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Explicit Solution of DMZ Equation in Nonlinear Filtering differential equations. Classically, one knows an explicit basis for the

via Solution of ODEs estimation algebra only in the case that it has maximal rank. Typically
people assume that the linear system is controllable and observable.
Stephen S.-T. Yau and Yuen-Tai Lai Recently, a new direct method has been introduced to study the

Kalman—Bucy and the Benés filtering systems with arbitrary initial

condition for which f, ¢ and  in (2.1) are independent of time
nonlinear filtering problems based on the Gaussian distribution. Specif- (Cf.' [26], [27], and [22]).' Thls approach offers several advgrltages.
ically, we present an explicit solution of the Duncan-Mortensen—Zakai 't iS €asy, and the derivation no longer needs controllability and

equation of the Yau filtering system, which includes the linear filtering Observability. Furthermore, the necessity of integratingirst-order
system and the exact filtering system. The solution is given in terms of linear partial differential equations in the Lie algebra method is
a SO'““?h” é)fcinsyﬁée?ﬁq ﬂ;r?qrgri]rt‘géyigifrfggxi;‘r'eeq#ﬁéioclsﬁ”I‘egiet’m‘é?'iﬁr eliminated. More recently, Yau and Hu [23] applied the new direct
glugrorni:ﬁmg is the same az those of KaIman—Bucy. filters inthg casg of linear method Successml!y to the Yau fllterl,ng _Sys'[ems’ Wh'_Ch include both
filtering systems. the Kalman-Bucy filters and the Benés filters as special cases.

The purpose of this note is to solve the robust DMZ equation ex-
plicitly in terms of a system of ordinary differential equations (ODES).
More specifically, the solution of the robust DMZ equation is reduced
to the online solution of a linear system of ODEs and the offline so-
|. INTRODUCTION lution of a nonlinear system of ODEs. Our result is built on the pre-

. _ . N vious result of Yau and Hu [22], which states that the solution of the
The nonlinear filtering problem involves the estimation of a sto-

chastic process = {x, } (called the signal or state process) that Cann69bl:s;1th/I(Z)ch1£uatlgg tcr?n bftfa”;educle(ili t?] thfe Ogl'ﬂﬁ SO“:“ST of alllgeEar
be observed directly. Information containinds obtained from obser- system o Sa € offline solution of a Ro'mogorov type )

vations of a related procegs= {y:} (the observation process). The:go[li?c])‘ I;'r":)ngé Ya;’.oingr?rl: hf?;;fﬁxggr?&?ied Z:rr?osowttﬁg égrtnh_e
goal of nonlinear filtering is to determine the conditional dengity ) gorov equatl ISing : Henng. g

of ¢ given the observation histoyy. : 0 < s < ¢}. In 1961, Kalman putation is offline, it is not easy to obtain a numerical solution espe-
t s =~ =~ . )

and Bucy [15] published a historically important paper on filtering thaft'a"Y whgn the.state dimension |sllarge. Th|§ IS bepause the apalytlc
olution in [16] involves a convolution operation which requires inte-

is highly influential in modern industry. Since then, nonlinear filterin ration overR™ . In particular. it is difficult to implement their analvii
has proved useful in science and engineering, for example in navi fation oveirt. In particufar, 1t S difficutt to impleme eiranalytic

tional and guidance systems, radar tracking, sonar ranging, and sa 8|l-mon n hardyvare (cf. [12]). The mayjor advantage of our note is that
we can use a simple system of nonlinear ODEs to compute the solu-

lite and airplane orbit determination [13], [14]. Despite its usefulness . . . i
however, the Kalman—Bucy filter is not perfect. The main weakneg n of the Kolmogorov equation which makes the computation feasible

is that it is restricted only to linear dynamical systems. In the 196§\(en i tthzgta;]e dollmensmn Is fairly large. Thus our method can be im-
Duncan [11], Mortensen [18], and Zakai [28] independently deriv emented in hardware.
the so-called Duncan—Mortensen—Zakai (DMZ) equation for the non-

Abstract—In this note, we develop a real-time and accurate solution for

Index Terms—buncan—Mortensen—Zakai (DMZ) equation, Gaussian
distribution, nonlinear filter.

