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Abstract—TIt is well known that the Kolmogorov equation plays an important role in applied
science. For example, the nonlinear filtering problem, which plays a key role in modern technologies,
was solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation.
In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve linear
parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous proof that
the solution of the Kolmogorov equation can be approximated very well in any finite domain by our
wavelet-Galerkin method. An example is provided by using Daubechies Dy scaling functions. © 2004
Elsevier Ltd. All rights reserved.

KeyWords——Nonlinear filtering, Kolmogorov equation, Wavelet-Galerkin method, Daubechies
scaling function, Pyramid algorithm.

1. INTRODUCTION

Despite its usefulness, the Kalman-Bucy filter is not perfect. One of its weaknesses is that it needs
a Gaussian assumption on the initial data. The situation is more complex when the statistics
of the initial condition are modeled by an arbitrary distribution. As observed by Makowski [2],
in that event, the filtering question is genuinely nonlinear, and few results have been obtained.
Notable exceptions are the works of Benes and Karatzas [3], Ocone [4], and Makowski [2]. In [2],
simple and direct probabilistic arguments are developed for evaluating the conditional expectation
m(¢p(z)) of the state density o(z:) given the observations {ys | 0 < s < t}. It was shown as
in [3,4] that there always exists a set of sufficient statistics that can be recursively computed as
outputs of a finite-dimensional dynamic system. In contrast with previous results, the sufficient
statistics generated in [2] can be termed “universal” in the sense that they are independent of
the initial state distribution. Furthermore, no assumptions on the moments of this initial state
distribution or its absolute continuity are made in {2], as was the case in [3,4].

However, Makowski’s method has a major disadvantage. Let n be the dimension of the
state space. The number of sufficient statistics in order to compute the conditional expecta-
tion m(p(x:)) of p(x:) in Makowski’s method is a polynomial of degree two in n, while for the
classical Kalman-Bucy filter, the number of sufficient statistics is only a polynomial of degree one
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in n. In the case where the linear filter system is completely reachable and completely observable,
Hazewinkel observed in [5, p. 115] that the estimation algebra E is the 2n + 2-dimensional Lie
algebra with an explicitly given basis. Even in this case, the Wei-Norman approach of finding
an explicit filter is more complicated than the method of Yau and Yau [6]. Not only must one
solve a finite system of ordinary differential equations and a Kolmogorov equation, but one also
has to integrate n partial differential equations corresponding to operators —5‘2—1—, Ceey 6_2:' More
important, if the Kalman-Bucy system is not completely reachable or completely observable, then
the basis of the estimation algebra is not explicitly known (although it can be computed). As a
result, there is an additional disadvantage of the Wei-Norman approach: one cannot write down
the finite system of ordinary differential equations explicitly.

The novelty of the method of Yau and Yau [6] is that their finite system of ordinary differential
equations is explicitly written down and only n sufficient statistics are needed in order to compute
the conditional expectation. The problem of computing the conditional probability density is
factored into two parts:

(1) the on-line solution of a finite system of ordinary differential equations, and
(2) the off-line calculation of the Kolmogorov equation, which does not depend on observa-
tions.

Hence, any method to solve the Kolmogorov equation provides the fundamental step of the Wei-
Norman’s approach to solving DMZ equation, which is the central problem of nonlinear filtering.

With the appearance of wavelet functions, especially Daubechies’ wavelets, people recognized
that wavelets provide a powerful tool that can be applied in the finite-element method. There are
two reasons that one wants to use wavelets in the finite-element method. First, the orthonormal
bases of the compact supported wavelets constructed by Daubechies 7] are unconditional bases for
Sobolev spaces, and therefore, provide accurate approximations to PDEs’ solutions. Furthermore,
the multiresolution analysis properties of these bases, described in [8,9], work well with multigrid
methods and adaptive grid refinement methods. Thus, they perform well even for PDEs with
initial ill-conditions. Second, the locality of the Daubechies functions and the pyramid algorithm
of Mallat described in [10] are extremely efficient for adaptive finite-element methods.

Adaptive finite-element methods have been proposed by Brandt [11] for the elliptic problem
and developed by Bank [12] and others. More recently, Berger and Oliger {13] studied and
implemented an adaptive mesh-refining method for a hyperbolic partial differential equation,
which was successful in solving previously intractable problems [14]. They used a sequence of
progressively finer nested grids in space. An automatic error estimation step determines locally
whether the current resolution of the numerical solution was sufficient or a finer grid was needed.
The main difficulty was to find stable and accurate difference approximations of the differential
operators at the interfaces between grids of different sizes.

Wavelets orthogonal bases are excellent examples of hierarchical bases. Liandrat and Tcha-
mitchian [15] have shown that the multiresolution structure of wavelets orthonormal bases is
a simple and effective framework for spatial adaptive algorithms. Instead of refining the com-
putations through nested grids of successively finer meshes, as in the algorithm of Berger and
Oliger [13], wavelet orthonormal bases implement adaptive refinement by successively adding lay-
ers of details that increase the resolution of the approximation locally. Communication between
the different layers is regulated automatically by the orthogonality of the basis functions and the
pyramid algorithm.

In this paper, we solve the Kolmogorov equation by the wavelet-Galerkin method.

In Section 3, we will discuss the use of this finite-element method in solving partial differen-
tial equations. Here, we use Daubechies’ wavelets as basis functions because of their ability to
approximate many functions and because of the pyramid algorithm.

In order to apply the wavelet-Galerkin method to the Kolmogorov equation, first, we will show
that we can use the solution of the initial-boundary value problem
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ot _
8—1; = A1, z €8,
a(z,0) = up(z), z e, (L1)

i(a,t) = a(b,t) = 0,
as an approximation to the solution of the Kolmogorov equation

Ou
Z_ A
ot (1.2)

U(QL’,O) = ’u,o(.’l:'),

where A is a differential operator with respect to z in either form

A=§§§—;~Z(ﬁ<w>+§—£<x>)%—Z(%ﬁ%w) (13)

i i

or form ) 92 5 5 .
A=5% - Sterg - 5 (5 + ). (4

Then, second, we apply the wavelet-Galerkin method to equation (1.1) to find the numerical
approximation to its solution in form un(z,t) = it.)-_—zi— R+l Ank@n k. In view of the results from
the first part, this is also the numerical approximation of the Kolmogorov equation (1.2).

In Section 4, we will discuss how we select an interval based upon which we will calculate the
numerical solution for the Kolmogorov equation. We derive a method called the time-dependent-
boundary wavelet-Galerkin method. With this method, we first determine an initial interval
for the boundary value problem (1.1) based upon the initial condition of the Kolmogorv equa-
tion (1.2). Then, during the computation, we adjust this interval based upon the numerical solu-
tion of (1.1). Thus, we prove that the solution of the time-dependent-boundary wavelet-Galerkin
method is really the numerical approximation to the solution of the Kolmogorov equation (1.2).

2. APPROXIMATION PROPERTIES
OF DAUBECHIES’ FUNCTIONS

Daubechies’ functions are one type of wavelet. The advantage of Daubechies’ functions is that
they are compact supported, orthonormal, and easy to construct.

For every integer N > 1, let R = 2N — 1. From [7], we have the Daubechies’ scaling function ¢
and wavelet 1 satisfying

N R
() = h(k)V2p(2c ~ k)
k=0
and
R
) =D 9(k)V2e(22 k),
k=0
where
1. h(k) #0,0 < k < R, and g(k) = (=1)*h(R — k),
2. 5, hlk) = V2,
3. 21 h(k)h(k + 2m) = dom, for every integer m,
4. >, g(k)k™ =0, whenever 0 <m < N — 1, and
5. Supp(p) = [0, R], Supp(¢) = [0, R].
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Define ¢, = 2™%p(2"x — k) and ¢¥n, p = 222"z — k). Then,

Vi, k, /;00 ™Y (x) dr =0, 0<m<N-1. (2.1)
Let
Vo = closure of {Z akPnk - k an integer} c LA(R), / (2.2)
k
W, = closure of {Z bithnk : k an integer} c L*(R). (2.3)
k

From [7], we know the following,.
(i) W, is the orthogonal complement of V,, in V.41, or Vop1 =V, @ W,
(i) Closure (U, Vx) = L*(R), where R = (—o00, c0).
(iii) {@nk : k is an integer}, {¢  : k is an integer} are orthonormal bases for V;, and Wy,
respectively.
(iv) Supp(pn,k) = supp(thn,k) = [k/2", (k + 2N ~1)/2"] = [k/2", (k + R)/2"].
PROPERTY 2.1.

