
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003 505

Explicit Solution of DMZ Equation in Nonlinear Filtering
via Solution of ODEs

Stephen S.-T. Yau and Yuen-Tai Lai

Abstract—In this note, we develop a real-time and accurate solution for
nonlinear filtering problems based on the Gaussian distribution. Specif-
ically, we present an explicit solution of the Duncan–Mortensen–Zakai
equation of the Yau filtering system, which includes the linear filtering
system and the exact filtering system. The solution is given in terms of
a solution of a system of ordinary differential equations. In particular,
our method can be implemented in hardware. The complexity of our
algorithms is the same as those of Kalman–Bucy filters in the case of linear
filtering systems.

Index Terms—Duncan–Mortensen–Zakai (DMZ) equation, Gaussian
distribution, nonlinear filter.

I. INTRODUCTION

The nonlinear filtering problem involves the estimation of a sto-
chastic processx = fxtg (called the signal or state process) that cannot
be observed directly. Information containingx is obtained from obser-
vations of a related processy = fytg (the observation process). The
goal of nonlinear filtering is to determine the conditional density�(t; x)
of xt given the observation historyfys : 0 � s � tg. In 1961, Kalman
and Bucy [15] published a historically important paper on filtering that
is highly influential in modern industry. Since then, nonlinear filtering
has proved useful in science and engineering, for example in naviga-
tional and guidance systems, radar tracking, sonar ranging, and satel-
lite and airplane orbit determination [13], [14]. Despite its usefulness,
however, the Kalman–Bucy filter is not perfect. The main weakness
is that it is restricted only to linear dynamical systems. In the 1960s,
Duncan [11], Mortensen [18], and Zakai [28] independently derived
the so-called Duncan–Mortensen–Zakai (DMZ) equation for the non-
linear filtering problem. Unfortunately, since the DMZ equation is a
stochastic differential equation, there is no easy way to derive a recur-
sive algorithm for solving this equation.

The idea of using estimation algebras to construct finite dimensional
nonlinear filters was first proposed in [5], [4], and [17]. The advantage
of this approach is that as long as the estimation algebra is finite dimen-
sional, we will get a finite-dimensional recursive filter. The approach
applies well to nonlinear dynamical systems and has been worked out
in detail in [21], especially for the so-called Yau filtering system de-
scribed in [6]. For a linear filtering system, it is quite easy to see that
the corresponding estimation algebra is finite dimensional. So one can
apply the Wei–Norman approach to construct a finite-dimensional re-
cursive filter. However, in the Wei–Norman approach, one has to know
explicitly a basis of the estimation algebra as a vector space in order
to reduce the DMZ equation to a finite system of ordinary differential
equations, a Kolmogorov equation, and several first-order linear partial
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differential equations. Classically, one knows an explicit basis for the
estimation algebra only in the case that it has maximal rank. Typically
people assume that the linear system is controllable and observable.

Recently, a new direct method has been introduced to study the
Kalman–Bucy and the Benés filtering systems with arbitrary initial
condition for whichf , g and h in (2.1) are independent of time
(cf. [26], [27], and [22]). This approach offers several advantages.
It is easy, and the derivation no longer needs controllability and
observability. Furthermore, the necessity of integratingn first-order
linear partial differential equations in the Lie algebra method is
eliminated. More recently, Yau and Hu [23] applied the new direct
method successfully to the Yau filtering systems, which include both
the Kalman–Bucy filters and the Benés filters as special cases.

The purpose of this note is to solve the robust DMZ equation ex-
plicitly in terms of a system of ordinary differential equations (ODEs).
More specifically, the solution of the robust DMZ equation is reduced
to the online solution of a linear system of ODEs and the offline so-
lution of a nonlinear system of ODEs. Our result is built on the pre-
vious result of Yau and Hu [22], which states that the solution of the
robust DMZ equation can be reduced to the online solution of a linear
system of ODEs and the offline solution of a Kolmogorov type PDE.
In [16], Liang, Yau, and Yau have found a closed form solution to the
Kolmogorov equation arising from linear filtering. Although the com-
putation is offline, it is not easy to obtain a numerical solution espe-
cially when the state dimension is large. This is because the analytic
solution in [16] involves a convolution operation which requires inte-
gration over n. In particular, it is difficult to implement their analytic
solution in hardware (cf. [12]). The major advantage of our note is that
we can use a simple system of nonlinear ODEs to compute the solu-
tion of the Kolmogorov equation which makes the computation feasible
even if the state dimension is fairly large. Thus our method can be im-
plemented in hardware.