The idea of our note is quite simple. Finite dimensional approx-
linear filtering problem. Unfortunately, since the DMZ equation is ématlons are o.bFa.uned bylexplomng the fagt that a Iarg.e. class of
n-Gaussian initial densities can be approximated by a finite sum of

stochastic differential equation, there is no easy way to derive a recg?- . o . T ]
sive algorithm for solving this equation. aussian densities. Under certain conditions, the DMZ equation can

The idea of using estimation algebras to construct finite dimensio A rlf.sducgtd tof tt:e lznlear Kolmogoro;{ equation (cf. .Thetorerr|1 ?'1)' By
nonlinear filters was first proposed in [5], [4], and [17]. The advanta € linearily ofthe xolmogorov equation, an approximate solution can

of this approach is that as long as the estimation algebra is finite dim g obtained by solving a finite number of Kolmogorov equations with

sional, we will get a finite-dimensional recursive filter. The approac au;i'?}:‘;g?g;gﬂgig: SZPJEO%“:;SchSEOt&: 2?(')?:?;?05;0\;%
applies well to nonlinear dynamical systems and has been worked 3%’ L o . . 9 q

. L . . a Gaussian initial condition can be written in terms of ODESs (as shown
in detail in [21], especially for the so-called Yau filtering system de-

scribed in [6]. For a linear filtering system, it is quite easy to see thik Theorem 3.2). The technique of approximating the non-Gaussian

the corresponding estimation algebra is finite dimensional. So one gﬁlal condition by linear combination of Gaussians was first used

apply the Wei—Norman approach to construct a finite-dimensional re* Ahmed and Radaideh [1]. They used Galerkin numerical scheme

cursive filter. However, in the Wei—-Norman approach, one has to kncg\(ljv construct the solution of the DMZ equation. However unlike our

explicitly a basis of the estimation algebra as a vector space in or ?thod their method is not a theoretically justifiable approximation

; . . . . method for the nonlinear filtering problem. On the other hand, Ocone
to reduce the DMZ equation to a finite system of ordinary dn‘ferentla;t;‘]1 d Pardoux [20] has shown in the case of linear filtering that a

equations, a Kolmogorov equation, and several first-order linear parfial '’ N e . .
q 9 g P conditional density filter forgets the initial condition asymptotically at

an exponential rate. A similar result for Benés filters was obtained in
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Il. BASIC FILTERING PROBLEM systems as special cases (see Theorem 2.1) and finite dimensional fil-
rs were constructed explicitly by using Lie algebra methods [21],
4], [25]. Define

~ Ofi

n(z) = 2}‘?(}’6) + 2 e, (z) + ;h?(.r). (2.5)

The following theorems are proved in [25].

in whichz, v, y, andw are, respectivejR", R?, R™ andR™ valued Theorem 2.1:(C7) holds if and only if

processes andandw are independent, standard Brownian processes. , oF oF

We further assume that = p and thatf, g, andh are, respectively, (froonfo) = bu) + <%’ T aT)

vector-valued, orthogonal matrix-valued and vector-valu€d \here(,,...,¢, are polynomials of degree one add is a C"*°

smooth functions. We shall refer ig¢) as the state of the system atfunction.

time¢ andy(t) as the observation at tinte Theorem 2.2: Let E be a finite-dimensional estimation algebra of
Let p(¢.x) denote the conditional probability density of the statg2 1) satisfying ;). Then,h1,..., k. are polynomials of degree at

given the observatiofiy(s) : 0 < s < t}. It is well known (see [10], most one.

for example) thap(t, «) is given by normalizing a function(¢, «) that ~ From Theorem 2.1, we know that{) is equivalent to the following

The filtering problem considered here is based on the followi !
signal observation model:

{dw(t) = f(x(t))dt + g(x(¢))dv(t) x(0) = a0
dy(t) = h(x(t))dt + dw(t) y(0)=0

2.1)