On,k and Yn i € C W) = gpace of Hélder continuous functions

24
with exponent A(V), where A(N) =~ 0.3485N. (24)

Let Q be either R or a closed interval [a,b], where @, b are rational numbers. We use notation
from [16] as follows.
1. H°(Q) = L?(Q) with the standard Hilbert space inner product(-, -).
2. H™(Q) = {f € H™Y(Q) | ' € H™ ()} with Hilbert space inner product (:,)m0
defined inductively by (-, )o,0 = (,*) and (f, @)m,0 = (f,9) + (f, ¢')m-1,0-
3. The associated norm | - ||m.q is given by || fllma = /(F, ima, for f € H™(Q).
4. Also for f € H™(Q), we define |f|mq = | D™ f|lo,n, Where D = &,
5. HE*(Q) ={f € H™(Q) | f(a) = f(b) = 0}.
In what follows, we use the following notation. Suppose Q = [a,b] and p is a positive integer.

Then,

I® = {k € Z | supp(pn) NQ £ 0} = {k € Z| 2"a — R < k < 2"b},

V= { > ek | M ER}.

keI
PY(f) = (Z <flg,son,k><,on,k> eVl

kel

For f € H"(R),

3

It is clear that V5 C V,, = VR, In order to derive the approximation property of Daubechies
functions, we need to state the following lemma. The first is proved in [17].

LEMMA 2.1. If f € H}(Q), where Q = [a,b] and —co < a < b < oo, then
7| fllo,a < (b= a)| D(f)llo.0 (Rayleigh-Ritz inequality).

The next lemma is straightforward. This is easily proved by induction on m.
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LEmMMA 2.2. If f € H™(S)), there is a unique polynomial P of degree < m — 1 (or = 0), such
that

/ D*(f - P)dz =0,
Q
forall0 <a<m-—1.
Using Lemma 2.2, we can prove the following lemma.
LEMMA 2.3. Let Q = [a, b] be a finite interval. For every f € H™(Q), such that fn De(f)ydz =0,
foral0 <a<m-—1,

b—a\™? ,
S

12 floa < (
Proo¥. Let fi(z) = [ D7(f)(s)ds, where 0 < 5 < m — 1. Then, D(f;) = Di(f). From
fﬂ D*(fydz =0, for all 0 < o < m — 1, we know that f; € H3(Q). Then, from Lemma 2.1

b—a

™

ilon < =210 loa < 22 D (D).

Doing the integration by part, we get

/Q (D3(1)* dz = £;B)DY (£)(b) — £3(a)D? (£)(a) /QDHl(f)fj dz
< D7) loq 1 illog

<D ()]l IDUDlloa  (by Lemma 2.1
= D D)0 1 Dl
Therefore,
12"l < =2 1D D0
By induction on j, we get
197l < ((52) 1D lons 0<5<m -1 '

LEMMA 2.4. For ? = [a,b] and —o0 < @ < b < o0, then

b—a
T

inf {HDj(f — Q)llo,g} < ( )m—j D™ fllog, 0<j<m—1,

for every f € H™(Q), where the inf, is taken over all degree < m — 1 polynomials q.

ProoF. From Lemma 2.2, there exists a polynomial gy of degree < m — 1, such that Jo D7
(f —qo)dz =0, for all 0 < j <m — 1. Then, from Lemma 2.3,

_ . . b—a\™
e {107~ a)llgg} <10 =l < (252) 107 - a)lo

- (& “)m_j 1D™ (o '

™

The next lemma describes the approximation properties of Daubechies’ functions.
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LeEmMA 2.5. Forn > 0and N > 1, let f € HV(R). Then,

P
sl 27D g 0<p<A,

pvsn,k ’
where S, ; = supp ¥, k.
Proor. For any polynomial g(z) of degree < p —1, in view of (2.1), we have
00
(i) = [ G =Wonpda= [ (7= @bnido

—00 Snk
<N f —dllos,  1¥nell = 11f —allo,s, .

Since |Sp x| = 27" R, in view of Lemma 2.4,

] S 1T = o5 <2770 |flps, o

COROLLARY 2.1. Forn>0and N > 1, let f € HV(Q), where Q is a finite interval [a,b]. Then,
for a fixed value of zo where f(xo) has definition,
dl ‘IJRp-H —n(p—l-—l/Z)
F=P2(f)) (w0)| <

gt { P >m2§m{|f|"!sak} oG-/

I<p<N,

where U = SUp_ o, ¢ y< 00,0<r<1 %(az).
Proor. In t.he interval Q = [a,b], let I},(z0) = {k | ¥;k(z0) # 0}. Then, there are only R
integers in I, (mo). They satisfy that 27zy — R < k < 29zy.

(f P @) =3 3 (Flay i) =2 (o),

izn kelf

S ST (flas k)= (o)

7( Pn(f (zo)| =

da! 327 kel (z0)
<> N | (Flos ¥sk) (330)‘
jzn keﬂ (zo)
ST 22N (f i) (2.5)

izn keIl (zo)

R? s
S\I’Zﬁ Z 93l+3/29 IP| flp.5;

jzn kEIi(mo)

I RP ilo .
=— 22 Jp—-D+i/2 Z | Flp,8;.0-

jzn kel (zo)
Then,
o YR i(p-1-1/2)
|f(zo) — PE(F)(20)| < — > o Rpglax {Iflp,s;,.
i>n !
< T ([flpsy} D2 2.6
- 7P jrnkel? PS5,k e ’
U Rptl o—n(p—i-1/2) I

<

7 s s T 5

We now derive the main result of this section, which provides the mathematical justification
for wavelet-based Galerkin methods applying to the Kolmogorov equation.
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THEOREM 2.1. Let N > 2 and Q) = [a,b] is a finite interval, where a,b are integers.

H?(R), where 1 < p < N/2, then

1.
IF = P2, = < CE.D)IFl2p 027" + || fllp R0,
P,
where
1 R2p+1
CQ,p) = 1—9-p/2 P Vb — all9|p;
2.

1f = PRl g < COP)IF12p027 "2 + | fllo,r-0.
ProoF. Let p > 1, where

f(z), ze€Q,

f=fithy A= { ad  fof2) = £(z) - 1(a).

0, reR-Q,

1099

Iff e

Then, P2(f1) = P2/ and || fallp.r = || fllpR-0- From HP(Q) C L2(R) =V, @ Wy, ® Wyy1 ®- -,

so fi = P(f1) + 2isn Zkejjf}(flﬂ/)j,k)wj,k;

Ikl = 1015 + 2% |93 + - - - + 227 |9|2 < 22972,

Therefore,

If = Bl m < 1F2 = PRI, 5 + 1 fellnr
= A =P, » + 1 lpR-0,

Ifs = PRl =

Z Z (f1, 956005k

izn kel

R

<SS W s sl

izn kelf

R? . .
< =50l D D 2771 filap,s; 2P

izn kelf

R2?p w
< 9l D277 3 |filap,s,-

jzn keIf

For O = [a,b], we let [j; = [a+1/27,a + (i + 1)/29]. Then, @ = JZ¢~971 . ;. Let

1, =€ I_'J',
X5,i(%) ={ ’

0, otherwise.

