
ELSEVIER 

Available online at www.sciencedirect.com MATHEMATICAL 
AND 

8c,. ' .c-  ~____m.-cT- COMPUTER 
MODELLING 

Mathematical and Computer Modelling 40 (2004) 1093-1121 
www.elsevier.com/locate/mcm 

Wavelet-Galerkin Method 
for the Kolmogorov Equation 

ZHIGANG LIANG AND STEPHEN S . - T .  YAU* 
Department of MSCS (M/C 249), University of Illinois at Chicago, M/C 249 

851 South Morgan Street, Chicago, IL 60607-7045, U.S.A. 
Yau©uic. edu 

(Received March 2003; revised and accepted July 2003) 

A b s t r a c t - - I t  is well known that the Kolmogorov equation plays an important role in applied 
science. For example, the nonlinear filtering problem, which plays a key role in modern technologies, 
was solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation. 
In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve linear 
parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous proof that 
the solution of the Kolmogorov equation can be approximated very well in any finite domain by our 
wavelet-Galerkin method. An example is provided by using Daubechies 04 scaling functions. (E) 2004 
Elsevier Ltd. All rights reserved. 

Keywords--Nonl inear  filtering, Kolmogorov equation, Wavelet-Galerkin method, Daubechies 
scaling function, Pyramid algorithm. 

1. I N T R O D U C T I O N  

Despite its usefulness, the Kalman-Bucy filter is not perfect. One of its weaknesses is that  it needs 
a Gaussian assumption on the initial data. The situation is more complex when the statistics 

of the initial condition are modeled by an arbitrary distribution. As observed by Makowski [2], 

in that  event, the filtering question is genuinely nonlinear, and few results have been obtained. 

Notable exceptions axe the works of Benes and Kaxatzas [3], Ocone [4], and Makowski [2]. In [2], 

simple and direct probabilistic arguments are developed for evaluating the conditional expectation 

7rt(p(xt)) of the state density ~(xt) given the observations {ys I 0 < s < t}. It was shown as 

in [3,4] that  there always exists a set of sufficient statistics that  can be recursively computed as 

outputs of a finite-dimensional dynamic system. In contrast with previous results, the sufficient 

statistics generated in [2] can be termed "universal" in the sense that  they are independent of 

the initial state distribution. Furthermore, no assumptions on the moments of this initial state 

distribution or its absolute continuity are made in [2], as was the case in [3,4]. 
However, Makowski's method has a major disadvantage. Let n be the dimension of the 

state space. The number of sufficient statistics in order to compute the conditional expecta- 

tion 7rt(p(xt)) of ~(xt) in Makowski's method is a polynomial of degree two in n, while for the 

classical Kalman-Bucy filter, the number of sufficient statistics is only a polynomial of degree one 
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in n. In the case where the linear filter system is completely reachable and completely observable, 
Hazewinkel observed in [5, p. 115] that the estimation algebra E is the 2n + 2-dimensional Lie 
algebra with an explicitly given basis. Even in this case, the Wei-Norman approach of finding 
an explicit filter is more complicated than the method of Yau and Yau [6]. Not only must one 
solve a finite system of ordinary differential equations and a Kolmogorov equation, but one also 
has to integrate n partial differential equations corresponding to operators a o ~ , ' " ,  o-57~" More 
important, if the Kalman-Bucy system is not completely reachable or completely observable, then 
the basis of the estimation algebra is not explicitly known (although it can be computed). As a 
result, there is an additional disadvantage of the Wei-Norman approach: one cannot write down 
the finite system of ordinary differential equations explicitly. 

The novelty of the method of Yau and Yau [6] is that their finite system of ordinary differential 
equations is explicitly written down and only n sufficient statistics are needed in order to compute 
the conditional expectation. The problem of computing the conditional probability density is 
factored into two parts: 

(1) the on-line solution of a finite system of ordinary differential equations, and 
(2) the off-line calculation of the Kolmogorov equation, which does not depend on observa- 

tions. 

Hence, any method to solve the Kolmogorov equation provides the fundamental step of the Wei- 
Norman's approach to solving DMZ equation, which is the central problem of nonlinear filtering. 

With the appearance of wavelet functions, especially Daubechies' wavelets, people recognized 
that wavelets provide a powerful tool that can be applied in the finite-element method. There are 
two reasons that one wants to use wavelets in the finite-element method. First, the orthonormal 
bases of the compact supported wavelets constructed by Daubechies [7] are unconditional bases for 
Sobolev spaces, and therefore, provide accurate approximations to PDEs' solutions. Furthermore, 
the multiresolution analysis properties of these bases, described in [8,9], work well with multigrid 
methods and adaptive grid refinement methods. Thus, they perform well even for PDEs with 
initial ill-conditions. Second, the locality of the Daubechies functions and the pyramid algorithm 
of Mallat described in [10] are extremely efficient for adaptive finite-element methods. 

Adaptive finite-element methods have been proposed by Brandt [11] for the elliptic problem 
and developed by Bank [12] and others. More recently, Berger and Oliger [13] studied and 
implemented an adaptive mesh-refining method for a hyperbolic partial differential equation, 
which was successful in solving previously intractable problems [14]. They used a sequence of 
progressively finer nested grids in space. An automatic error estimation step determines locally 
whether the current resolution of the numerical solution was sufficient or a finer grid was needed. 
The main difficulty was to find stable and accurate difference approximations of the differential 
operators at the interfaces between grids of different sizes. 

Wavelets orthogonal bases are excellent examples of hierarchical bases. Liandrat and Tcha- 
mitchian [15] have shown that the multiresolution structure of wavelets orthonormal bases is 
a simple and effective framework for spatial adaptive algorithms. Instead of refining the com- 
putations through nested grids of successively finer meshes, as in the algorithm of Berger and 
Oliger [13], wavelet orthonormal bases implement adaptive refinement by successively adding lay- 
ers of details that increase the resolution of the approximation locally. Communication between 
the different layers is regulated automatically by the orthogonality of the basis functions and the 
pyramid algorithm. 

In this paper, we solve the Kolmogorov equation by the wavelet-Galerkin method. 
In Section 3, we will discuss the use of this finite-element method in solving partial differen- 

tial equations. Here, we use Daubechies' wavelets as basis functions because of their ability to 
approximate many functions and because of the pyramid algorithm. 

In order to apply the wavelet-Galerkin method to the Kolmogorov equation, first, we will show 
that we can use the solution of the initial-boundary value problem 
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m Ot A~, x C ~2, 

~(x,O) = uo(x), x C fl, 

ft(a, t) = g(b, t) = O, 

as an approximation to the solution of the Kolmogorov equation 

(1.1) 

m 

Ot Au, 

~(~, 0) = ~o(~), 
(1.2) 

where A is a differential operator with respect to x in either form 

A=SZ0x~ s~(~)+~(x) ~ -  \o~+-5-~(x)) 
i " 

(1.3) 

or form 
1 ~ 0  2 O ~ ( O f i  ) lh~(x) (1.4) A = ~ Ox~ E fi (x) ~ - \ Oxi + 2 " 

i 

Then, second, we apply the wavelet-Galerkin method to equation (1.1) to find the numerical 

approximation to its solution in form Un(X, t) ~-'2b-I A = L,k=2O-R+I n,k~,k.  In view of the results from 
the first part, this is also the numerical approximation of the Kolmogorov equation (1.2). 

In Section 4, we will discuss how we select an interval based upon which we will calculate the 
numerical solution for the Kolmogorov equation. We derive a method called the time-dependent- 
boundary wavelet-Galerkin method. With this method, we first determine an initial interval fl 
for the boundary value problem (1.1) based upon the initial condition of the Kolmogorv equa- 
tion (1.2). Then, during the computation, we adjust this interval based upon the numerical solu- 
tion of (1.1). Thus, we prove that the solution of the time-dependent-boundary wavelet-Galerkin 
method is really the numerical approximation to the solution of the Kolmogorov equation (1.2). 

2. A P P R O X I M A T I O N  P R O P E R T I E S  
OF D A U B E C H I E S '  F U N C T I O N S  

Daubechies' functions are one type of wavelet. The advantage of Daubechies' functions is that 
they are compact supported, orthonormal, and easy to construct. 

For every integer N > 1, let R = 2 N -  1. From [7], we have the Daubechies' scaling function 
and wavelet ¢ satisfying 

and 

R 

~(x) = ~ h (k)v%(2x  - k) 
k=0 

R 

¢(x) = ~ 9 ( k ) , 5 ~ ( 2 x  - k), 
k=0 

where 

1. h(k) ~ O, 0 < k < R, and g(k) = ( - 1 ) k h ( R -  k), 
2. Ek  h(k) = v% 
3. E ~  h(k)h(k + 2m) = 5om, for every integer m, 
4. ~ k g ( k ) k  m = 0, whenever 0 _< m _< N - 1, and 
5. Supp(~) = [0, R], Supp(¢) = [0, R]. 
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Define ~o~,k = 2~/2~o(2~x - k) and ~b,~,k = 2~/2~b(2~z - k). Then, 

F V j, k, x'~bj,k(x) dx = O, 0 < m < N - 1. 
( 3 0  

(2.1) 

Let 

V~= closureof { ~ a k ~ o , , k : k a n i n t e g e r } c L 2 ( R ) ,  / (2 .2)  

W ~ =  closureof { ~ b k ~ b ~ , k : k a n i n t e g e r } C L 2 ( R ) .  (2.3) 

From [7], we know the following. 