satisfies the following DMZ equation: condition:
m OF
do(t,x) = Loo(t,x)dt+ Y, Lio(t,x)dy:(t) 2.2) (Ch) fi(a) = Li(2) + 67(”
=1 . ¢ .
a(0,z) = oo(t) 1<i<n (2.6)
where Whergﬂi('x) = > diyr; +di,forl <i < mandFisaC™
T < T i e funCtlon.
Lo = }Z > Zfi N9 lzhg Theorem 2.2 tells us that; ..., h., are polynomials of degree at
2~ Da? — O, — Ox; 24 ! most one if the Yau filtering system has a finite dimensional estimation
) ) ) ) o algebra. So, we list the following condition:
L; is the zero-degree differential operator given by multiplication by n
hi, fori = 1,....m, andoy is the probability density of the initial (Cy) — hi(2) = cija; + o
pointxg. In [7], Davis introduced a new unnormalized density j=1
m 1<i<m (2.7)
u(t,z) = exp <— Z hi(él7)yi(t)> o(t,x). wherec;; ande; are constants.
i=1 Moreover, we know thaj(z) is a polynomial of degree at most two
He reduced (2.2) to the following time-varying partial differential equdn + for mostinteresting filtering systems [21], [24]. Hence, we assume
tion which is called the robust DMZ equation: the following condition:
%—I;(t,i) = Lou(t,z) + 2:1 yi(t)[Lo, Ls]u(t, 2) (Cs) n(z) = Z NijTixT; + Z"liwi + 7o (2.8)
1= 2,7=1 =1

m

LY gl (t) [[Lo, L. Lj]’u‘(t,.[’) (2.3)  wherey,;, 1, ando are constants. We remark that Kalman—Bucy fil-

i,j=1 tering satisfies’3) and Benés [3] also requires this condition.

w(0,2) = oo(x)
where[-, -] is the Lie bracket as described in [21]. Itis easy to show [26] [ll. EXPLICIT SOLUTION OF DMZ EQUATION IN
that (2.3) is equivalent to the following time-varying partial differential TERMS OF SOLUTIONS OF ODES
equation; see (2.4) shown at the bottom of the page. . We first begin with the result of Yau—Hu [23].
_In 1990, Yau [24] (cf. [25] for a detailed version) first studied the rheqrem 3.1: Consider the filtering system (2.1) with conditions
filtering system (2.1) with the following conditions: (C1), (Cs), and (). Then, the solution (¢, ) for the DMZ (2.3) or
of; _9fi _ (2.4) is reduced to the solutiar(¢, «) for the Kolmorgorov equation
dzi  Ou; Duip ) = LA 2) — Y lia) 2 (t,x)

constan{depending o, j),forall 1 <i,j < n. =1 ’

(1)

+3 <; HEOEDY e GO n(m)) i) G

This was called the Yau filtering system in [6]. The Yau filtering sys- ‘ =
tems include the Kalman-Bucy filtering systems and the Benésfiltering\ 4(0,2) = e ¥ ®og(x)

n

S(ta) =13 S -3 (—fi(r)Jerl ()2 <:c>> 22 (1,0)
(S )+ LS R - LS AR+ 3 S i) () 2 ()
=1 ' i=1 i=1 =1 j=1 a . (2-4)
—L Y Y w2 () <w>> ult,x)
2,7=1 k=1
u(0,2) = og(x).
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where whereD = (d;;) is an x n matrix,d” = (di,...,d,)isal x n
n matrix and (3.8) is a Riccati equation.
u(t,x) = exp |c(t) + Zai(t),m — F(xz +b(t)) Proof: Differentiating (3.7) with respect tbandx;., we get the
i=1 following equations:
w(t,z +b(t) (3.2)

anda;(t), b:(t), ande(t) satisfy ODEs (3.3)—(3.5) 5% R e e

ou _( rdA dBT ac
Todt dt dt

B(t)=  ai(t) = 3> dib,(£) + 3" ejiy;(t) = 0 0@ ori . Ox; ~
{ (t) a;i(t) J; 304(1) J;LJ y;(t) (3.3) 6T:|:ZAU <6T”+wi0’—rj>+Bk m
bi(0)= 0 1<i<n k ; k Lk
1 u " _ n n
{ a;(t)— 3 ]; (mij 4 15:)b;(t) + ]; d.i'?b’j(t) =0 (3.4) = <Z Arjre; + Zﬁlik.’ci + Bk> u
a;(0)= 0 1 < i<n j=1 i=1
, AL , I I V’NT _ (4)T T A BT ~
dt)y= —L S (bit)? —l—Za(fb (1) = > dibi(t) w =|lAe) o A+ B ju
1;1 =1 . :(.TTAT —|—TTA+BT)%7

+i Z nz] f)b (f)—i— an B )