Observe that

S

2

k k+R RL—JI k+v k+v+1
k=90 "o | T 27 T 95

i+ 1
“55 MY

k+R—1-27a [ ] k+R—1—2%a

U L

i=k—27a i=k-2%a
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Hence,

k+R—1-2a k+R—1-27a

|fil2p,s;0 = Z J1X5.i < Z | f1l2p,7; .-
i=k—27a 9. S, i=k—2ia
Pyj,k
If . .
1+1 +v k+v+1
[“+2’“+ 2:’] [zy Y }

then k + v = ¢ + 27a. Hence, k = 27a + i — v, where v can go from 0 to R — 1. It follows that
every interval of form

7 141
is contained in at most R cases of S;, for all possible j and k. Hence, every |fi|s, 1, appears
at most R times in the following summation:

at

k+R-1-2a 29 (b—a)-1
Z |f1]2p,sj,k: -<— Z Z |f1[2p,I_j,i S R Z |-f1|2p,iji‘ (2‘7)
kel kel i=k-2ia i=0
But
. 2 .
29 (b—a)—1 27 (b—a)—1
Z |f1|2p,1=j,i = Z |f1|2pjj,klf1}2pjj,l
i=0 k,l=0
1 27 (b—~a)~1
<5 Y (8B, + 1B,
k=0
1 2/ (b—a)—1 27 (b—a)~1 1 2 (b—a)~1 27 (b—a)-1
2
= 5 Z Z |fl|§PyI_j,k + 5 Z Z lfli?l’jj,z
k=0 l=0 k=0 =0
1 24 (b—a)~1 29 (b—a)~-1 1
. j 2
- 52](() —a) Z ]‘fltgpjj,k + Z §2J(b — a)lfilzp, 1,
k=0 =0
=2 (b - a)|fil3p0
21'(1; a)—-1
Z | f1l2p,8;0 < Z ‘fl]ZPva,i 8
kel i=0 (2.8)
< 2/2RVE—a|filspa < 2P/2Rvb — a| flap-
Hence,

£ = P2, < 2pl|wan2“”’ Y |filw.s;.

jzn kelf

S g (\/b_—a[ f|2p,n2j"/2)

jizn
ZQ —ip/2
ji>n
1 —np/2
_a‘ |f|2PQ 2 p/2 2 M
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This completes the proof of (1). For (2), as before, because of ||¢; kllo = ||%]|o from Lemma 2.5,
(2.7), and (2.8), we have

17 = B0 m < 11 = P2l + 1 Florop
<SS 1 i) skl + [ Flo.r—0

jzn kelf

<oy > 277 zplfllzp, i T 1 o r-0

jzn kel

2p
< B 1o 25 3 ilaps,, + Iflor-a

jzn keI

27 (b—a)—1
< sz W”OZ2 2p (R > |f1|2p,ij,i) + | fllo,r-0

izn 1=0

nwnozz % (Vb= alflzp,02""/%) + | om0

_1>'n

<Vb— |I¢Ho|f|2pn§:2 922 + | fllor-a

ji>n

71'2P

- a0l 2 + [ F o

— 9~ 3p/2 71-2p
< C(Q,P)|f|2zo,02_3""/2 + [l £llo,r-a-

Thus, the theorem is proven. 1

COROLLARY 2.2. Let N > 2 and let ) = [a,b] be a finite interval, where a,b are integers. If
f € H*®*(R), where 1 < p < N/2, then

1.
Hf*PQ “pg__ (,0)|fl2p,02” —np/2,
where .
0.5 = (127 ) VB alls
2.

15 = B2(D)llo.q S C Q)| flap027""/?,
where p satisfy 1 <p < N/2.
ProoF. For the first part, let

flz), z€Q,

fl(ﬁ):{o reR-Q

Then, P2(f1) = P(f) and || f —~ P2(f)ln.e = 11 = P2(f1)lp2 and | Flzpr = | fulapr- Hence, it

is clear that

|15~ PRI, = If = P20
=[lf1 = P,
< C(Q,p)fil2p,027% + || illp R0
= C(4,9)|f|2p,027"?/2.

The first part is proven. We can similarly prove the second part. 1
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For PDE problems, we usually deal with function u, which depends on ¢ (time variable) and x
(spatial variable). Let (u(z,t), %y ) be the inner product taken with respect to spatial variable z.
Then, it must be a function of ¢, and %(u(x, 1), Ynk) = (%(x,t),z/)n,k). Suppose %1;- € HP(R).
Then, the next corollary follows from Theorem 2.1.

COROLLARY 2.3. For N > 2, suppose u and % € H??(R), where 1 < p < N/2. For a fixed t,
then

R+ gy Ou
gp (o RW)|| < ( )«(b a)[[¢] z-np/ul
” ) —2-p/2 P 0ty q 3|, p g’
R2p+1 Su
- _ pQ < / el 2-—3np/2 i ,
H (= B ) ( -27 p/2) Wl tlap,a 9 llo,r—q
where 1 < p < N/2.
Proor. Because ;%(u,?/)n,k) = <%:‘a'€bn,k), we have
8 Q Q ou
720w =2 (5.
From Part (1) of Theorem 2.1, we have
0 o ou q {Ou
s -] -5 -2 Gl
R¥»+1 oy g ||Ou
< Vb =a) |y 9~/ +|—— .
( -2 ,,/2) e = | 5 2p.0) Ot ||, r-q
On the other hand, Part (2) of Theorem 2.1 implies
Oou Ju
u—PQ(u ‘——Pn <———>
|5 o] =[5 -2 (5
R2P+1 | by du
27mP .
< (o3 ) VO bl o | 51 sy

COROLLARY 2.4. For N > 2, suppose v and %% € H?P(R), where 1 < p < N/2. For a fixed t,
then

1 R2p+1 (9 Y
“" (= P ) Q$<m)¢w——@uzpup-wg—pa—j o2,

1 R2v+1 |5 o
H% (u— P} (u)) < (m) V(b= a)ll¢|lp_7r—§;)_ 6_1: 9—3np/2

0,0

where 1 < p < N/2.
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3. WAVELET-GALERKIN METHOD AND ITS
APPLICATION TO THE KOLMOGOROV EQUATION

In this section, we first discuss the basic idea of the Galerkin method (a finite-element method)
with Daubechies’ functions as base functions. We then apply this method to the Kolmogorov
equation. We also give a theoretical verification that the solution of the Kolmogorov equation
can be approximated in a finite domain.

The following notation is used when we consider the solution u(z,t) of a partial differential
equation:

- 1/2
LE(HP(Q2)) =< u(z,t) |u(z,t) € HP(Q) for any fixed ¢, </0 (||u(m,t)||p’g)2 dt) <00

Now let u(z,t) be solution of the Kolmogorov equation

% = Av, (3.1)
u(z,0) = up(x),
where A is a differential operator with respect to z in either form
Al i %_Z(fi<x>+g_§<x>>%_;(33%@) (32)
or form ) 2 5 of 1
A=Y g~ T g~ 2 (gh 4 @), 83)

In [18], it is shown that (3.1) has solution in S for any fixed t, if ug(z) € S. For simplicity, here
we consider the case that the x variable is one dimensional.

In the following discussion, we always let T be a fixed positive value. In Section 5.4, we prove
that if u(z,t) and —g—’;‘ are continuous with respect to ¢, and u(z,t) € S for the variable z, then
for a small enough positive number ¢, there is an interval Q = [a, b], such that

lu(z,t)] <€, |ula,t)] <e |u(bt)| <k, zeR-Q, (3.4)

where ¢ € [0, T.
So when we fix this interval 2, which satisfies the above condition, it is reasonable to use the
solution of following boundary-value problem as an approximation to the solution of problem (3.1)
ou

— = Ail
5% i, z €Q,

i(z,0) = uo(z), e, (3.5)
u(a,t) =a(b,t) =0, 0<t<T.

Practically, the finite interval Q for (3.5) is found as follows. We first find a finite interval
to make the initial condition small enough outside the interval, and thus, solve (3.5) based
upon this interval. Then, we adjust the interval during the processing of solving boundary-value
problem (3.1), and formulate a new boundary-value problem (3.5).