(i) W~ is the orthogonat complement of V~ in V~+I, or V~+I = V~ G W,~. 
(ii) Closure ([_J~ V~) = L2(R), where R = ( -o% ec). 

(iii) {~n,k : k is an integer}, { ~ , k  : k is an integer} are orthonormal bases for V~ and W~, 
respectively. 

(iv) Supp(~n,k) = supp(¢~,k) = [k/2 n, (k + 2N - 1)/2 n] = [k/2 n, (k + R)/2n]. 

PROPERTY 2.1. 

~$n,k and ~bn,k C C a(N) = space of Hhlder continuous functions 

with exponent ),(N), where A(N) ~ 0.3485N. 
(2.4) 

Let ft be either R or a closed interval [a, hi, where a, b are rational numbers. We use notation 
from [16] as follows. 

1. H°(ft)  = L2(f~) with the standard Hilbert space inner product(.,-). 
2. Hm(fl)  = {f E Hm-l(f~) I f '  e Hm- l ( f t )}  with Hilbert space inner product (.,.)m,a 

defined inductively by (., ")0,a = (', "} and (f, g)m,n = (f, g) + (f ' ,  g')m-l,n. 
3. The associated norm II" IIm,a is given by IIf[I-~,a = ~ ,  for f e H'~(f~). 
4. Also for f e H'~(ft), we define [f[m,a = IlD'~fllo,a, where D = ?-45z. 
5. H~( f t )  = { f  e H m ( a )  I f (a)  = f(b) = 0}. 

In what follows, we use the following notation. Suppose ft = [a, b] and p is a positive integer. 
Then, 

I~ a = {k e Z ] supp(~n,k) n F t ¢  0} = {k e Z I 2 ~ a -  R < k < 2'~b}, 

V n a = l  E A k ~ , k  ) ~ k e R } .  
( keI~ 

For f e Hr (R) ,  

) 
It is clear that  V~ a C Vn = V~. In order to derive the approximation property of Daubechies' 

functions, we need to state the following lemma. The first is proved in [17]. 

LEMMA 2.1. I [ f e  Hlo(ft), where f~ = [a,b] and - o z  < a < b < 0% then 

lrllflI0,a < (b - a)][D(f)No,a (Rayleigh-Ritz inequality). 

The next lemma is straightforward. This is easily proved by induction on m. 
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LEMMA 2.2. I f  f E Hm(~2), there is a unique polynomial P of degree <_ m - 1 (or = 0), such 
that 

~ D ~ ( f  - P) dx = O, 

for all 0 < a < m -  1. 

Using Lemma 2.2, we can prove the following lerama. 

LEMMA 2.3. Let Q = [a, b] be a finite interval. For every f E Hm(f~), such that fa Da ( f)  dx = O, 
for all 0 <_ c~ <_ m -  1, 

IID' fllo,  iiD flio, , O < j < m - 1 .  

PROOF. Let f j ( x )  = f ~ D J ( f ) ( s ) d s ,  where 0 < j < m - 1. Then, D(f j )  = DJ(f) .  From 
f a D a ( f ) d x  = 0, for all 0 < ct < m - 1, we know that  f j e  H01(f~). Then, from Lemma 2.1 

b - a  
I IDIIo,a -< - -  

71" 
IID(D)IIo, a ~ b -_ a IiDJ(Y)llo,a 

7F 

Doing the integration by part, we get 

f (DJ( f ) )  2 dx = f j (b)DJ(f)(b)  - f j (a )DJ( f ) (a)  /~ DJ+l ( f ) f j  dx 
Y 

I IDJ+ f f f ) l l o , a  I l f j l lo ,a 

b -  a D j + l  II (f)llo,  ilD(Sj)llo,  
71" 

b -  a D6+1 - II Is)lies, IIDJ(S)Ilos,. 

(by Lemma 2.1) 

Therefore, 

By induction on j ,  we get 

NDj(f)N0,a<_ b - a  Dj+I II (s)llo, . 

N Dj f IIo,a -< IIDmfilo, n, O < j < m - 1 .  

LEMMA 2.4. For ft = [a, b] and - c o  < a < b < c~, then 

inf {ttD'(J- < IIDWllo, , O ~ j < m - 1 ,  

for every f E H'~(~),  where the infq is taken over all degree < m - 1 polynomials q. 

PROOF. From Lemma 2.2, there exists a polynomial q0 of degree < m - 1, such that  f~ DJ 
( f  - qo) dx = 0, for all 0 <_ j _< m - 1. Then, from Lemma 2.3, 

= rn O,fl. 

l iD~( f  - qo)lio,a 

The next lemma describes the approximation properties of Daubechies' functions. 
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LEMMA 2.5. For n > 0 and N > 1, let f E HN(R).  Then, 

l(f, ¢n,k}[ < 2-npRP ifip,S~, k 0 < p < N ,  
- -  7rP ' -- -- 

where S~,k = supp Cn,~. 

PROOF. For any polynomial q(x) of degree _< p - 1, in view of (2.1), we have 

15 t; (f, ¢,~,~) = ( f  - q)¢,,~ dx = ( f  - q)¢~,k dx 
O~ n,k 

< I l l  - qllo,s~,~ll~b~,~ll -- I I f  - q l l o , s , , ~ .  

Since iS~,~l = 2-~R,  in view of Lemma 2.4, 

_ _ --rip Rp 
l(f,¢,~,e)l < infilf -qllo,s~,~ < 2  TKIflp,s.,~. 

q 

COROLLARY 2.1. For n > 0 and N k 1, let f E HN(t2), where fl is a ~nite interval [a, b]. Then, 
for a fixed value of xo where f(xo) has definition, 

d~_~ ( xo ) ~ RP+ I ( f - P ~ ( I ) )  < ~  max {[fip,sj,k} 2-~(P-1-1/2) 
- Try ~>~,kesy 1 7 ~ 2 ) '  1 _<p_< N, 

where ~ = sup_c~<x<oc,O<r< l dz" t J" 

PROOF. In the interval t~ = [a,b], let I~(xo) = {k I Cj,k(xo) # 0}. Then, there are only n 

integers in I~(xo). They satisfy that  2ix0 - R < k < 2Jxo. 

d__~ t d I . 
= E E 

J2,~ k~s} ~ 

Then, 

( f  P~( f ) )  (Xo) l 
kes~ (xo) 

dl¢"k (x0) 

J k  n k E S ~ ( x o )  

<_W~-~.2 il+yl2 ~ I ( f ,¢ j , k ) l  
J>~ kcsT;(~o ) 

R p < gx ~ 1r---~ ~ 2S<+S122-J"lflp'sJ'~ 
J>~ k~s~(~o) 

_ ~Rp :E2-~(P-')+J/~ :E  If lp,~.  
7 r P  

j~_n k E [ ~  (rr, o) 

(2.~) 

] f ( x o ) -  P~(f)(xo)l  < ~RP - IrP E 2 - J ( P - z - 1 / 2 ) R  max a{iflP'sJ~} 
jkn jkn,k~I] ' 

~Rp+ 1 
< - -  
- -  ~ p  

~Rp+I < - -  
- -  7 r P  

max n{ifip.Sj k } ~ 2 -j(p-l-1/2) 
j k n , k E ! j  " , j k  n 

2-~(p-t-1/2) 
max a{Iflp,sjk } 

j k n , k e l j  ' 1 - 2-(p-t-x/2) 

(2.6) 

l 

We now derive the main result of this section, which provides the mathematical justification 
for wavelet-based Galerkin methods applying to the Kolmogorov equation. 
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THEOREM 2.1. Let N >_ 2 and ~2 = [a, b] is a finite interval, 
H2P(R), where 1 < p < 3[/2, then 

I. 

. 

where a, b are integers. I f  f 6 

where 

t2 IIf - PA (f)ll~,~ -< c(t~,p)lfl~.p, ~2-~pl2 + IIflI~,R-~, 

( 1 
C(a,p) = 1 - 2-~,12 ~ x / b -  all¢llp; 

I l l -  " P;~ (f)llo,~ -< c(n,p)lfl2p, .2-a'~p/2 + [Ifllo,R-~. 

PaOOF. Let p _> 1, where 

( f (x) ,  27 E f2, 
f = fÀ + f2, f l(x) = and 

t 0, x E R - f~, 
f i ( x ) = f ( x )  - fl(x).  