R
i 52 62~ n n =
c(0)= 0. N WZ = |:2Akk + <Z Arje; + Z‘Lzﬂn + Bk)
Ty

(3.5) j=1 i=1

In view of Theorem 3.1, in order to give an explicit solution of the = |24k + Y AgjAreajae

u

DMZ equation in terms of ODEs, it is sufficient to solve (3.1) in terms Je=1
of ODEs. It is well known that any distribution is well approximated n ) n
by a finite linear combination of Gaussians of the fainG: + - - - + + > AnAnwiwe+ Bi+2 Y A Aiaje;
oG, Whereo;'s are real numbers and;’s are Gaussian distribu- i, 6=1 5,3=1
tions. Letu; be the solution of (3.1) with initial distributio';. Since “L “L N
(3.1) is a linear partial differential equation, it follows that the solution +2Bs Z Apjj + 2B Z Aipri | w
of (3.1) is of the forma, @, + - -- 4+ ay,. Therefore it remains to =t =t
solvc_e _(3.1) With a Gaussi_an initial digtripu_ti_on. Thgore_m 3.2 gives an lAg = {trA + l(r’ll’)T(A;l‘,) + 1($TA)(ITA)T
explicit solution of (3.1) with a Gaussian initial distribution in terms of 2 2 2
a solution of ODEs. . - . N +1B7’B + (27 A)(A2)
Theorem 3.2: Consider the filtering system (2.1) with conditions 2
(C1), (C2), and (Cs) and a Kolmogorov equation with Gaussian initial +BT Az + ITAB] a
distribution 1 1
ou ~ P =T [ZATA4+ 244" 4+ A% ) &
%—f(f‘L) = %Au(f,:v) — Z () ;T/?_ (t, ) |:l (2‘4 A+ 2‘4 A" +4 ) xr
+! i BT(A+AT)r+trA+ 1B"B|d
+5 Z( () Z:‘)’ () — n(x) ) a(t,x) +B (A+ A" )z +tr +,— u
T T n
17(07:6) — 4(0)7 +B7 (0)z+C(0) s a
(3.6) ;"’(l)al ;;d”r’a +Zd Dz

where A(0) = (A,;,-(O)) is an x n symmetric matrix,B”(0) =

(BI(O Bn(o)> = (21,...,7,) arel x n matrices and’(0)
is a scalar. Let

q(z) = (ZFZ( )—Za

T +dTA+dTAT)x+dTB]i. (3.11)

=Vi'Du+d"vVa

=(TAT +2TA+ BT Duu
+d" (Av+ A"z + B)a

—n(x ))

= [:L'T (A" + A)Du+ (B'D

whereli(z) = 377 dije;+di, @ = (g;;) an xn symmetric matrix, Therefore, the left-hand side of (3.6) is given by
p" = (p1,...,p.) al x n matrix,» a scalar. Then the solution of (3.6)
is of the following form —Au t,x)

u(t ‘L) r T Ae+BT z+C (37)

(z)u(t,z)

T T T 2 T T
) . ) ) = |z —A' A+ 7;4A + A > r+B ' (A+ A" )Hx
whereA(t) = ( Ay; (t)) is an x n symmetric matrix valued function { <2 2 (

of ¢, B'T(t) = ( By (f),....,B,,(t)) isal x n matrix valued function +trA + %BTB] u
of ¢, andC(¢) is a scalar function of. Moreover, A(#), BT(f,) and , ; . . - .
C(t) satisfy the following system of nonlinear ODEs: - ["‘ (A" +A)Dx+(B' D+d A+d A )z +d B]
A I ~ 0. iy )77
%(t) —242(t) = [A()D + DY A(D)] + Q (3.8) (o Qe tp et (3.12)
iBT Equating (3.11) and (3.12) and comparing terms, we get equations

— (O =2BT (WA - BT (D - 24" A+ (3.9) (3.8), (3.9), and (3.10).E.D.
1 7 r For the convenience of the reader, we include an examplenwith
W(t) =trA(t) + 5B (6)B(t) —d" B(t)+r (3.10) 1 = m,.
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P o2 2
Gt = 35t + (@14 G —y)F ) — [+ G5 + 31 +a)°
+y(H)(1+z + 25y — Ly (1)]u(t,2) (3.13)
u(0,z) =  oo(x)
Example 3.3: Leth(x) = v+ 1andf(x) = x4+ 1+ dF/dx where [9] B. Deylon and O. Zeitouni, “Lyapunov exponents for filtering
_ —(z=1/2)? @ —(e=1/2)2 7.1 _ 2 /911 problems,” inApplied Stochastic Analysi8. Davis and R. Elliott,

w) = f{[e /f—”o ¢ da] = 3/2}d. Then Eds. New York: Gorden and Breach, 1991, pp. 511-535.