We would like to approximate the solution of (3.5) by the wavelet-Galerkin method. In
view of Theorem 2.1, we would like to approximate u in Q by functions in V¢ = {u, =
Zke 1o AnkPnks Ank are functions of t}. Here ©n,i are sometimes called basis functions. The
degree to which w,, fails to satisfy (3.1) is expressed by an equation residual

%:%—Aun.

The smaller R is, the better a good approximation u,, is.
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The essence of Galerkin’s method is to require that this residual be orthogonal to the set of
basis functions ¢y, k. That is,

(P ®) =0, kel (3.6)

where the inner product is taken in space L2(R) over R. Rewriting condition (3.6), we get

0
< n Aun:‘Pnk> =0, in VnQ7 OStST,

ot (3.7)

Un(z,0) = P,?(uo).

Here ¢y, , 2"a+1— R < k < 2" — 1, are basis functions of V.

In summary, we can use Galerkin’s method to get an approximation solution u, € V, in
interval Q, where Q satisfies condition (3.4), for problem (3.1) by solving (3.7).

In Theorem 3.5, we give a theoretical justification that the solution of boundary value prob-
lem (3.5) by the wavelet-Galerkin method is the approximation of solution (3.1) in Q. We first
recall the maximum principles for parabolic equations and the Riemann-Lebesgue lemma for
Fourier transform, which are needed in the proof of Theorem 3.5. In Theorem 3.6, we prove the
convergency of the wavelet-Galerkin method applied to the Kolmogorov equation.

We need to recall the maximum principle for parabolic equation and several concepts from [19,
pp. 159-177).

Let D be the open domain in n-dimensional space. Then,

E = {(z1,z2,... 1 Zn,t) : (T1,22,...,2n) € D, 0 <t < 0}
is the n + 1-dimensional region. We define region
ET={(£L’1,1272,...,.’17-,,,,t) GE!tST}.

The operator

o2 3] 3]
L= ;%ﬂ,a%+;bma ~ = (3.8)
is said to be parabolic at (x,t) = (z1,%2,...,2n,t) if for a fixed t the operator consisting of the

first sum is elliptic at (x,¢). That is, L is parabolic if there is a number y > 0, such that

Zaw Xt£z£;>uZ§“ (3.9)

i,5=1

for all n-tuples of real numbers (£1,£&3,...,&,). Operator L is uniformly parabolic in a region Er
if (3.9) holds with the same number p > 0, for all (x,t) in Er. The following is Theorem 5 in
19, p. 173].

THEOREM 3.1. Let u satisfy the uniformly parabolic differential inequality

Pu Ou 8u
iudhad 3.10
(D)l = a(e 1)y + b, 50 — o2 (3.10)
in a region Er = {(z1,%2,...,2n,t) € E: t < T}, where E is an open domain, and suppose the

coeficients of I are bounded. Suppose that the maximum of u in Er is M and that it is attained
at a point P(z,t) of Ep. Thus, if Q is a point of E that can be connected to P by a path in E
consisting only of horizontal segments and upward vertical segments, then u(Q) = M

The following is Theorem 7 in [19, p. 174].
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THEOREM 3.2. The conclusions of Theorem 3.1 remain valid if u is a solution of (L + h){u]
>0, provided h <0 and M > 0.

REMARK. The change of variable v = ue™* replaces the inequality (L + h)[u] >0 by (L +h —
A)[v] > 0. If h is bounded above, we can choose A so large that  — A < 0, so that a maximum
principle applies to v.

The following lemma is the special case of the Riemann-Lebesgue lemma [20, p. 246].
LEMMA 3.1.
(1) Suppose that f is continuous over [a,b]. Then,
b b
lim [ f(z)cos(ex)dr = lim [ f(z)sin(cz)dz =0. (3.11)

—
=0 a [amdee] a

(2) Suppose that f is continuous and absolutely integrable over (—oo,00). Then, f({) =
Joo F(@)e™ 758 — 0 as €] — +oo.

Let us recall two theorems in [21]. The first is Theorem 2.2 in [21, p. 25]. The second is
Theorem 2.11 in [21, p. 32].

THEOREM 3.3. Let f(z) € L*(R) Then, its Fourier transform f satisfies the following.
(i) feL®(R) with sup, [f] < [ |f|
(ii) f is uniformly continuous on R.
(iii) If the derivative f' of f also exists and is in L'(R), then

f'(€) =«f(€);  and (3.12)
(iv) f(€) =0, as £ — oo or —co.

THEOREM 3.4. Let f € L*(R) N L2(R). Then, the Fourier transform of f of f is in L*(R), and
satisfies the following “Parseval identity”:

/:‘f'z d5:2“/_: || dé. (3.13)

The following is a fundamental step in the numerical solution to the Kolmogorov equation.

LeEMMA 3.2. Let T be fixed. We have that u(z,t) and % are continuous respect to t, u(z,t) € S
for every fixed t. Then, for any € > 0, there exists a constant number Xy > 0, such that when
|z| > Xo, |u(z,t)| < 2¢ for 0 <t < T.

ProOOF. We have u(z,t) € S. Hence, for any fixed t, u(z,t), 3% € L'(R) N L?*(R). By Theo-
rem 3.4, & € L2(R) and 2%(¢) = ¢a(¢) € L2(R). Thus, g = (1 + |¢])a € L*(R). Note that

(1/(1 + |¢))g = 4. Therefore,
= }1/2 J/ '9'2‘15]

/' |_/1+I£I

From u(z,t) € S, we know that u(z,t) = [°_ (€, t)e? ¢ d¢.
On the other hand, according to the “Parseval identity”,

[ /- |g|2ds] v [ [ @+ |§[a>2dg] v
< [ e df} " [ /- iéﬁlzdﬁJ v

Ju

=\/ﬁ[/:|u|2dxr2+\/_{/: 5

z

9 1/2
dzjl .
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According to the Fatou theorem, both [[°7_ |u|?dz]'/? and [[°7_ |2%|2 dx]'/? are continuous
with respect to t. Hence, they are bounded in [0, T}, that is,
e 11/2
dm}

o 1/2 )
sup [/ ]uIdeJ + {/
OSiST —_c0 —00
) 1/2
Co = sup { [/ g df} }
0<t<T oo
is finite.

For any € > 0, there exists a number K > 0, such that

1
/,E,ZK T %

ou
Oz

is finite. Thus,

1/2
<e.

From the Schwartz inequality,

1/2
R 1 =) 5 1/2
/'fIZK e olde s Umz;( (T+€)? df} [/_oo 9 dﬁ] < Coe, (3.19)

For | [} 4(£,t)e?™%= d¢|, we first need to prove that (£, t) is continuous with respect to &%)
x [0,T]. Let A¢ and At be positive. Then,

G(€ + A, t + At) — 4(&, t)]

= /00 u(z,t + At)e 2T (e72MALE 1) dp| 4 G, t + At) — (€, 1)

—~—o0

= / (u(z, t + At) — u(z, 1)) (e 208" _ 1) =272 gy

" V u(a,£) (€72TA% — 1) €7 da| 1 Ja(e, ¢+ At) — (€, 1)

= /°° (u(z,t + At) — u(z,t)) (e—2m'A£a: _ 1) e—2miks g
(6 + A& 1) = 4(,1)| + [a(6, £+ Ar) — a6, )]

According to Lemma 3.3, we know %(£,t) is continuous in [—K, K] with respect to . And
according to the Fatou theorem, 4(¢,t) is continuous with respect to t in [0,T]. Also,

52/00 ju(z, t+At) ~u(z, t)| de.