Then, Pn~(fl) = P ~ f  and IIf211p,R = Ilftlp,R-a. From HP(i2) c L2(R) = Vn • Wn ® Wn+ 1 ( ~ ' ' ' ,  

so f l  = P~( f l )  + Ey>~ Ekes~ (fl,  !bj,k}¢j,k, 

IlCj,kll~ = I¢12 + 2~u1¢12 + ' "  + 22J~1¢1~ < 22JPtI~tI~. 

Therefore, 

I l l -  P£(s)ll~,~ _ I I f~-  P£(f~)ll . ,~ + IIf211~,R 
= Ilfl - P~(f~)tt~,~ + IlSnl~,R-a, 

Ill1 a - PA (f~)tI~,R = ~ (f~, Cj,k)¢j,k 
j>n keI~ 

p,P,. 

-< E E I(fl,¢j,k)iil~bj,kiip 
~>_~ k~Iy 
R2p 

<<- -~[ICNp E E 2-2JPlflI2p,Sz~ 2jp 
J>~ k~sy 

R2p 
< --II¢llp ~ 2-J~ ~ 151~,s~,~. - -  7F2P 

5>~ kESy 

, = I 12J(b--a)  - 1  For f~ = [a, b], we let f j i  = [a + i/2J,a + (i + 1)/2J]. Then, f~ wi=0 Zi" Let 

I, x E_Tj,i, 
Xy,i(x)= 0, otherwise. 

Observe that 

=tTI k÷v 
v = 0  

k+R-1-2J~i=k_2j~ I i - - J i  + 11 k+R--1--2~ 
= ~ a +  --2J ' a +  --57-, = U IJ~" 

i = k - - 2 J a  
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Hence, 

If 

k+R~ -2~a f l X j , i  Ifll2p,sj,~ = < 
i = k -  2J a 12p,,flj, k 

k + R - 1 - 2 J a  

E f l  2p,5 ,- 
i = k -  2J a 

[ l a + 2"-7' a + - - ~ - ]  ~ ' 2J ' 

then k + v = i + 2Ja. Hence, k = 2Ja + i -  v, where v can go from 0 to R -  1. tt follows that  
every interval of form [ i+)l 

a +  2---9-,a+ 23 J 

is contained in at most R cases of Szk, for all possible j and k. Hence, every lfll2v,5,~ appears 
at most R times in the following summation: 

k+R--1-2Ja 2 7 (b--a)--1 

Ifll2p,sj,~ < ~ ~ If112p,5,~ < -~ ~ If112~,5,~. (2.7) 

But 

CJ (bi-__~O)- 1 
Ifl12p,5 , )  

2 7 (b-a)- I 

= ~ fll2p,zj~lfll~.p,5,, 
k,l=O 

2J(b-a)-i 
<-~ E ( 1 ISll~p,_G k-,+ if~l~,,~,) 

k,l=O 

2J@-~)-1 2J@-a)-i 
1 1 

k=0 /=0 

2J (b-~)- 1 

k=O 

- 2 s (b 2 - - a)lflhp,a,  

2 j ( b - a ) - I  27(b-a)-1  

k=O /=0  

2 7 ( b - a ) -  1 

1/11~p,5,~ + ~ ~2J(b-a)lill2p,5,, 
1=0 

2 7 (b- ~)- 1 

kCI~ i=0 

< 2J/2Rv/b  - a[fl]2p,~ < 2JP/2Rx/5 - a[fl2p,f~. 

(2.8) 

Hence, 

j>~ kcs~' 
R2p+I 

_< --~-~- I1¢11~ ~, 2-J" (,/b - ~ l f l ~ , j  ~/~ ) 
j>n 

R2v+l 
< ~ / b  - all¢llplfl2v,r~ ~ 2 - j ; / 2  

j>_~ 

<~x/b-all~bllplf l2~,a 1 5-~/2 2-'~P/~" -- 7r2p 
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This completes the proof of (1). For (2), as before, because of II~J,k Iio = I1¢11o from Lemma 2.5, 
(2.7), and (2.8), we have 

Nf ~ - P~ (f)llo,~ -< II/1- P~ (fl)llo,R + IlSllo,R-<, 

_< Y~ ~ I(fl, Cj,k)lll¢;,kll0 + Ilfll0,R-a 
J_>~ kesy 

-< I1~IIo~ Z:  -2J~R2P 2 -~-~lAI2~,s~,~ + Ilfllo,a-a 
j>_n kEI~ 

R2p 
<_ W-5711g'llo ~ 2 -2j~ ~ IAI2p,s~,~ + Ilfllo,R-a 

j>_n k6I~ 

-< wwlI¢IIo E 2-2jp fll2p,ij~ + Ilftl0,R-a 
j>,~ \ i=o 

R2p-I- 1 

< - - I1¢ t lo  ~ 2 -2j~> (, /b- al/t~,a2J~/~) + II/llo,R-~ - -  7F2P 
j~n 

R 2 P + I  E 2-3Jpl2 -< b4-gm--g-~ll¢llol/12~,a + Ilfllo,~-a 
j >n  

1 R 2p+1 

= 1 - -  2 - 3 p / 2  7r 2 ~  v/b -- all¢ll°ffli~'a2-a'<~l~ + Ilfll0,R-a 

<- c (a ,p) l f l2p ,a  2-a'~p12 + Ilfllo,R-a. 

Thus, the theorem is proven. | 

COROLLARY 2.2. Let N > 2 and let f/ = [a, b] be a finite interval, where a, b are integers. I f  
f E H2p(R), where 1 < p <_ N/2 ,  then 

1. 
- PA (/)lip,. -< c(a,p)lfl2p,a z-rip~2, 

. 

where 

1 ) R 2p+1 
C(fZ,p) = 1 -  2-p/2 ~ v % -  aN¢llp; 

I I f -  P~(f)llo,~ ~ c(~,p) l f l2p,~ 2-3npi2, 

where p satisfy 1 <_ p <_ NI2.  

PROOF. For the first part, let 

f f ( x ) ,  x e fl, 
A 

O, x c R - f l .  

Then, a P~ (11) = P~(f) and [If-P~(f)l[p,a = ] I f 1 - P ~ ( A ) ] l p , a  and tfl2p,a = ]flt2p,a- Hence, it 
is clear that  

Ns - P.: (s)ll~,~, I l l -  a -- PA (s,)ll~,~ 
= Ilfl ~' - PA (Sl)ll.,~ 
<- c(~,p) l i l l2~,a2 -'~pi2 + IIA IIp,R-a 
= m(~,p) l f l2~,a2-n. i  2. 

The first part is proven. We can similarly prove the second part. I 
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For PDE problems, we usually deal with function u, which depends on t (time variable) and x 
(spatial variable). Let (u(x, t), ~bn,k ) be the inner product taken with respect to spatial variable x. 
Then, it must be a function of t, and o (u(x, t), Cn,k) O~ 0~, ---- (~T(z,t),~b~,k}. Suppose ~ E HP(R). 
Then, the next corollary follows from Theorem 2.1. 

COROLLARY 2.3. For N _> 2, suppose u and -0T Eou H2p(R), where 1 <_ p < N/2. For a fixed t, 
then 

1. 

-ff~ (u Pna(u)) p,R <_ (a  _ 1  R2p+I 
- 2-P/2) V ~ - a ) I [ ~ " P ~  ~t  2p,n 2-np/2+ ~t  p,R-a; 

2. 

1 R 2p+10u Ou 
( u - P ~ ( u ) )  o,R<_ ( 1 - - 2 - P / 2 )  V / ~ - - a ) [ ' ~ b ' [ P ~  ~ 2p,a 2-a~p/2+ ~-  0,R-n' 

where 1 <_ p <_ N/2. 
0 "a cOu PROOF. Because ~ ( , Cn,k) = (-~, ~bn,k), we have 

P~a ( u ) = P2 -~  • 

From Part (1) of Theorem 2.1, we have 

1 R 2p+l Ou Ou 
--< ( 1 - - ~ - p / 2 ) V / ~ - a ) l [ ~ b [ [ P ~  -~-2P'a 2-rip~2+ ~ p,R-a" 

On the other hand, Part (2) of Theorem 2.1 implies 

O ( u _  P~(u)) 0,R:  Ou a 0% - ~ -  P~ ( - ~ )  o,R 

( 1 )  R 2v+l O__~tt2p, a 0_~ o,R-a <- 1 - 2-p/2 v @  - a ) l l ¢ l l p ~  2 -~p + • | 

COROLLARY 2.4. 
then 

1. 

. 