; df ‘ ‘ 9 [10] M.H.A.DavisandS.I. Marcus, “An introduction to nonlinear filtering,”

@)+ S(a)+ P (2) =227 + = + = in The Mathematics of Filtering and Identification and Applications
dx 4 M. Hazewinkel and J. S. Willems, Eds. Dordrecht, The Netherlands:

The robust DMZ equation is of the form shown in (3.13) at the top of Reidel, 1981. . . e , .
the page. By Theorem 3.1, z) can be computed via the solution [11] T. E Duncan, 'Proba_\bmt'y densmef for dn‘fuson processes with apph-
- pag Yy L ] p cations to nonlinear filtering theory,” Ph.D. dissertation, Stanford Univ.,

u(t, z) for the Kolmogorov equation shown in Stanford, CA, 1967.

927 o 1 2 9 [12] T.-C Hsu, “Design of the partial differential equation solver in the Yau

r)f (t r)= 2 2 3 (t2)—~(x + 1) gr(t, o g (—a ™+ — ult, ) filtering system,” M.S. thesis, Dept. Electr. Eng., National Cheng Kung

w(0,2)= et )ao(.z) Univ., Taiwan.

(3.14) [13] A. H.JazwinskiStochastic Process and Filtering TheoryNew York:
where Academic, 1970.
[14] R. E. Kalman, “A new approach to linear filtering and prediction prob-
a(t,z) = exple(t) + a(t)z — F(x 4+ b())] - ult, = + b(¢)] lems,”Trans. ASME, J. Basic Engrol. 82D, pp. 35-45, Mar. 1960.
[15] R. E. Kalman and R. S. Bucy, “New results in linear filtering and pre-
anda(t), b(t) andc(t) satisfy the following ODEs: diction theory,"Trans. ASME, J. Basic Engtol. 83, pp. 95-108, 1961.
[16] Z.G. Liang, S.S.-T. Yau, and S. T. Yau, “Finite dimensional filters with

I (t) —a(t) —b(t)+y(t) =0, b(0)=0 fnlonlinear c:]rift V: Solution to kollmoggrov equation arising from Ilinear

fiy Ty _ iltering with non-Gaussian initial condition|EEE Trans. Aerosp. Elec-

(1) - 2b(1) + (1) = 0, , a(0)=0. tron. Syst.vol. 33, pp. 12951308, Aug. 1997.

() = ()(—=5b (1) +alt) = 1) +b7°(t) +b(t), ¢(0)=0 [17] S. K. Mitter, “On the analogy between mathematical problems of non-
Assume thatii (0, z) oelgl 4 4 anG, wherea: € R Izllréeselrzflllet;’erir;g?;nd quantum physicsRicerche Automatvol. 10, pp.
and Gi(r) = A0 +Bi02H+C0)  Then f(t,x) =  [18] R. E. Mortensen, “Optimal control of continuous time stochastic sys-
1@y (t, 2) 4 - Fon tin (t, ) Wherei; (t, r) = Az +Bi ()2 +Ci (1) 18] E()erTlls,;’)Ph.D;A(Jissertatpn,SUrllji_\I/: Calfifé, Berk'e:IFy,rSCgAg,gl%G.

N ) ) . . . . L. Ocone Asymptotic Stability of Benés Filte .

andAi(t), Bi(t), Ci(t) satisfy the foIIowmg ODEs: [20] D.Ocone and E. Pardoux, “Asymptotic stability of the optimal filter with

dt Lty = 24%(t) —24:(t) — L respect to its initial conditions SIAM J. Control Optim.vol. 34, no. 1,

) pp. 226-243, 1996.
( )= 2Bi(t) 42(1") - Bi(t ) —24; (t) 2 - [21] L. F. Tam, W. S. Wong, and S. S.-T. Yau, “On a necessary and suffi-
= A+ B (t) — Bi(t) — § cient condition for finite dimensionality of estimation algebraS|IAM
J. Control Optim, vol. 28, no. 1, pp. 173-181, 1990.

[22] S.-T. Yau and G.-Q. Hu, “Direct method without Riccati equation for

IV. CONCLUSION

In this note, we have solved explicitly the robust DMZ equation

arising from a Yau filtering system in terms of a system of ODEs. Un-[23]
like the closed-form solution of [16], our solution can be implemented

in hardware for practical use.
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