—00

)
/ (u(:c, H‘At)—u(m,t)) (6—27riA§z . 1) e—27rz‘.§z dx

—00

So there exists a positive number §, such that when [A¢] + |A¢] < 6,
[e 9]
_<_2/ Ju(z, t+At) —u(z,t)| dz <€,

‘ / N (u(z, t+At)—u(z, 1)) (e72mAET 1) g~ 2miéz gy
la(€ + A&, t) — A€, 1) < e,

and
[a(€,t + At) — 4(€,t) < e

Then, 4(¢,t) is continuous in [~ K, K]x [0, T]. Then, it is uniformly continuous in [—K, K| x[0,T}.
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In the following, we just choose z > 0, such that Kz an integer. The proof is similar for the
case that Kz is not integer. Then,

K (K-1)z (2l+1)/2z
/ (¢, t)sin(@nér)dé = Y ( / a(€,t) sin(2néx) d€
~-K 1

x

I=-Kaz (3.15)
(+1)/=
+ (€, t) sin(2réx) d€ |,
(2U41) /22
(21+1)/2z (2U+1)/2z 2% "
/ (¢, t) sin(2néz) d€ = ﬁ(fll,t)/ sin(2néz) d§ = —u;ilT’),
l/x 17&3
and
{41}/ (+1)/z % ;
/ (¢, t) sin(2mézx) d§ = &({lg,t)/ sin(2n§x) d¢ = __ggfm_,)’
(214+1)/2z (204+1)/2% Tz

where & € [l/z, (204 1)/2z] and &3 € [(2L+1)/2z, (I +1)/z]. Then, &1 —&3| < 1/z. Because 4
is uniformly continuous. We can make z large enough, such that [4(&1,2) — 4(&2,t)] < €/K.
Hence, (3.15) becomes

(K-1)z

<y

l=-Kz

(1+1)/z
+ / (&, t) sin(27éx) d§
(

20+41)/2x
(K-1)x

) [a(61,t) — (&2, )] (3.16)

2rx

(21+1)/22
/ (&, t) sin(27éx) d€
l

z

K
/ (¢, t) sin(2méx) d§
-K

<
l=—Kz
(K-1)z

Similar, we can prove that for large enough z,

K
/ 4(&,t) cos(2méz) dE
-K

€
< —. 3.17
<< (3.17)
Hence, from the above, we know that we can find a zo when |z| > 2o, for any 0 <t <T,

oo K
lu(z, t)l = l‘/_ ﬁ(g,t)e%ri&m dgl < '/_K ﬁ(g,t)e%rigx d¢

+ /|512K ale, £) de
< I / - 4(€,t) sin(2nx) dgH / ” 4(€,t) cos(2méx) d§‘+ / la(e, 1) de (318)
—0 —00 1> K

2 2
S_ﬁ"i"ES(——-l-l)G I
T

™

The following theorem tells us that we can use a boundary value problem to approximate the
Kolmogorov equation.
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THEOREM 3.5. Let u(z,t) be the solution of the Kolgomorov equation (3.1),

ou
‘5{ = Au,

u(z, 0) = uo(z),

(3.19)

where A is in either form (3.2)
18 [8F 8 [(8F of
A”é”éﬁ‘(%+f)5§*(5}5+5§)

18 8 (K af
A—r“‘f@&“(?*‘%)'

or form (3.3)

There exists a fixed number A < 0, such that %25123 + -g_:’;- > A for A in form (3.2), or h?/2 + %
> A for A in form (3.3), and ug(z) € S. Then, for every € > 0, there exists a finite interval
Q) = [a, b], such that the following is true.

(1)

lu{a, t)] <e, lu(b, t)] <, [u(z,t)] <e, (3.20)

wherez e R —Q, t € [0,T).
(2) The solution of equation

o1 B
a = A1, x € (],
a(z,0) = uo(x), x € ), (3.21)

(
(a,t) = u(b,t) =0, t € [0,T],
in the interval ) approximates the solution of (3.19) in the following manner:

uo,t) — (s, t) < e Te,  zeQ, )
lu(z,t)| <, zeR-Q, te[0,T]. ’
ProoOF. For (1), because u is the solution of the Kolmogorov equation (3.1), u(z,t) € S, and
u(z,t) and &% are continuous with respect to t. From Lemma 3.2, we can find a finite interval
[a1,b1], such that |u(z,t)] < € when z ¢ [a1,b1] and 0 < t < T. We can take a larger interval
Q = [a,b] D [a1,b1]. Then, for @ = [a,b], Item (1) is proven.
For the chosen interval Q = [a,b], let v = ue** and ¥ = @et. Then, both v and o satisfy
v

— = (A - 3.23
in Q. So does v — ¥. We assume sup,¢q(v — @) > 0 (if not, we can consider ¥ — v, and get the
same result). Then, v — ¥ satisfies the condition of Theorem 3.2 in domain Q x (0,T). Hence, it
obtains the maximum and minimum values at the boundary of Q x (0,T]. At boundary ¢ = 0,
(v —7)(z,0) = ug(x) — up(x) = 0. At boundary = = a and =z = b,

[v{z,t) — v(z,t)| = IeAtI ju(z, t) — iz, t)]
= ‘eAtl [ufz, )]
< Ju(z, 1)
<e
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So for any x € Q, |v(z,t) — U(z,t)] <e But

lu(z,t) — a(z, t)| = e Mu(z, t) — o(z, )]
a7 (3.24)

<e €.

When z € R — Q, from (1),
lu(z,t)| <e. (3.25)

Then, (2) holds. |

We are going to find a numerical solution of (3.21). In view of Theorem 3.5, we can see that
it is also the approximation of solution {3.1).

In the following, we assume that all the Kolmogorov equations are of form (3.1). First, we
show that the solution of boundary value problem (3.5) can be approximated by

2™b—1
Up = Z )‘n,kQOn,k;

k=2m7q+1—~R

where u,, must satisfy (3.7) according to the principle (3.6).
For A with form (3.2), u,, must satisfy

ouy, 1 /8%, Ou,,
<%1¢n,]‘>R = 5 <7::§_>(pn,j>R_ <(——'((E)+f( )) - "Pny.7>R

- <<f75(:v) + j—i(w)) Un, son,j>R, (3.26)
Un(x,0) = Plug(z), z € (a,b),

un(a,t) = un(b,t) =0, t € [0,7],

where Q = [q, b].
Rewriting (3.26), we get

2"b-1 dA
Z dt <9‘7n1’ Pni)R
j=2"a+1-R
2"b—1
d*pn d2F df
- ’\'[ <'_LJ“’907H> “<<—"‘“( )+ (:E)) Pn a(Pnz>
‘—27%1 R 712\ dx? R dz? 7 R

<< (3:)+f(z)> Lpn i gam»> ], for2"a+1-R<i<2™ -1,
R (3.27)

2"b—1
> A(0)pn; = Plug(z),

j=2"a+1—R

2"a—1

> p(2"a—k) =0,

k=2"a+1—R
2"b—1
> (@M — k) =0,

k=2nb—R+1

te[0,T].
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For A with form (3.3), u, must satisfy

<% > _1<62U” . f Oun
gt i) T2 \aar i) AT ax""”’1>R

h?(z) | df
- <<T + %(z)> Un, ‘Pn,j>R ) (3.28)
Un(x,0) = Plug(x), z € (a,b),
up(a,t) = un(b,t) =0, te[0,1],
where Q = [a, b].
Rewriting (3.28), we get
2mb—1
dX;
z 'Eﬁ(ﬁan,ja Son,i>R
j=2ra+1-R
2751
1 /d%p, ; hi(z) df
3 ) (0 )
j=27§1_R 2\ dz? R 2 dx J R
d(P'nﬂ] i . n
—{ f(z) s Pri , for 2"a+1-R<i<2"h—1,
dzx R
(3.29)
mb—1
Y A(0)¢n; = Plug(a),
j=2na+1-R

2%a—1

Y Ap(2ha-k) =0,

k=2"a+1-R

27b—1

Y (27— k) =0,

k=2rb—R+1

te[0,T].

In the rest of the section, we prove that u, converges to the solution of (3.5) as n go to infinity.
In view of last section, then, it is reasonable to use u, as the approximation of the solution
of (3.1).