For N _> 2, suppose u and NE°~ H2p(R), where 1 <_ p < N/2. For a fixed t, 

p,a 1 - 2-p/2 V/(b - a)II~llp ~ 2-~P/2; 

( u -  P$(u)) o,a <- (1 1 R 2p+1 _ 2_p/2) v~-a) l l~l lp~ ~ =p,a2 -a~p/2, 

where 1 <_ p <_ N/2. 
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3.  W A V E L E T - G A L E R K I N  M E T H O D  A N D  I T S  

A P P L I C A T I O N  T O  T H E  K O L M O G O R O V  E Q U A T I O N  

In this section, we first discuss the basic idea of the Galerkin method (a finite-element method) 
with Daubechies' functions as base functions. We then apply this method to the Kolmogorov 
equation. We also give a theoretical verification that  the solution of the Kolmogorov equation 
can be approximated in a finite domain. 

The following notation is used when we consider the solution u(x, t) of a partial differential 
equation: 

(j: } t) u (x , t ) cHP(a)  for any fixed t, (I]u(x,t)llp,~) 2 dt /1/2<c~ . L~(HP(~t)) = {u(x ,  

Now let u(x, t) be solution of the Kolmogorov equation 

Ou 
0---[ = Au, 

u(x ,  0) = 

where A is a differential operator with respect to x in either form 

1 o' oF o (oS  

or form 

(3.1) 

A = ~ E Ox ~ E fi(x) . -  \ Ox + h~(x) . (3.3) 
i i • 

In [18], it is shown that  (3.1) has solution in S for any fixed t, if uo(x) E S. For simplicity, here 
we consider the case that  the x variable is one dimensional. 

In the following discussion, we always let T be a fixed positive value. In Section 5.4, we prove 
that  if u(x,t) and o~ are continuous with respect to t, and u(x, t) E S for the variable x, then 
for a small enough positive number e, there is an interval ~ = [a, b], such that  

]u(x,t)]<_e, tu(a,t)[<_e, ]u(b,t)]<_e, z e R - ~ ,  (3.4) 

where t E [0, T]. 
So when we fix this interval ~, which satisfies the above condition, it is reasonable to use the 

solution of following boundary-value problem as an approximation to the solution of problem (3.1) 

0-~ = A~, x C ~, 

0) = • e 

~(a,t)  = ~(b,t) = 0, 0 < t < T. 

(3.5) 

Practically, the finite interval ~ for (3.5) is found as follows. We first find a finite interval 
to make the initial condition small enough outside the interval, and thus, solve (3.5) based 
upon this interval. Then, we adjust the interval during the processing of solving boundary-value 
problem (3.1), and formulate a new boundary-value problem (3.5). 

We would like to approximate the solution of (3.5) by the wavelet-Galerkin method. In 
view of Theorem 2.1, we would like to approximate u in ~ by functions in V~ = {Un = 
~']-k~I~ ),n,k~,~,k, An,k are functions of t}. Here ~n,k are sometimes called basis functions. The 
degree to which un fails to satisfy (3.1) is expressed by an equation residual 

OUn 
- Au,,. 

Ot 
The smaller ~ is, the better a good approximation un is. 

02 F ",, 
+-~x~ (X)) (3.2) 
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The essence of Galerkin's method is to require that  this residual be orthogonal to the set of 
basis functions ~n,k. That  is, 

(~,k, ~) - 0, k e Zn ~, (3.6) 

where the inner product is taken in space L2(R) over a. Rewriting condition (3.6), we get 

Ot --Au~'~°'~'k = 0 ,  i n V , ,  

~(~, 0) = P2(~0).  

0 < t < T ,  
(3.7) 

Here ~,~,k, 2 '~a + 1 - R < k < 2~b - 1, are basis functions of V~ a. 
In summary, we can use Galerkin's method to get an approximation solution us E Vn in 

interval f~, where f~ satisfies condition (3.4), for problem (3.1) by solving (3.7). 
In Theorem 3.5, we give a theoretical justification that  the solution of boundary value prob- 

lem (3.5) by the wavelet-Galerkin method is the approximation of solution (3.1) in fL We first 
recall the maximum principles for parabolic equations and the Riemann-Lebesgue lemma for 
Fourier transform, which are needed in the proof of Theorem 3.5. In Theorem 3.6, we prove the 
convergency of the wavelet-Galerkin method applied to the Kolmogorov equation. 

We need to recall the maximum principle for parabolic equation and several concepts from [19, 
pp. 159-177]. 

Let D be the open domain in n-dimensional space. Then, 

E : {(xl, x2 , . . . ,  Xn, t ) :  (Xl, X2, . . . ,  Xn) e D, 0 < t < ~ }  

is the n + 1-dimensional region. We define region 

ET = {(x~,x2, . . .  ,z~,t)  c E : t <__ T} .  

The operator 

L -- ~ a~,j(x,t) O2 ~ 0 0 (3.8) 

is said to be parabolic at (x, t) = (x~, x2 , . . . ,  x~, t) if for a fixed t the operator consisting of the 
first sum is elliptic at (x, t). That  is, L is parabolic if there is a number # > 0, such that 

n n 

Z a~,j(x, t)¢~¢j > ,  Z ¢~, (3.9) 
i ~ j = l  i = l  

for all n-tuples of real numbers ((1, ~2, . . . ,  ~ ) .  Operator L is uniformly parabolic in a region ET 
if (3.9) holds with the same number # > 0, for all (x, t) in FT. The following is Theorem 5 in 
[19, p. 173]. 

THEOREM 3.1. Let u satisfy the uniformly parabolic differential inequality 

. .02u Ou Ou > 0 
(n)[~] - a(x, t ) ~  + b(x, t ) ~  Ot - (3.10) 

in a region ET = {(x l ,x2 , . . .  ,xn,t)  E E:  t <_ T}, where E is an open domain, and suppose the 
coe~cients of L are bounded. Suppose that the maximum of u in ET is M and that it is attained 
at a point P(x, t) of ET. Thus, if Q is a point of E that can be connected to P by a path in E 
consisting only of horizontal segments and upward vertical segments, then u(Q) -- M. 

The following is Theorem 7 in [19, p. 174]. 
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THEOREM 3.2. The conclusions of Theorem 3.I remain valid i f  u is a solution of (L + h)[u] 
> O, provided h <_ 0 and M > O. 

REMARK. The change of variable v = ue -~t replaces the inequality (L + h)[u] > 0 by (L + h - 
A) Iv] > 0. If h is bounded above, we can choose ~ so large that  h - ), < 0, so that  a maximum 
principle applies to v. 

The following lemma is the special case of the Riemann-Lebesgue lemma [20, p. 246]. 

LEMMA 3.1. 

(1) Suppose that f is continuous over [a, hi. Then, 

b b 
lim / f(x) cos(cx)dx= lira / f(x)sin(cx)dx=O. (3.11) 

C---+ O0 a--+ O0 

(2) Suppose that f is continuo~ and absolutely integrable over (-~, ~). Then, ](~) = 
f_~ f(x)e -~2~ -~ 0 ~ I~I -~ +~. 

Let us recall two theorems in [21]. The first is Theorem 2.2 in [21, p. 25]. The second is 
Theorem 2.11 in [21, p. 32]. 

THEOREM 3.3. Let f ( x )  E LI(R) Then, its Fourier transform f satisfies the [ollowing. 

(i) f e L°°(R) with sup¢ ]}[ _< f _ ~  [/[. 

(ii) f is uniformly continuous on R.  
(iii) If  the derivative f '  of f also exists and is in L I (R) ,  then 

/ ' (~) = i~/(~); and (3.12) 

( i v ) / ( ~ )  - ~  0, ~ ~ -~ o~ or - ~ .  

THEOREM 3.4. Let f C LI(R)  O L2(R). Then, the Fourier transform o f / o f f  is in L2(R), and 
satisfies the following "Parseval identity": 

/? J? / 2 d~ = 27r if[2 d~. (3.13) 
o o  o o  

The following is a fundamental step in the numerical solution to the Kolmogorov equation. 

LEMMA 3.2. Let T be fixed. We have that u(x, t) and ~= are continuous respect to t, u(x, t) C $ 
for every fixed t. Then, for any e > O, there exists a constant number Xo > O, such that when 
Ixl > Xo, lu(x,t)l < 2~ for 0 < t < T. 

PROOF. We have u(x , t )  C 8. Hence, for any fixed t, u(x , t ) ,  ~E°~ LI(R)  N L2(R). By Theo- 

rem 3.4, ~ C L2(R) and ~ ( ~ )  E g = -~(~) = n2(a ) .  Thus, (1 + [~l)~ e L2(R). Note that 
(1/(1 + ][[))g = ~. Therefore, 

/[~l = / ~ d~< [J (111~1)2 d~] 1/2 [/[gl2@]~/~. 
From u(x, t) e S, we know that  u(x, t) = f~_~ ~t(~, t)e 2~i~ d~. 

