI<n k. 1+1<i,j<k andi#]j.

Theorem 25: Suppose that E is a finite-dimensional
estimation algebra of maximal rank. Then Q = (wy) is a
matrix with constant coefficients.

Proof: Theorem 24, we only need to prove wj; are
constant functions 1<i<k, k+1<j<n This
follows from Propositions 1-3. ]

The following is the classification theorem of finite-
dimensional estimation algebra of maximal rank.

Theorem 26: Suppose that the state space of the filter-
ing system (1) is of dimension n. If E is the finite-
dimensional estimation algebra with maximal rank, then

f=Vo+ (a,...,a,) where ¢ is a smooth function and

a;, 1 < i< n, are affine functions and E is a real vector
space of dimension 2n+2 with basis given by 1,
X1,y X, D1,..., D, and L.

Proof: This follows from Theorems 13 and 25. OJ

8. Conclusion

In this paper we explain why the theory of estimation
algebras plays an important role in non-linear filtering.
We show how to use the Wei—-Norman approach to
construct finite dimensional filters from finite dimen-
sional estimation algebras. We survey some results in
estimation algebras after 1984. We give a self-contained
proof of complete classification of finite-dimensional
estimation algebras of maximal rank in one place. The
proof given here is simpler than those proofs scattering
in several papers. This provides the readers with a com-
plete coherent view of the important topic on classifica-
tion of finite-dimensional estimation algebras.
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