The idea of our note is quite simple. Finite dimensional approx-
imations are obtained by exploiting the fact that a large class of
non-Gaussian initial densities can be approximated by a finite sum of
Gaussian densities. Under certain conditions, the DMZ equation can
be reduced to the linear Kolmogorov equation (cf. Theorem 3.1). By
the linearity of the Kolmogorov equation, an approximate solution can
be obtained by solving a finite number of Kolmogorov equations with
Gaussian initial conditions. This gives rise to a finite-dimensional
approximation because the solution of the Kolmogorov equation with
a Gaussian initial condition can be written in terms of ODEs (as shown
in Theorem 3.2). The technique of approximating the non-Gaussian
initial condition by linear combination of Gaussians was first used
by Ahmed and Radaideh [1]. They used Galerkin numerical scheme
to construct the solution of the DMZ equation. However unlike our
method their method is not a theoretically justifiable approximation
method for the nonlinear filtering problem. On the other hand, Ocone
and Pardoux [20] has shown in the case of linear filtering that a
conditional density filter forgets the initial condition asymptotically at
an exponential rate. A similar result for Benés filters was obtained in
[19]. (Also, stability results for filters based on Lyapunov exponents
have been explored in [9] and [2]. Dey and Charalambous [8] inves-
tigated the problem of asymptotic forgetting of initial conditions by
risk-sensitive filters for linear time-invariant systems).

An outline of the note is as follows. In Section II, we shall recall
the basic filtering problem. In Section III, we shall solve the robust
DMZ equation in terms of the online solution of a system of linear
ODEs and the offline solution of a system of nonlinear ODEs. Finally
we conclude our results in Section IV. We thank the referees for their
valuable suggestions in revising this note.

0018-9286/03$17.00 © 2003 IEEE



506 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003

II. BASIC FILTERING PROBLEM

The filtering problem considered here is based on the following
signal observation model:

dx(t) = f(x(t))dt+ g(x(t))dv(t) x(0) = x0

dy(t) = h(x(t))dt+ dw(t) y(0) = 0
(2.1)

in whichx, v, y, andw are, respectively, n, p, m and m valued
processes andv andw are independent, standard Brownian processes.
We further assume thatn = p and thatf , g, andh are, respectively,
vector-valued, orthogonal matrix-valued and vector-valuedC1

smooth functions. We shall refer tox(t) as the state of the system at
time t andy(t) as the observation at timet.

Let �(t; x) denote the conditional probability density of the state
given the observationfy(s) : 0 � s � tg. It is well known (see [10],
for example) that�(t; x) is given by normalizing a function�(t; x) that
satisfies the following DMZ equation:

d�(t; x) = L0�(t; x)dt+
m

i=1

Li�(t; x)dyi(t)

�(0; x) = �0(t)
(2.2)

where
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Li is the zero-degree differential operator given by multiplication by
hi, for i = 1; . . . ;m, and�0 is the probability density of the initial
pointx0. In [7], Davis introduced a new unnormalized density

u(t; x) = exp �

m

i=1

hi(x)yi(t) �(t; x):

He reduced (2.2) to the following time-varying partial differential equa-
tion which is called the robust DMZ equation:

@u

@t
(t; x) = L0u(t; x) +

m

i=1

yi(t)[L0; Li]u(t; x)

+ 1
2

m

i;j=1

yi(t)yj(t) [L0; Li]; Lj u(t; x)

u(0; x) = �0(x)

(2.3)

where[�; �] is the Lie bracket as described in [21]. It is easy to show [26]
that (2.3) is equivalent to the following time-varying partial differential
equation; see (2.4) shown at the bottom of the page.