On the other hand, according to the "Parseval identity", 

+ 1,2 
(~  I~l~) 2 d~] 

cqx 
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According to the Fatou theorem, both [ f_~ [u]2dx]~/~ and [ f_~  o .  2dx]1/2 ~ x  l are continuous 
with respect to t. Hence, they are bounded in [0,T], that  is, 

is finite. Thus, 

o xj 

is finite. 
For any e > 0, there exists a number K > 0, such that  

J l  d~ [ 1/2 1 

L>K (~ + I~I) ~ -<- ~" 

From the Schwartz inequality, 

fte l~(~,t)l @ < 1 d~ Ig12@ < C0e, (3.14) 
I_>g - r_>K (1 + I~I) 2 

for 0 < t  < T .  
For [fSK u(~, t) e2~/~x d~l, we first need to prove that  5(~, t) is continuous with respect to (~, t) 

in I -K,  K] x [0,T]. Let A~ and At be positive. Then, 

I~(~ + A~, t + At) - ~(~, t)[ 

_< ]£t(~ + A~,t  + At) - 5(~,t + At)l + 1~(¢, t + A) - ~ (5  t)l 

= J2u(x,t+At)e-2=~¢x (e -2"~/'¢x - 1) dx + [~;((,t + At) - 5(~,t)] 

<_ f 2 ( u ( x , t  + At) - u(x,t)) (e -2~iA~= - 1) e--27ri~x dx 

J 2  u(x, t) (e -27ri/'~ - 1) e -2~ri~x dx + [a(~, t + At) - 5((, t)l + 

= f 2 ( ~ ( x ,  t + / , t )  - ~(~,  t)) (e -~"A~= - 1) e-- 27ri~x dx 

+ la(~ + A~,t) - a(~, t)l + la(~, t + At) - ~(( ,  t)l. 

According to Lemma 3.3, we know g(( , t )  is continuous in I -K ,  K] with respect to x. And 
according to the Fatou theorem, g((,  t) is continuous with respect to t in [0, T]. Also, 

(u(x,t+At)-u(x,t)) (e -2~{a¢~ - 1) e -2'~¢~ <2  tu(z,t+At)-u(x,t)l  dx. 
oo 

So there exists a positive number 5, such that  when [A(I + IAtl _< 5, 

C I/_" (u(x,t+At)-u(x,t)) ( e - 2 ~ i a ¢ ~ - l ) e - ~ d x  <2 [u(x,t+At)--u(x,t)l dx < e, 
0(2) 

and 

Then, ~(~, t) is continuous in [ -K,  K] × [0, T]. Then, it is uniformly continuous in [ -K,  K] x [0, T]. 
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In the following, we just choose x > 0, such that Kx an integer. The proof is similar for the 
case that Kx is not integer. Then, 

K 
f_ g(~,t) sin(2~r{x) d~ = E \a~/~ ~(~,t) sin(2~r~x) d~ 

K l = - K x  

f(~+~)/~ + z(e/+~)/e~ ~(~, t) sin(27~x) d~) 

(3.15) 

and 

f (21+1) /2x  [(2~+~)/2~ 
?~(~, t) sin(27r~x) d~ = ~t(~/1 , t) sin(2~r~x) d~ = 2~(~a ,  t) 

d//x a//~ 2~rx 

f 
(l+ l ) / x  f ( l+ l )/x 2£t(~a, t) 

5({, t) sin(2~r~x) d{ = u(~2, t) sin(27r~x) d~ -- 
a (21-k1)/2x a (2/-}-1)/2x 2~rx 

where ~/1 c [l/x, (2/+ 1)/2x] and ~/2 E [(2/+ 1)/2x, (l + 1)/x]. Then, [~/1-~/21 1/x. Because 
is uniformly continuous. We can make x large enough, such that ]~(~/~,t) -~(~/2,t)l < e/K. 
Hence, (3.15) becomes 

KK~(~ , t) sin(21r~x) d~ <_ 
(K-1)x (21+1)/2x 

E ~/z ~(~, t) sin(2Tr~x) d~ 
l = - K x  

+ g(21+l)/2x ~(~' t) sin(2zr~x) d~ 

(K-1)x 

- 27rx 
l = - K x  

(K-1)x 

E <- 27rKx 
l = - K x  
E 

7( 

(3.16) 

Similar, we can prove that for large enough x, 

t)  cos(2  x) < E_ 
71" 

(3.17) 

Hence, from the above, we know that we can find a x0 when Ix] _> x0, for any 0 < t < T, 

-< f 2  ~(~,t)sin(2~-~x)d~+ f 2  ~(~,t)eos(27r~x)d~+~l>K '~(~' t)l d~ 

~ - - + e _ <  +1  e. 
7r 

(3.1s) 

The following theorem tells us that we can use a boundary value problem to approximate the 

Kolmogorov equation. 
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THEOREM 3.5. Let u(x, t) be the solution of the Kolgomorov equation (3.1), 

Ou 
Ot Au,  

~(~, o) = ~o(~), 
(3.19) 

where A is in either form (3.2) 

or form (3.3) 

A = - ~  _ 

2 0x 2 -O-xx + f -~x - \ Oz 2 +-~x 

A=~ox--Z- ( ) ~ -  + ~  • 

There exists a fixed number A < O, such that 02F Of + ~ >_ A for A in form (3.2), or h 2/2 + 
_> A for A in form (3.3), and Uo(X) C S. Then, for every  e > 0, there  exists  a finite interval 
f~ = [a, b], such that the following is true. 

(1) 
lu(a,t)l <_ e, lu(b,t)l < e, [u(x,t)l < e, (3.20) 

where x • R - 12, t • [0, T]. 

(2) The  solution of equation 

0-7 = A~,  x • f/, 

~(x,  0) = u0(x), x • a, 
g(a ,  t) = ~(b, t) = 0, t • [0, T], 

(3.21) 

in the intervaI f~ approximates the solution of (3.19) in the  following manner: 

lu(x, t) - a ( x ,  t)[ _< e-Art,  x e a, 
(a.22) 

lu(x,t)l<_e, x e R - f l ,  te[O,T]. 

PROOF. For (1), because  u is the  solution of the  Kolmogorov  equa t ion  (3.1), u(x, t )  E S, and 
Ou u(x, t) and ~¥ are cont inuous wi th  respect  to  t. F rom L e m m a  3.2, we can find a finite interval  

[al ,bl] ,  such t h a t  lu(x,t)t < e when  x ~ [al ,bl]  and 0 < t < T.  We can take  a larger interval  
f~ = [a, b] D [al, bl]. Then ,  for f~ = [a, hi, I t e m  (1) is proven. 

For the  chosen interval  f~ = [a, b], let v = ue At and H = fie At. Then ,  b o t h  v and ~ sat isfy 

Ov 
O~ = (A  - A)v, (3.23) 

in ft. So does v - ~. We assume sup~¢a(v  - V) > 0 (if not ,  we can consider ~ - v, and get the  
same  result) .  Then ,  v - ~ satisfies the  condit ion of T h e o r e m  3.2 in domain  f~ x (0, T) .  Hence,  it 
obta ins  the m a x i m u m  and m i n i m u m  values at  the  b o u n d a r y  of f / x  (0, T]. At b o u n d a r y  t = 0, 
(v -- ~) (x ,0)  = uo(x) -- uo(x) = 0. At  b o u n d a r y  x = a and x -= b, 

Iv(x, t) - ~(x,  t) l = I~**l I~(~, t) - ~(x,  t) l 
= leatl [u(x,t)l 

<_ ]u(x,t)t 
<__e. 
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So for any x c ~, ]v(x,t) - ~(x,t)] < E. But 

~_ e-~Te. 
(3.24) 

When x E R - ~, from (1), 

_< (3.25) 

Then, (2) holds. | 

We are going to find a numerical solution of (3.21). In view of Theorem 3.5, we can see that  
it is also the approximation of solution (3.1). 

In the following, we assume that  all the Kolmogorov equations are of form (3.1). First, we 
show that  the solution of boundary value problem (3.5) can be approximated by 

2rib-1 

Un ~ E )~r~'k ~gn'k ' 
k=2~a+ l - -R  

where u,, must satisfy (3.7) according to the principle (3.6). 

For A with form (3.2), un must satisfy 

(Ott n : n , J } R 1 / O 2 U  n \ dF f ( x ) )  OUn :~'J)rt  

ltn(X,O) = P•uo(x), x e (a,b), 
u~(a,t) = u~(b,t) = O, t e [0,T], 

(3.26) 

where f~ = [a, b]. 

Rewriting (3.26), we get 

2~b-1 
d)~ 

E dt (~gn'J' ~n,i)R 
j=2"~aT1-R 

j=2na+l-R R 

- -~x(X)+f(x)  ~ , V n #  , f o r 2 n a + l - R < i < 2 ~ b - 1 ,  
R 

2~b--1 

E ,~j(Ol~,j = P~uo(x), 
i~2na+l--R 

2 h a - 1  

ak (2na-k) =0, 
k=2~a+l--R 

2~b--1 

k~2~b--R+l 

(3.27) 

t E [0, T]. 
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For A with form (3.3), u~ must satisfy 

= / ( x ) - 0 T ,  ~ . , j~  

df ( x ) ) u ~ , T ~ , j > R ,  

u~(~,o) = P2~o(~), • e (a,b), 

~ ( a , t )  = ~n(b,t) = 0, t e [0, T], 

where n = [a, b]. 