First, let us recall the following lemma. A special case of this lemma can be found in [22, p.
35], where it is called a fundamental lemma (or Bellman-Gronwall lemma). The proof of this
lemma here is essentially the same as in [22].

LEMMA 3.3. Let f, g, h, and | be piecewise continuous nonnegative functions defined on an
interval a < t < b, g being nondecreasing. If, for each t € [a, ],

FO) + (D) < g(t) + ¢ / " H(9)i(s) ds, (3.30)

where c is a constant, then
(@) +h(t) < g(t) exp (c /t I(s) ds) . (3.31)
Proor. We first assume h(t) = 0. We need to prove that if
10 500) +e [ 605,

then f(t) < g{t)exp(c f(fl(s) ds).
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Let k(t) = f(t) ——cf F(s)l(s) ds. Then, k(t) < g(t). Let F(t f F(s)l(s)ds. Then,

dF

= = k(OI) + FOI(E).

It is clear that F'(t) = f: k(E)I(€) exp(c f ¢ 8) ds) d¢ is a solution of the above differential equation
with initial condition F(a) = 0. Hence, we have

[ 1neas= [ wougen (e [ 1) de

<a(t) /a "1(€) exp (c /6 “1s) ds) de

-2 [atgren ([ 165d5) a

- .9_(5'32 (exp <c/atl(s) ds) _exp (c/ttl(s) ds)>
_ .9(6_t) <exp (c/atl(s) ds> - 1) .

Thus,

() < g(t) + / £($)i(s) ds

< g(t) +g(2) (exp (c / tl(s)ds) _ 1) — g(t)exp <c / "1s) ds) |

If h(t) # 0, then
F() + ht) < gt +c/ F()i(s) ds < g(t) +c/<f<s + h(s))I(s) ds

Hence, f(t) + h(t) < g(t) exp(c f I(s
The lemma is proven. |

Now for Q = [a, b], where p is an integer, the following theorem says that the estimate of the
difference between P4 and u, is bounded above by the multlple of the LZ(H(£2))-norms of
difference between @ and PS4 and the difference of a“ and (PQ ).

THEOREM 3.6. For a fixed value of T, let @ be the solution of (3.5) with & € L4(H?(Q)) and
86 ¢ L2(H'(R)), where Q = [a,b] with a,b is in the form of k/2™ with k,m integers. Let
Up = i b2n1a+1 R An,kPnk, satisfy (3.7). Then,

Q- 2 1 T Q- 2
1P22 -y @+ 5 [ PR~ ]} at
2 Jo

(3.32)
< o(2+8C3+6C2+2C1)T { /
0

2

T 5 T
' (a — Pa) dt+2C'3/ |z — P, dt},
0 [¢]

ot

where
(1) Cr=5sUpseis_RpiR |9E (z)+ f(z)| is finite, Ca = SUPs¢(a—R,b+ ] |%—(m)+%(m)l is finite,
C3 = max{1/2+ C1/2,C5/2}, if A is in form (3.2);

(2) C1 = SUDscla-Rr,b+R) | f(2)| is finite, Co = SUPg¢la—R,b+R] [(h?/2)(x) + %(-’f)] Is finite,
C3 = max{1/2 + C1/2,Cy/2}, if A is in form (3.3).
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PROOF. For simplicity, we use (-) to represent (-)o. Let Hi(z) = 4£ + f(z) if A is in form (3.2),
or f(z) if A in form (3.3). Let Hy(z) = %{; + %(z) if A is in form (3.2), or %(x) + (h?/2)(z)
if A in form (3.3).

Let 7, = P} — up,, wy, = @ — PS4, For any v € V.

<3(a _ un),v> -1 <?i(%xgl‘_”_),v> _ <H1(x)i@(;x—u"),v> — (Ha(@)(@ — un),v) . (3.33)

G, _ Own, 1 /0% (P& —uy) 1 /8%w,
<52(P§“““")’“>+<_a£"“>:§<"“‘"B}T”“’”>+5<F:—2"”>
P4 — u, 3.3
+<H1(:c)-—~—————6( n@m v ),v>—<H1(x)%gi,v> (3.54
— (Ha(z) (P20 — un) ,v) + (Ha(z)wn, v) .

Moving (5—5‘?, v) to the right, we get

<Q§7—Z—’v> == <%U7’l""> + % <%2;72",v> - <Hl(x)%%’v> - (el (3.35)
+ % <%,v> - <H1(a:)%%'1,v> — (Hy(w)wn,v),

1 /0w, Ov Own, b+R
- _2.< 5 ’833> < l(x)—é;—,v> (Ho(z)wn,v) + 0(d — up) L
By moving —(1/2)(6—5795&, vy in (3.36) to the left, it becomes
A, 1/0n, Ov\ _ 3 % _ % _
< ot ’”>+ ) < Bz’ 8m> - < B ’”> <H1(""") bz ’”> (Ha (@)t v)
1 /0w, Ov Own,
—§<—6;,%>"<H1($)—a;,v> (3.37)
b+R

— (Hy(z)wn,v) + %v(ﬁ — Up) L

Now we replace v with 7, and get

O L /O O\ _ [ Oun O o\ _ 1 /0wn O
<"a?’"”>+§<%’ 3 )=\ m) T (F@) 5 ) =5\ 50 Bs

— (Ha2(@)7n: M) — <H1(w)%%ﬁ, nn> (3.38)
1 b+R
- <H2($E)’u)n, 777'1—) + 5%(@ - Un)
a—R

Now @(a — R, t) = @(b+ R,t) = up(a — R,t) = un(b+ R,t}=0.
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Let Cy = sup,e(o—prp+ 7] [ H1(2)]; C2 = sUP.e(a—prb+ Ry [H2(2)]

1113

o, 1 1 |6
+f 77 < Ciz (4G |Imll§a + A b
2 4C, oz 0.9
* (3.39)
ann
=202 mlRa + 5 | 52
d2F df
3wn 817n 2 Bwn 1 3%
2 3.41
l< )| < 41 R @
dF Bwn e B, ||?
Yy n y 3.42
(% +7) 5o )| <5 (IIn o+ | Q) (3.42)
d?F df C,
(S ) )| —2—||wn||on+ el (343)
ow, 1 awn 2
'<W’ Tin> =3 U oe + 5”%”0,9- (3.44)
Hence
O, 1 /6n, on, Own, dF 87]n
—imn il S s LAl (LA Pl F it
<6t’nn>+2<8x’0$ Nz ™) |\\@ ) 3™
+ d’F 4 awn 877n
g2 ) 9z ' Oz
F((E y p)
dx gz '™
L (EE L4
dz2 " dz )
<%+ dimaiza+20miRa + 3 | 52
) at O’Q 0,0 1 0,Q 0.0
Bwn 817,,
+C2”77”HOQ+ l 6.’13 ” 6:1} 00
e ow,||? \ C
(H%Hoﬂ"’ H Oz 0,n> 72”'“)"“%,9
+ 2l
Then,
i L1/ O\ ” 2+ L1 o ||*
ot 2\ 0z’ Oz 2dt Tilo T 50 57
15, 3C.
H v ( +202+——2+ s G
02 1 Cl 6111" 2 1 a’f]n 2
Thwnti+ (5+5) | 5], + 1|7
Let C3 = max{1/2 + 01/2 Cy/2}. We get
1d Bnn dwy, 1 3C C
st + |2 < 5%+ cutant + (3 4208+ 222+ DY ot e
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or
o ll® 1 ||6wn|? 1 3C, C
sl | 52] <3| %]+ ot (54207422 Y i a9
Multiplying both sides by 2, we obtain
d 1 Swy, 2
= (lB) + 5lmnll? < |||+ (1 4+402 4+3Co +C1) il + 20 Jwalli.  (3.49)

Taking the integral, we have

T
<),
0 0

From Lemma 3.3, by letting

T
I3+ 5 [ Il
) 0 (3.50)

Own, T T
dt + (1 +4CE +3C5 + Cy) / 7|2 dt + 203/ [|wnl1 dt.
0 0

T
O = ImlB@), WD = [ It

T 2 T
Ow
o@) = [ 1% deracs [ wntaae
0
we obtain
1 /T T 2 T
3T +5 [ Il dseerscisscssaor s [H T depacy [unliatf. @50
4 Jo o Il 9t i 0
The theorem is proven. 1

From the above theorem, we know that we can approximate the solution of (3.5) in a given
interval for a given period of time.