In 1990, Yau [24] (cf. [25] for a detailed version) first studied the
filtering system (2.1) with the following conditions:

(C01)
@fj

@xi
�

@fi

@xj
=

constant(depending oni; j); for all 1 � i; j � n:

This was called the Yau filtering system in [6]. The Yau filtering sys-
tems include the Kalman–Bucy filtering systems and the Benés filtering

systems as special cases (see Theorem 2.1) and finite dimensional fil-
ters were constructed explicitly by using Lie algebra methods [21],
[24], [25]. Define

�(x) =

n

i=1

f
2
i (x) +

n

i=1

@fi

@xi
(x) +

m

i=1

h
2
i (x): (2.5)

The following theorems are proved in [25].
Theorem 2.1: (C 01) holds if and only if

(f1; . . . ; fn) = (`1; . . . ; `n) +
@F

@x1
; . . . ;

@F

@xn

where `1; . . . ; `n are polynomials of degree one andF is a C1

function.
Theorem 2.2: Let E be a finite-dimensional estimation algebra of

(2.1) satisfying (C 01). Then,h1; . . . ; hm are polynomials of degree at
most one.

From Theorem 2.1, we know that (C 01) is equivalent to the following
condition:

(C1) fi(x) = `i(x) +
@F

@xi
(x)

1 � i � n (2.6)

where`i(x) = n

j=1 dijxj + di, for 1 � i � n andF is aC1

function.
Theorem 2.2 tells us thath1; . . . ; hm are polynomials of degree at

most one if the Yau filtering system has a finite dimensional estimation
algebra. So, we list the following condition:

(C2) hi(x) =

n

j=1

cijxj + ci

1 � i � m (2.7)

wherecij andci are constants.
Moreover, we know that�(x) is a polynomial of degree at most two

in x for most interesting filtering systems [21], [24]. Hence, we assume
the following condition:

(C3) �(x) =

n

i;j=1

�ijxixj +

n

i=1

�ixi + �0 (2.8)

where�ij , �i, and�0 are constants. We remark that Kalman–Bucy fil-
tering satisfies (C3) and Benés [3] also requires this condition.

III. EXPLICIT SOLUTION OF DMZ EQUATION IN

TERMS OFSOLUTIONS OFODES

We first begin with the result of Yau–Hu [23].
Theorem 3.1:Consider the filtering system (2.1) with conditions

(C1), (C2), and (C3). Then, the solutionu(t; x) for the DMZ (2.3) or
(2.4) is reduced to the solutionu(t; x) for the Kolmorgorov equation
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u(0; x) = �0(x):

: (2.4)
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where

u(t; x) = exp c(t) +

n

i=1

ai(t)xi � F (x+ b(t))

�u(t; x+ b(t)) (3.2)

andai(t), bi(t), andc(t) satisfy ODEs (3.3)–(3.5)

b0i(t)� ai(t)�
n

j=1

dijbj(t) +
m

j=1

cjiyj(t) = 0

bi(0) = 0 1 � i � n

(3.3)

a0

i(t)�
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(3.4)
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i=1

�ibi(t)

c(0) = 0:

:

(3.5)

In view of Theorem 3.1, in order to give an explicit solution of the
DMZ equation in terms of ODEs, it is sufficient to solve (3.1) in terms
of ODEs. It is well known that any distribution is well approximated
by a finite linear combination of Gaussians of the form�1G1 + � � �+
�kGk, where�i ’s are real numbers andGi ’s are Gaussian distribu-
tions. Letui be the solution of (3.1) with initial distributionGi. Since
(3.1) is a linear partial differential equation, it follows that the solution
of (3.1) is of the form�1u1 + � � � + �kuk. Therefore it remains to
solve (3.1) with a Gaussian initial distribution. Theorem 3.2 gives an
explicit solution of (3.1) with a Gaussian initial distribution in terms of
a solution of ODEs.