Rewriting (3.28), we get 

2~b-1 
d) V 

j=2~aTi--R 

(3.28) 

÷ 

R (3.29) 

2~b--1 

j=2na+l-R 
2ha-1 

~ k ~ ( 2 " ~ - k )  = 0 ,  
k=2na+l--R 

2~b--1 

Z A~(2"~-~) =0, 
k:2~b-R+l 

t e [0, T]. 
In the rest of the section, we prove that  u~ converges to the solution of (3.5) as n go to infinity. 

In view of last section, then, it is reasonable to use u~ as the approximation of the solution 

of (3.1). 
First, let us recall the following lemma. A special case of this lemma can be found in [22, p. 

35], where it is called a fundamental lemma (or Bellman-Gronwall lemma). The proof of this 
lemma here is essentially the same as in [22]. 

LEMMA 3.3. Let f ,  g, h, and 1 be piecewise continuous nonnegative functions defined on an 
interval a < t < b, g being nondecreasing. If, for each t E [a, hi, 

~a t 
f ( t)  + h(t) < g(t) + c f(s)l(s) ds, 

( / / )  f ( t ) + h ( t ) < g ( t ) e x p  c l(s) ds . 

(3.30) 

(3.31) 

where c is a constant, then 

PROOF. We first assume h(t) = 0. We need to prove that  if 

// f ( t )  < g(t) + c f(s)l(s) ds, 

then f ( t )  <_ g(t) exp(c f t  l(s) ds). 
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Let k(t) = f(t) - c f2 f(s)l(s) ds. Then, k(t) < g(t). Let F(t) = fd f(s)l(s) ds. Then, 

dF 
d--t = k(t)l(t) + cF(t)l(t). 

It is clear that F(t) = fd k(~)/(~) exp(c f;  l(s) ds) d~ is a solution of the above differential equation 

with initial condition F(a) = O. Hence, we have 

Thus, 

f(s)l(s)ds = k(~)l(~)exp e l(s) ds d~ 

/' (// ) < g(t) l(~)exp e l(s) ds d~ 

= c cl(~)exp c l(s) ds d~ 

-- g(t) (exp (c / t l ( s ) d s )  - e x p  (c / t l ( s ) d s )  

= g(t) (exp (c~ t l ( s )  ds) - l )  

t 

f(t) < g(t) + e f(s)l(s) ds 

_<,(t) + , ( t ) ( e x p  (c / t l ( s )  ds) - 1 )  -- g(t)exp (c / t  l(s) ds) . 

If h(t) # O, then 

f(t) + h(t) <_ g(t) + c f(s)I(s) ds < g(t) + c (f(s) + h(s))l(s) ds. 

Hence, f(t) + h(t) < g(t)exp(c f t l(s) ds). 
The lemma is proven. | 

Now for gt = [a, b], where p is an integer, the following theorem says that the estimate of the 
difference between P ~  and u= is bounded above by the multiple of the L~(Hl(~))-norms of 
difference between ~ and P ~  and the difference of ou and 0 ( p n ~  

THEOREM 3.6. For a fixed value of T, let ~ be the solution of (3.5) with ~ C L2(H2(f~)) and 
o~o__y e L~(HI(f~)), where f~ = [a,b] with a,b is in the form of k~2 m with k,m integers. Let 

X-~2nb--1 
u~ = z-,~=2~+t-R ;~n,k~n,k, satisfy (3.7). Then, 

2 1/o  

- - ~  , 

(3.32) 

where 

d2F /X'~.j_ df (x'~l (1) C1 = supze[a_n,b+n] I~d~z (x)+ f(z)l isfinite, C2 = supze[a_R,b+R] -3-~-x ~ ] dzX J~ isfinite, 
C3 = max{l/2 + C1/2, C2/2}, i rA is in form (3.2); 

(2) c1  = sup~cIo-R,b+RJ jf(x)l  is ~nite, C2 = sup~io_R,b+R l I(h~/2)(x) + ~(x)J is ~nite, 
C3 = max{l/2 + C1/2, C2/2}, i r a  is in form (3.3). 
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PROOF. For simplicity, we use (-> to represent (.)n. Let Hl(x) = dp -~z + f(x) if A is in form (3.2), 

or f(x) if A in form (3.3). Let  He(x) = d2F -Erx + ~ ( x )  if A is in form (3.2), or ~ ( x )  + (he/2)(x) 
if A in form (3.3). 

Let  7]n = p a t  _ un, wn = ~ - P e e .  For any v e Y~ a.  

1 <~t(~ Un),V> 7<Oe(f~-un),v> - /  O(~-un) " 
- = Ox e ~Hl(x) -Ox ,v~-(He(x)(f~-Un),V>. (3.33) 

Thus,  

\ ot ' I = ~ ~ '~ + 7 \ - E S ' ~ /  

(pag_u,~),v}_<Hl(x)~_~_,v> (3.34) + < Hl(x)O "Ox 

- <H2(x) (pnf~ _ Un), v) + (ge(x)w,,, v). 

/ o ~  v) to  the right, we get Moving \ ot , 

Or/n v > :  ~OWn v \  1/Oe~ln,v\-- v > -  <H~(~)v~, V> 
(3.35) 

1/aewn \ < Own > 
+ \ - E E J ' V  - - 

(Orln > _~Own v \ l <Or/n Ov)_<Hl(X)~x,V>_<He(x)~Tn,V) 
Ot v = \ at / - - '2  Ox ' Ox (3.36) 

< > < ~x~ > 1 ,b+R 1 Own Ov - Hz(x)  ,v - <H2(x)wn,v} + = v ( ~ - u ~ )  . 
2 Ox ' Ox z I~-R 

By moving -(1/2)(°o-~x ~ , O~)o~ in (3.36) to the left, it becomes 

,v +5 ox'ox = - \ - - g ' v / -  Hi(x) 

2 \  Ox' 
1 I b+n 

- <H2(x)w.,v> + 7v(~ - un) o-R" 

Now we replace v with r}n and get 

< O~ln \ I <O~z Or/n\= /OWn } < _O_~z > 1~Own 071n ) 
- E ' w / +  -i ' ox I - \ ot ,r],, - H i ( x )  ,r~n - "~ \ Ox ' Ox 

(He(x)nn, vn) <g, 0w~ 
_ _ ( x ) - ~ x  ,vn  } 

1 b+R 
- < H : ( x ) ~ n ,  ~n> + 7 v ~ ( ~  - ~n)  • 

a--R 

Now ~(a - R, t) = ~(b + R, t) = un(a - R, t) = un(b + R, t) = O. 

(3.37) 

(3 .3s)  
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Let C1 ---- supx~[a_R,b+R 1 JH~(x)l, C2 : supze[a_R,b+R ] ]g2(x)l 

~C1~ 4Cl['t]n]l~,f~+~~ 10X 0,~2] 

-- 2Clll'r/,,llo,a + g 

1 /Ow~ 0rib)I<2 Own 2 10r]~ 2 
-{ \ Ox '  Oz - 4  Ox o,a + g Ox o,a' 

d-'x-z -t-f --~-x'r]~/ -<T IIw~ll°~'a+ Ox o,a ' 

/ d2 F df \ C2 2 

< Ow~ \] 1 Own 2 1 2 
-K-'~"/I  <- ~ ot o , a + ~  Ilvnll°,~ 

Hence, 

Then, 

( \ 1/ o,. --~-'~n/-]-2 \ Ox 09g } ~ /OWn \] f) _~X ,T]n 

+ 

1 _<~ 

\ dx2 J \ Ox ' Ox } [ 

\ dx 2 

t 2 1 2 1071n 2 

0,fl 

1 Own 2 1 Orln 2 
+ C~ll~"ll°~,a + ~ Ox o,a + g Ox o,a 

C2 2 + vll~lto,a. 

-~-'~"/+~\o~ Ox =~dT;l~"'J°+~ a~ o 
1 Own 2 (1  3(72 _~) 

<- ~ ot o + + 2c~ + - 5 -  + 11~.11o ~ 

C2 2 + 

Ox o 4 Ox o" 

Let C3 = max{l /2  + Ct/2, C2/2}. We get 

l d  10r ln  I 1 0 w ~  2 (1 3C2 ~__kl) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 
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or  

5~7rt~11°+~ ox -<3 ot 0 +c311~°~11~+ + 2 c ~ + - - f f - +  IIv~flo 2. (3.48) 

Multiplying both sides by 2, we obtain 

1 2 OW n 2 
__e (b. l l~)  + ~11~11i < + (1+4c~+3c2+c1)fl~.lEo~ + 2c311w.111 (3.49) dt - Ot o 

Taking the integral, we have 

(3.50) 

~o r Own 2 dt+ (l+4C2t +3C2+C1) foTH~?,~,l~dt+2Ca~o T -< at o IIw~lfl dr. 