4. PYRAMID ALGORITHM IN THE
ADAPTIVE WAVELET-GALERKIN METHOD

Here we discuss the Kolmogorov equation for a one-dimensional spatial variable 2. The key el-
ement we need to consider carefully in the wavelet-Galerkin method for the Kolmogorov equation
is how to determine the finite interval §2 over which the condition of boundary-value problem (3.5)
is satisfied. We can choose the approximation interval from the initial condition. Then, as time
increases, there should be some method to determine whether the interval needs to increase,
decrease, or be retained for a certain period of time. Here we introduce a method called the
time-dependent boundary wavelet-Galerkin method. The main point here is that we need to
change the boundary from time to time according to the calculation.

First, we derive a time-dependent boundary value problem by making the interval Q time-
dependent in equation (3.26) (or (3.28)). First, let Q(t) := [a(t),b(t)], un = i bzk’i)a(tl)-{-l—R
An kP k in Q(t) = [a(t), b(t)]. Consider

(3 )2,
—<(dF< 2+ 1z )) 6“",%J>R
(G g,

un(z,0) = *’(*”Uo(w) z € (a(t), b(t)),
2"a(t)—1 2"b(t) 1
ST @) —k)= D Aasp(@7b(t) —k) =0, te[0,T],

k=2ra(t)—R+1 k=27b(t)—R+1
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or

du,, A 0u,

o) T 6z2 g2 P
< ’(P‘n,]>

R
<( )) “m‘Pn,j> : (4-2)
R
un(z,0) = PP b“”Uo(m) z € (a(t), b(2)),
2"a(t)—1 27b(t) -1
ST dkp@a®) —k)= D Aapp(2°b(t)—k)=0, t€0,T],
k=2ma(t)—R+1 k=2mb(t)— R+1

where 2"a(t) — R+1 < j < 2°b(t) — 1, and PP Olyy = §2UOL - (40, 0n.3)¢n.5- alt), b(2)
are the functions of ¢, and derived by the following procedure.

When ¢ = 0, we choose the interval Q0 = [a, V'], such that |up(z)] < ¢, x € R — Q. Then, we
enlarge the interval [a’,b'] to [’ — (R —1)/2",¥ + (R —1)/2"] and extend u,(z,0) to [a' — (R —
1)/2™, b + (R —1)/2"] as follows:

2"a'—R 2"+ R—2
un(z,0)= 3. Apni PP uw)+ D Neny,
i=2"g' —2(R-1) j=2nd

where let \; = 0 for 2"a’ —2(R—~1) <i< 2%~ R, A\; =0 for 270’ < j <2" + R - 2.
[a(0),5(0)] := [a’ — (R—1)/2™, b 4+ (R —1)/2"] is the initial interval over which we solve (4.1).
After each step of the iteration in time when solving (4.1), we are at time ¢ and the time for
previous step is t — h. Then, we need to check A, ;(t). There are two cases.
(1) If A, ;(t) =0 for 2"a(t —h)— (R—1) <i<2"a(t—h)—1and 2"b(t—h) - (R—-1) <i <
27b(t — k) ~ 1, then let Q(t) = [a(t), b(t)] := [a(t ~ R), b(t — R)]. ‘
(2) If M\ i(t) # 0, for some 2%a(t ~ h) — (R—1) <1 < 2"%a(t — k) — 1 and some 2"b(t — h) —
(R—1) <i<2"b(t —h) —1, then go back to the previous time stage, expand the interval
Q(t—h) = [a(t — h),b(t ~ h)] to interval [a(t —h) — (R — 1)/2™,b(t — h) + (R —1)/2"], and
extend un(z,t — h) to [a(t —h) — (R —1)/2",b(t — h) + (R — 1)/2"] in the following way:

2"a(t—h)—R 2"b(t—h)+R—2
Un(z,t —h) = Z Aioni +un(z, t —h) + Z AjPn js
i=2na(t—h)~-2(R—1) j=2"b(t—h)

where let A; =0 for 2%a(t —h) —2(R—1) <i<2"%a(t~h) — R, A; =0 for 2"b(t — h) <
Jj < 2"b(t — h) + R — 2. Then, redefine interval Q(t — h) := [a(t — h) — (R —1)/27,
b(t — h) + (R—1)/2"]. Then, formulate the new problem (4.1) or (4.2) by using new
interval [a — (R — 1)/2",b+ (R — 1)/2™]. Solve it at time stage t — h. Repeat the process
again and again until Case (1) happens for time stage t.

Thus, we can see that each time we go from one time stage to the next, we can guarantee that
the value of u,, which satisfies (4.1) or (4.2), at the boundary of interval is zero. By following
the procedure of selecting §2(t) as above, we called equation (4.1) or (4.2) a time-dependent
boundary wavelet-Galerkin method. In the following theorem, we prove that the solution of the
time-dependent boundary wavelet-Galerkin method comes out to be an approximation of the
solution of the Kolmogorov equation. ‘

THEOREM 4.7. There exists a finite interval Q, such that the solution u,, of time-dependent
boundary wavelet-Galerkin method is an approximation of boundary value problem (3.5) for the
interval ). Then, it is also a approximation of the Kolmogorov equation (3.1) with form (3.2).

ProoF. From the discussion time-dependent interval 2(t) above, we know (1) C Q(t2) when
t1 < ta. up satisfy that u,(z,t) = 0 for a(t) < z < a(t) + (R—1)/2" and b(¢) — (R —1)/2" <
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z < b(t). Thus, uy, is the solution of problem (3.26) over the interval [a(t), b(t)]. (Alternative, it
is the approximation to the solution of problem (3.5) with the interval [a(t), b(t)].) Now consider
interval [a(T), b(T)).
It may not be correct that when z € R — [a(T"), b(T')],

WD) <o WO@LOI<e  ulb) <6 (43)
where 0 <t < T. But by Lemma 3.2, at least that we can find an interval [a,b] D [a(T), b(T))]
that, when z € R ~ [a,b], u(z,t) satisfies (4.3). Now for any t5, the solution u, at time ¢y can
be extended to [a, b] by letting u,(z,t) = 0 when z € [a,b] — [a(to), b(to)]. From the procedure
of creating an interval [a(to),b(to)] above, we know that w,(z,t) = 0 for a(to) < z < a(to) +
(R—1)/2™ and b(tg)— (R — 1)/2™ < z < b(to). Hence, %zx%l and a—gf exist in (a, b) ~ (a(to), b(to)),
and ‘9;;2" = %o = %Lt" =0 in (a,b) — (a(to), b{to)). Then, u, also satisfies equation (3.26) with
the initial condition

o (2,0) = { plrtt)btl 0y 1 ¢ [alto), b(to)],

0, 2 € [a,b] ~ [a(to), b(to)],

in the interval [a,b]. Hence, u, is the approximation of the solution w;(z,t) of the following
boundary value problem:

du  10%
Bt 2012
dF Ou d?F  df
_ [ uo(z), = € la(to),b(to)], (4.4)
) ={ " 1a,8] ~ fa(to), blto)),
u(a,t) = u(b,t) =0, 0<t<T,
Ou 10% Bu R?  df
5 ~2o2 1T (‘2“ ’ a;) ulm b
[ uo(z), =€ [alto),blto)]; (4.5)
U(x,O) B { 0, TE [aa b] - [a(to)’b(tO)L
u(a,t) = u(b,t) =0, 0<t<T.