Theorem 3.2:Consider the filtering system (2.1) with conditions
(C1), (C2), and (C3) and a Kolmogorov equation with Gaussian initial
distribution

@u

@t
(t; x) = 1

2
�u(t; x)�
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@x
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u(0; x) = ex A(0)x+B (0)x+C(0)

(3.6)
whereA(0) = Aij(0) is a n � n symmetric matrix,BT (0) =

B1(0); . . .Bn(0) , xT = (x1; . . . ; xn) are1�n matrices andC(0)

is a scalar. Let
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wherè i(x) =
n

j=1 dijxj+di,Q = (qij) an�n symmetric matrix,
pT = (p1; . . . ; pn) a1�n matrix,r a scalar. Then the solution of (3.6)
is of the following form

u(t; x) = e
x Ax+B x+C (3.7)

whereA(t) = Aij(t) is an� n symmetric matrix valued function

of t, BT (t) = B1(t); . . . ; Bn(t) is a1� n matrix valued function

of t, andC(t) is a scalar function oft. Moreover,A(t), BT (t) and
C(t) satisfy the following system of nonlinear ODEs:

dA

dt
(t) =2A2(t)� [A(t)D +D

T
A(t)] +Q (3.8)

dBT

dt
(t) =2BT (t)A(t)�B

T (t)D� 2dTA(t) + p
T (3.9)

dC

dt
(t) =trA(t) +

1

2
B
T (t)B(t)� d

T
B(t) + r (3.10)

whereD = (dij) is an � n matrix, dT = (d1; . . . ; dn) is a1 � n

matrix and (3.8) is a Riccati equation.
Proof: Differentiating (3.7) with respect tot andxk, we get the

following equations:
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Therefore, the left-hand side of (3.6) is given by

1

2
�u(t; x)�

n
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`i(x)
@u

@xi
(t; x) + q(x)u(t; x)
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T
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Equating (3.11) and (3.12) and comparing terms, we get equations
(3.8), (3.9), and (3.10).Q:E:D:

For the convenience of the reader, we include an example withn =
1 = m.
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@u
@t
(t; x) = 1

2
@ u
@x

(t; x) + (x+ 1 + dF
dx

� y(t))@u
@x

(t; x)� [1 + d F
dx

+ 1
2
(1 + x)2

+y(t)(1 + x + dF
dx

)� 1
2
y2(t)]u(t; x)

u(0; x) = �0(x)

: (3.13)

Example 3.3: Leth(x) = x+1 andf(x) = x+1+dF=dx where

F (x) = f[e�(x�1=2)
x

�1
e�(x�1=2) dx]� 3=2gdx. Then

f2(x) +
df

dx
(x) + h2(x) = 2x2 + x+

9

4
:

The robust DMZ equation is of the form shown in (3.13) at the top of
the page. By Theorem 3.1,u(t; x) can be computed via the solution
u(t; x) for the Kolmogorov equation shown in

@u
@t
(t; x)= 1

2
@ u
@x

(t; x)�(x+ 1)@u
@x

(t; x)+1
2
(�x2+x � 9

4
)u(t; x)

u(0; x)= e�F(x)�0(x)
(3.14)

where

u(t; x) = exp[c(t) + a(t)x� F (x+ b(t))] � u[t; x+ b(t)]

anda(t), b(t) andc(t) satisfy the following ODEs:

b0(t)� a(t)� b(t) + y(t) = 0; b(0) = 0

a0(t)� 2b(t) + b0(t) = 0; a(0) = 0

c0(t) = b0(t)(�1
2
b0(t) + a(t)� 1) + b2(t) + b(t); c(0) = 0

:

Assume thatu(0; x) = �1G1 + � � � + �nGn where �i 2

and Gi(x) = eA (0)x +B (0)x+C (0). Then, u(t; x) =

�1u1(t; x)+� � �+�nun(t; x)whereui(t; x) = eA (t)x +B (t)x+C (t)

andAi(t); Bi(t);Ci(t) satisfy the following ODEs:
dA
dt

(t) = 2A2
i (t)� 2Ai(t)�

1
2

dB
dt

(t) = 2Bi(t)Ai(t)�Bi(t)� 2Ai(t) +
1
2

dC
dt

(t) = Ai(t) +
1
2
B2
i (t)�Bi(t)�

9
8

:

IV. CONCLUSION

In this note, we have solved explicitly the robust DMZ equation
arising from a Yau filtering system in terms of a system of ODEs. Un-
like the closed-form solution of [16], our solution can be implemented
in hardware for practical use.
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