From Lemma 3.3, by letting 

I(T) = IIwHo~(r), KT)-- ~ Ib~ll~dt, 

g( r )  = ~ dt 4- 2C3 I I~l l i  dt, 

we o b t a i n  

11~llo2(T)+ ~ l[~7~]]2 dt<e(2+sc;+6c=+2C,)T Own - -57- dt+2C~ II~l l ldt  . (3.51) 

The theorem is proven. | 

From the above theorem, we know that  we can approximate the solution of (3.5) in a given 
interval for a given period of time. 

4. P Y R A M I D  A L G O R I T H M  I N  T H E  
A D A P T I V E  W A V E L E T - G A L E R K I N  M E T H O D  

Here we discuss the Kolmogorov equation for a one-dimensional spatial variable x. The key el- 
ement we need to consider carefully in the wavelet-Galerkin method for the Kolmogorov equation 
is how to determine the finite interval ft over which the condition of boundary-value problem (3.5) 
is satisfied. We can choose the approximation interval from the initial condition. Then, as time 
increases, there should be some method to determine whether the interval needs to increase, 
decrease, or be retained for a certain period of time. Here we introduce a method called the 
time-dependent boundary wavelet-Galerkin method. The main point here is that  we need to 
change the boundary from time to time according to the calculation. 

First, we derive a time-dependent boundary value problem by making the interval ft time- 

dependent in equation (3.26) (or (3.28)). First, le t  a ( t )  := [a(t), b(t)], u~ = z-,k=2 a(t)+l-R 
a~,k~,k in e(t) = [a(t), b(t)]. Consider 

o t  ' = ' l 

( 
\ \ ~  Ox ' 

- / ( d=F(x )+~(x ) )u ~ ,~n , j }R  (4.1) 
\ \ dx 2 

Un(X , 0) : P[na(t)'b(t)]UO(X), 3g e ( a ( t ) , b ( t ) ) ,  

2 ~ a ( t ) - i  2~b( t ) - i  

E ;k~,k~(2~a(t) -- k) = E ),~,kqo(2~b(t) -- k) = 0, t e [0, T], 
k = 2 ~ a ( t ) - R +  l k=2~b( t ) -R+ l 
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or 
1 

/ f  x Our ,gn , j  

-- ( ( ~ 2 ( X ) -  ~- ~ x ( X ) ) , ~ n , ~ n , j ) R ,  (4.2) 

. . ( 5 ,  0) = p~o(~),b(t)] .0(~),  x e (~( t ) ,  b(t)) ,  

2~( t ) -1  2~b(t)-i 

E An,kT(2~a(t) -- k) = E An,k~(2nb(t) - k) = 0, t E [0, T], 
k=2~a(t)--R-k l k=2~b(t)-R+ l 

where 2 ~ a ( t ) -  R +  1 _< j < 2~b(t) - 1 ,  and P[a(t)'b(t)]uo v'~2~b(t)-i ' - = 2- . j=2- , ( t ) -R+l  tuo, 9n, j}9~,j .  ait),  bit) 
are the  funct ions of t, and derived by the  following procedure.  

W h e n  t = 0, we choose the interval f~ = [a', b'], such t ha t  lu0(x)] < e, x E R - f~. Then,  we 
enlarge the interval [a', b'] to [ a ' -  (R - 1) /2  n, b ' +  ( R -  1) /2  n] and ex tend  u , ( x ,  O) to  [a' - (R - 

1) /2  '~, b' + (R - 1) /2  "] as follows: 

2na~_R 2nb~ +R-2 

Z 
i=2~#-2(R-1)  j=2nb ' 

where let Ai = 0 for 2'~a ~ -  2 ( R -  1) < i < 2ha r -  R, ),j = 0 for 2'W < j < 2nb t + R -  2. 
[a(0), b(0)] := [a' - (R - 1) /2  '~, b' + (R - 1) /2  ~] is the  initial interval  over which we solve (4.1). 

After  each step of the  i tera t ion in t ime when solving (4.1), we are at t ime t and the t ime for 
previous step is t - h. Then,  we need to  check ~n,i(t). There  are two eases. 

(1) If ~n#(t)  = 0 for 2~a(t - h) - (R - 1) < i < 2~a(t - h) - 1 and 2nb(t - h) - (R - 1) < i < 

2"b(t  - h) - 1, t h e n  let  a ( t )  = [a(t) ,  b(t)] :=  [ a ( t  - h ) ,  b ( t  - h)]. 
(2) If A., i ( t )  ¢ O, for some 2"a(t  - h) - (R - 1) < i < 2"a(t  - h) - 1 and some 2"b(t - h) - 

(R - 1) < i < 2~b(t - h) - 1, then  go back to  the  previous t ime stage, expand  the interval 

f i ( t -  h) = [a(t - h) ,  b(t - h)] to  interval  [a(t - h) - ( R  - 1 ) / 2 L  b ( t -  h) + ( R  - 1 ) /2"] ,  and  
extend  u ,  ( x, t - h) to  [a( t - h) - ( R - 1)/2 ", b( t - h) + ( R - 1)/2 "] in the  following way: 

2n a(t--h)--l~ 2~b(t--h)+ R-2  

i=2~a(t--h )-- 2( R--1) j=2~b( t--h ) 

where  let )~ = 0 for 2~a(t - h) - 2(R - 1) < i < 2na(t - h) - R, ,kj = 0 for 2~b(t - h) < 
j <__ 2%( t  - h) + R - 2. Then,  redefine interval f t ( t  - h) := [a(t - h) - (R - 1)/2 ~, 
b(t - h) + ( R -  1)/2~]. Then,  formulate  the new problem (4.1) or (4.2) by using new 
interval [a - (R - 1)/2 ~, b + (R - 1)/2'~]. Solve it at  t ime stage t - h. Repea t  the process 
again and again until  Case (1) happens  for t ime stage t. 

Thus,  we can see t ha t  each t ime we go from one t ime stage to  the  next,  we can guarantee  tha t  
the value of u~, which satisfies (4.1) or (4.2), at the bounda ry  of interval is zero. By  following 
the procedure  of selecting f t ( t )  as above, we called equat ion (4.1) or (4.2) a t ime-dependent  
bounda ry  wavelet-Galerkin method.  In the  foUowing theorem,  we prove t ha t  the  solution of the  
t ime-dependent  b o u n d a r y  wavelet-Galerkin me thod  comes out  to be an approximat ion  of the  
solut ion of the  Kolmogorov equation.  

THEOREM 4.7. There exists a finite interval f~, such that  the solution un of t ime-dependent 
boundary wavelet-Calerkin method is an approximation of boundary value problem (3.5) for the 
interval ~2. Then, i t  is also a approximation of  the Kolmogorov equation (3.1) wi th  form (3.2). 

PROOF. From the discussion t ime-dependent  interval  f~(t) above, we know f~(tl) C f~(t2) when 
t l  <_ t2. u,~ satisfy tha t  u , ( x , t )  = 0 for a(t) < x < a(t) + ( R -  1)/2 n and bit ) - ( R -  1)/2 n < 
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x < b(t). Thus, un is the solution of problem (3.26) over the interval [a(t), b(t)]. (Alternative, it 
is the approximation to the solution of problem (3.5) with the interval [a(t), b(t)].) Now consider 
interval [a(T), b(T)]. 

It may not be correct that  when x e R -  [a(T), b(T)], 

lu(a(T),t)l <_ e, lu(b(T),t)] <_ e, lu(x,t)J <_ e, (4.3) 

where 0 < t < T. But by Lemma 3.2, at least that  we can find an interval [a, b] D [a(T), b(T)] 
that, when x E R - [a, b], u(x, t) satisfies (4.3). Now for any to, the solution u~ at time to can 
be extended to [a, b] by letting un(x, t) = 0 when x C [a, b] - [a(to), b(to)]. Prom the procedure 
of creating an interval [a(to), b(to)] above, we know that un(x, t) = 0 for a(to) <_ x < a(to) + 
(R- 1)/2 ~ and b ( t o ) - ( R -  1)/2 ~ < x < b(to). Hence, ~ and ~-~ exist in (a, b)-(a(to),  b(to)), Ox 2 Ot 
and ~2~" = a=.0= = O=~o__7_ = 0 in (a, b) - (a(to), b(to)). Then, un also satisfies equation (3.26) with 
the initial condition 

f P[na(t°)'b(t°)](uo), x E [a(to),b(to)], 
?Zn(x, O) t 0, x e [a, b] - [a(to), b(to)], 

in the interval [a, b]. Hence, u,~ is the approximation of the solution u~ (x, t) of the following 
boundary value problem: 

Ou 1 02u 
Ot 20x  2 

f uo(x), z e [a(to), b(to)], (4.4) 
U(X, O) 

0, x e [a, b] - [a(t0), b(t0)], 
u(a,t) = u(b,t) = O, 0 < t < T, 

or  

~(x, o) 

o~ l o2~ f o~ ( ~  d / ) u ( ~ , t ) ,  
o--i = 2 ox2 ( ) ~  - + 

; uo(x), x e [a(to),b(to)], 

0, x e [a, b] - [a(to), b(to)], 
~(a, t) = ~(b, t) = O, 0 < t < T. 