Now suppose the solution of (3.26) with interval Q = [a,b] and initial condition up(x) in £ is
f,,. Then, i, is the approximation of the us(z,t) of the following boundary value problem:

o _ 15
8t 20822
dF bu [d2F  df
{2 = 4= 4.6
(£+s0) 5 - (G2 ) wtet) (4.6)
u(z, 0) = uo(x), z € [a,b],
u(a,t) = u(b,t) =0, 0<t<T,
or
Ou 1@
ot 2022
du h?  df
— — | — = 4.7
o5 - (5+ L) uten (a.7)
u(z, 0) = uo(x), z € [a,b],

u(a,t) = u(b,t) =0, 0<t<T.
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Then, u; — up have to attach the maximum value at the boundary of domain [a,b] x {0,T).
When z = a and = = b, u; — up equal to zero. When a(tp) < z < b(to), (u1 — ug)(z,0) = 0.
When z € [a,b] — [a(to), b(to)], |(u1 — u2)(z,0)| = |uo(z,0)| < e.

So |ui(z,t) — uz(x,t)| < €. In other words, uy, is also the approximation of ug(z,t). Then, it
is also the approximation of (3.5) with interval [a,b]. (Alternative, it is the approximation of the
Kolmogorov equation (3.1).) ]

We know that one problem in solving the partial differential equation by numerical method is
the stability problem. For the conventional numerical methods, for example, the finite-difference
or finite-element method, the step size in time domain depends on the resolution in spatial domain.
In the forward finite-difference method, h/d? < 1/2, where h is the step size in time domain, d is
the distance of two resolution points in spatial domain. When the resolution in spatial domain is
higher, the step size in time domain must be smaller in order to control the culmination of error.
On the other hand, if we can choose a large step size in time domain, the speed of computation
can be faster. Thus, the resolution in spatial variables is a premium for efficiency of computation
for a huge partial differential equation problem, for example, a Kolmogorov equation with a larger
initial condition.

‘When a function is smooth, the Daubechies’ functions approximation to it in Vj, can have
satisfactory accuracy even when n is relatively small compared with some functions with steep
jump, because of the approximation properties of Daubechies’ wavelet.

From Lemma 2.5, we know that

RP
|<f1 '(Z)'n,k” S 2—npﬁ'|f|p,5n,ka 0 S p S N7

where Sy, , = supp ¥, x and f € H¥(R). When f is smooth, mathematically it means that %ﬁ,
or | flp,s, ,» is small for fairly large values of p. Hence, |(f,¥n )| can decrease very rapidly for a
moderate increase in the value of n.

When we apply this principle to a numerical method for partial differential equations, we can
decrease the resolution in spatial variables if the solution is smooth, without the loss of the
accuracy of the approximation.

From Example 1 here, if for the Kolmogorov equation, coefficients F' and f are second- and
first-order polynomial, respectively, the solution will become smooth as time increases. Hence, it
is ideal to dynamically adjust the resolution according to the solution.

There is one drawback for adaptive numerical methods. That is, each time the resolution
changes, a complicated computation is needed to move the approximation from the old resolution
to a new resolution. But for the wavelet-Galerkin method, with the help of the pyramid algorithm,
it is very easy to jump between the different levels of resolution. Here, we discuss how.

Suppose in time tg, we go with step size h to tg + h. We get an approximation in time to + h
in the form u, = Zf:;;;_ R+1An,i¥n,i From the properties of wavelet approximation, we use
[{f, %n k)| to determine how close the approximation is to the real function.

The following is the pyramid algorithm:

O =D h(k—2§)ent1k,
k
Yng =D 9(k = 2))nt1e, (4.8)
k
Ont1g = (G = 2k)onx+ 309G — 2k)Pn k.
k k

For a function f(z), let An; = (f,¥n;) = [ F(2)¥n, ; dz. Hence, we have

Anj =D hlk = 2)Ans1k, (4.9)
k
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fing =Y g(k = 2/)Ans1e, (4.10)
k

Mgy =3 h(G = 26Dk + > g(5 — 2k)pin ke (4.11)
k k

We already said that A, ; is used to determine the level of resolution. Now we have A, ;. Then,
we can use (4.10) to get the pi,_1 ;.

Numerically, two very small constants €; and €s are preassigned, where €; > €3. After each
step of computation, if |A,_1 ;] > €1, we need to go back one step to the previous stage ¢y and
then increase the level of resolution from n to n 41 at that stage. We may assume p,, ; is zero
at that stage. Then, from (4.11), we get A\p41 ; from A, ;. On the other hand, if |A,_; ;] < € at
to + h, we can decrease the level of resolution from n to n —~ 1. Using (4.9), we get the coefficients
)‘n—-l,j-

This is the procedure of dynamically changing the level of resolution in spatial variables. We
apply this numerical scheme to the following example.

_a_u_il_?_z_if_ g+f a_u_ ﬁ.{_ﬂi
ot 2822 \dz 8z \dz?2 " dz )"

u(z,0) = up(x),

ExaMpPLE 1.

(4.12)

where F(z) = (3/4)z?, f(z) = 11z + 5, and

B
o

1
<z < =
_33__2a

1

l—-z, =<z<],
2

0, otherwise.

We shall approximate the solution by our wavelet-Galerkin method and adaptive scheme with
initial interval [—0.4,1.6], and do the computation until ¢ = 0.1. For the purpose of comparison,
we can also approximate the solution by applying Fourier transform to this equation, from which
we can solve the Fourier transform of the solution. Then, we get the solution by applying inverse
Fourier transform. Then, numerical computation is applied to it to get another approximation
to the solution of equation (4.12). We shall call this approach the Fourier method.

Q45 v T T T T v o4
o4}
03sr
0.35]
[ l |
03r
g 025¢ iazﬁ-
i E
0.2 02
g i ] 3 l
0.15 s
[A]
ot
005}
6.05
A . t
-&091 05 4 [ ] 1 15 2 25 a5 A L5 0 [ 1 15 2 25 3
Figure 1. Wavelet-Galerkin approximation, time Figure 2. Wavelet-Galerkin approximation, time

= 0.005. = 0.01.
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Figure 3. Wavelet-Galerkin approximation, time Figure 4. Wavelet-Galerkin approximation, time
= 0.05. =0.1.
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Figure 5. Wavelet-Galerkin approximation. The Figure 6. Approximation from Fourier method.
time for each curve is 0.005, 0.01, 0.05, 0.1. The time for each curve is 0.005, 0.01, 0.05, 0.1.

Uy

Figure 7. Wavelet-Galerkin approximation without adaptive scheme.

We compare the results from these two approximation. The approximations and comparisons
are shown in the figures. In Figure 1, we compute the approximation at time ¢ = 0.005. Figure 2
is the approximation at time ¢ = 0.01, Figure 3 at time ¢t = 0.05, Figure 4 at time t = 0.1. In
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Figure 1, we observe that at the time 0.005, the interval in the adaptive scheme has been expanded
to [~1,2.5]. There are similar phenomena in Figures 2—4 that the spatial intervals expand due to
the adaptive scheme. Figures 5 and 6 show the comparison of the approximation from these two
different methods. Figure 5 shows the approximation by the wavelet-Galerkin method. Figure 6
shows the approximation by the Fourier method. In Figure 7, we just demonstrate that without
using adaptive scheme, there will be a fluctuation in the computation.

5. CONCLUSION

It is well known that the Kolmogorov equation plays an important role in applied science. For
example, the nonlinear filtering problem, which plays a key role in modern technologies, was
solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation.

In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve
linear parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous
proof that the solution of the Kolmogorov can be approximated very well in any finite domain by
our wavelet-Galerkin method. An example is provided by using Daubechies D, scaling functions.

In this example, we notice that we can do it even without any boundary condition, which is a
big hurdle for many PDE numerical method. This computation is very stable. We can balance
the requirements between computation stability and efficiency dynamically by using pyramid
properties of Daubechies functions.
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