(4.~) 

Now suppose the 
~ .  Then, ~5~ is the 

Ou 1 02u 
Ot 20x  2 

~(~, o) = ~o(~), 
~(~, t) = ~(b,t) = o, 

solution of (3.26) with interval fl = [a, b] and initial condition uo(x) in f~ is 
approximation of the u2(x, t) of the following boundary value problem: 

0 < t < T ,  

(4.6) 

or  

Ou 1 02u 
0--[ = 2 0 x  2 

- f ( x ) ~ x  - (h-~ + ~ x )  u(x, t) ,  

~(x, o) = ~o(~), 
~(a, t) = ~(b, t) = O, 

e [a, hi, 
0 < t < T .  

(4.7) 
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Then, ul  - u2 have to attach the maximum value at the boundary of domain [a, b] x [0, T). 
When x = a and x = b, ul - u2 equal to zero. When a(to) <_ x < b(to), (ul - u2)(x, 0) = 0. 

When x e [a, b] - [a(to), b(t0)], I(ul - u2)(x,  0) 1 = luo(x, O)l <_ c. 
So lUl(X, t) -u2(x,t)l < E. In other words, un is also the approximation of u2(x , t ) .  Then, it 

is also the approximation of (3.5) with interval [a, b]. (Alternative, it is the approximation of the 
Kolmogorov equation (3.1).) | 

We know that  one problem in solving the partial differential equation by numerical method is 
the stability problem. For the conventional numerical methods, for example, the finite-difference 
or finite-element method, the step size in time domain depends on the resolution in spatial domain. 
In the forward finite-difference method, h / d  2 < 1/2, where h is the step size in time domain, d is 
the distance of two resolution points in spatial domain. When the resolution in spatial domain is 
higher, the step size in time domain must be smaller in order to control the culmination of error. 
On the other hand, if we can choose a large step size in time domain, the speed of computation 
can be faster. Thus, the resolution in spatial variables is a premium for efficiency of computation 
for a huge partial differential equation problem, for example, a Kolmogorov equation with a larger 
initial condition. 

When a function is smooth, the Daubechies' functions approximation to it in Vn can have 
satisfactory accuracy even when n is relatively small compared with some functions with steep 
jump, because of the approximation properties of Daubechies' wavelet. 

From Lemma 2.5, we know that  

I ( f , ¢ n , k ) l < 2  - n p R p r  S 0 <  < N ,  
- -  71"P J P '  n k  - P -  

where Sn,k = supp¢n,k and f E HN(R).  When f is smooth, mathematically it means that  ~-~p, 
or ]f[p,sn.k, is small for fairly large values ofp. Hence, [(f,¢~,k}[ can decrease very rapidly for a 
moderate increase in the value of n. 

When we apply this principle to a numerical method for partial differential equations, we can 
decrease the resolution in spatial variables if the solution is smooth, without the loss of the 
accuracy of the approximation. 

From Example 1 here, if for the Kolmogorov equation, coefficients F and f are second- and 
first-order polynomial, respectively, the solution will become smooth as time increases. Hence, it 
is ideal to dynamically adjust the resolution according to the solution. 

There is one drawback for adaptive numerical methods. That  is, each time the resolution 
changes, a complicated computation is needed to move the approximation from the old resolution 
to a new resolution. But for the wavelet-Galerkin method, with the help of the pyramid algorithm, 
it is very easy to jump between the different levels of resolution. Here, we discuss how. 

Suppose in time to, we go with step size h to to + h. We get an approximation in time to + h 
~-~2nb--1 

in the form un = z-,i=2~a-n+l A~#~n,i. From the properties of wavelet approximation, we use 
](f, Cn,k)[ to determine how close the approximation is to the real function. 

The following is the pyramid algorithm: 

~n,j = E h(k  - 2 j ) ( f ln+ l ,k ,  
k 

~bn,j = E g(k  -- 2j)(Pn+l,k, (4.8) 
k 

~n+l,j  = E h( j  - 2k)~ ,k  + E g ( j  - 2k)¢~,k. 
k k 

For a function f ( z ) ,  let A~,j = (f, Cn,j) = f f (x)¢~, j  dx. Hence, we have 

A ,j = h ( k  - (4.0)  
k 



1118 Z. LIANG AND S. S.-T. YAU 

#~,J = E g(k - 2j)A,~+l,k, 
k 

A,~+I,j = E h(j - 2k)A~,k + E g(J - 2k)#~,k. 
k k 

(4.10) 

(4.11) 

We already said that "~n,j is used to determine the level of resolution. Now we have Anj. Then, 
we can use (4.10) to get the/~n-l,j. 

Numerically, two very small constants el and e2 are preassigned, where el > e2. After each 
step of computation, if [An-l,j] > el, we need to go back one step to the previous stage to and 
then increase the level of resolution from n to n + 1 at that stage. We may assume/~,j  is zero 
at that stage. Then, from (4.11), we get A~+z,j from A~,j. On the other hand, if [/~n--l,j[ < £2 at 
to + h, we can decrease the level of resolution from n to n - 1. Using (4.9), we get the coefficients 

"~n--  l , j  . 

This is the procedure of dynamically changing the level of resolution in spatial variables. We 
apply this numerical scheme to the following example. 

EXAMPLE 1. 

at - 2Oz 2 ~ + f -~x -  \ d z  2 +~x  u, (4.12) 

o) = uo(x),  

where F(x) -- (3/4)x 2, f ( x )  = 11x + 5, and 

X ,  

uo(x) = 1 - x, 

O, 

i 
O < x < -  

- -  - -  2 '  

1 
~ < x < l ,  

otherwise. 

We shall approximate the solution by our wavelet-Galerkin method and adaptive scheme with 
initial interval [-0.4, 1.6], and do the computation until t = 0.1. For the purpose of comparison, 
we can also approximate the solution by applying Fourier transform to this equation, from which 
we can solve the Fourier transform of the solution. Then, we get the solution by applying inverse 
Fourier transform. Then, numerical computation is applied to it to get another approximation 
to the solution of equation (4.12). We shall call this approach the Fourier method. 

0AS 
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0,2 

0.1" 

o,1 

O~ 

i i 
" ~  1.S 2 2.S 

i i I i 

-O.S 0 0.5 1 
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| 02 
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}, I 1 
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Figure 1. Wavelet-GMerkin approximation, t ime Figure 2. Wavelet-Galerkin approximation, t ime 
= 0.005. = 0 . 0 1 .  
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Figure 3. Wavelet-Galerkin approximation, time 
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Figure 5. Wavelet-Galerkin approximation. The 
time for each curve is 0.005, 0.01, 0.05, 0.1. 

0.4 

0 3 5  
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Figure 6. Approximation from Fourier method. 
The time for each curve is 0.005, 0.01, 0.05, 0.1. 

r i i : ! i i w , 
0 0 2  0 4  O J  0 .8  1 1.2 1.4 i , 6  

Figure 7. Wavelet-Galerkin approximation without adaptive scheme. 

We compare the results from these two approximation. The approximations and comparisons 

are shown in the figures. In Figure I, we compute the approximation at time t = 0.005. Figure 2 

is the approximation at time t = 0.01, Figure 3 at time t -- 0.05, Figure 4 at time t --- 0.i. In 
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Figure 1, we observe tha t  at  the t ime 0.005, the interval in the  adapt ive  scheme has been expanded 

to [ -1 ,  2.5]. There  are similar phenomena  in Figures 2-4  tha t  the  spat ial  intervals expand due to 

the adapt ive  scheme. Figures 5 and 6 show the compar ison of the approx imat ion  from these two 

different methods.  Figure 5 shows the approximat ion  by  the  wavelet-Galerkin method .  Figure 6 

shows the  approximat ion  by the Fourier method.  In  Figure 7, we just  demons t ra t e  t ha t  wi thout  

using adapt ive  scheme, there will be a f luctuat ion in the  computa t ion .  

5. C O N C L U S I O N  

It is well known that the Kolmogorov equation plays an important role in applied science. For 
example, the nonlinear filtering problem, which plays a key role in modern technologies, was 
solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation. 

In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve 
linear parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous 
proof that the solution of the Kolmogorov can be approximated very well in any finite domain by 
our wavelet-Galerkin method. An example is provided by using Daubechies D4 scaling functions. 

In this example, we notice that we can do it even without any boundary condition, which is a 
big hurdle for many PDE numerical method. This computation is very stable. We can balance 
the requirements  between computa t ion  stabil i ty and efficiency dynamica l ly  by using pyramid  

propert ies  of Daubechies  functions. 
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