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SOLUTION OF FILTERING PROBLEM WITH
NONLINEAR OBSERVATIONS∗
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Abstract. For all known finite-dimensional filters, one always needs the conditon that the
observation terms are degree one polynomial. On the other hand, in many practical examples, e.g.,
tracking problem, the observation terms may be nonlinear. Our new method in this paper can treat
filtering problems with nonlinear observation terms in the first time, which includes Kalman–Bucy
filter as a special case.
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1. Introduction. In 1961, Kalman–Bucy first established the finite-dimensional
filters for linear filtering system with Gaussian initial distribution. In the sixties and
early seventies, the basic approach to nonlinear filtering theory was via the “innova-
tions method” originally proposed by Kailath and subsequently rigorously developed
by Fujisaki, Kallianpur, and Kunita in 1972 [10]. As pointed out by Mitter [13], the
difficulty with this approach is that the innovations process is not, in general, ex-
plicitly computable. In view of this weakness, Brockett [2] and Mitter [13] proposed,
independently, the idea of using estimation algebras to construct finite-dimensional
nonlinear filters. The idea is to imitate the Wei–Norman approach of using the Lie
algebraic method to solve the DMZ equation, which the unnormalized conditional
probability of the state must satisfy. Perhaps the most important merit of the Lie
algebra approach is the following. As long as the estimation algebra is finite dimen-
sional, not only the finite-dimensional filter can be constructed explicitly, but also
the filter so constructed is universal in the sense of Chaleyat–Maurel and Michel [4].
In [23], [17], and [20] Yau proves that the number of sufficient statistics in the Lie
algebra method, which is required in the computation of conditional probability den-
sity, is linear in n, where n is the dimension of the state space. Recently, Stephen
Yau [17] and Tam, Wong, and Yau [14], [16], [5], [21], [20], and [6] have completely
classified all finite-dimensional estimation algebras of maximal rank. In particular,
they have proved that all the observation terms hi(x), 1 ≤ i ≤ m must be degree one
polynomials.

However, in the Wei–Norman approach, one has to know explicitly the basis as
vector space of the estimation algebra in order to reduce the DMZ equation to a
finite system of ordinary differential equations, Kolmogorov equation, and several
first-order linear partial differential equations. Classically, one knows the explicit
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1020 STEPHEN S.-T. YAU AND SHING-TUNG YAU

basis for the estimation algebra only in the case that it has maximal rank. Typically
people assume that the linear system is controllable and observable. Recently, a new
direct method was introduced to study the linear filtering and exact filtering systems
with arbitrary initial condition for which f, g and h in (2.1) are independent of time
(cf. [22], [23], [19], [18]). This approach offers several advantages. It is easy and the
derivation no longer needs controllability and observability. Thus, the algorithm is
universal for any linear filtering system. Furthermore, it eliminates the necessity of
integrating n first-order linear partial differential equations, as was the case in the
Lie algebra method. Finally, the number of sufficient statistics required to compute
the conditional probability density of the state in this direct method is n. In all the
direct methods in [22], [23], [18], and [19] they need to assume that all the observation
terms hi(x), 1 ≤ i ≤ m, are degree one polynomials.

In [26], we have proved the existence and decay estimates of the solution to the
DMZ equation under the assumption that f(x) and h(x) in (2.1) have linear growth. In
this paper, we use the theory developed in [26] to show that the real time computation
of the DMZ equation can be reduced to numerical solution of Kolmogorov equation if
f(x) and h(x) have linear growth. Similar results under a much stronger assumption
that f(x) and h(x) are bounded functions were treated by various authors including
Bensoussan, Glowinski, and Rascanu [1], Elliott and Glowinski [8], Florchinger and
LeGland [9], Mikulevicious and Rozovskii [12]. Unlike our results, however, their
results cannot cover Kalman–Bucy filters. Theorem 4.2 of this paper says that if the
drifts (f(x)) are affine and the observation terms (h(x)) are nonlinear with linear
growths, then the Kolmogorov equation can be solved in real time.

For all known finite-dimensional filters, one always needs the condition that the
observation terms are degree one polynomial. On the other hand, in many practical
examples, e.g., tracking problem, the observation terms may be nonlinear. Our new
method in this paper can treat filtering problems with nonlinear observation terms in
the first time, which includes Kalman–Bucy filter as a special case.

This paper is organized as follows. In section 2 we shall set up the notations and
recall the basic filtering problem. In section 3, we shall show that real time computa-
tion of the DMZ equation can be reduced to off time computation of the Kolmogorov
equation. An explicit algorithm of such a reduction is provided. In the appendix, we
give a rigorous proof that the solution of our algorithm converges to the solution of
the DMZ equation in pointwise and L2 sense. In section 4, we show that if the drifts
are linear and the observation terms are nonlinear with linear growths, then the Kol-
mogorov equation can be solved in real time via a system of ODEs. Consequently, the
nonlinear filtering problem with linear drifts and nonlinear observations with linear
growth can be solved in real time and memoryless manner. In section 5, we give a
conclusion of this paper.

2. Basic filtering problem. The filtering problem considered here is based on
the following signal observation model in Itô form:{

dx(t) = f(x(t))dt + g(x(t))dv(t) x(0) = x0

dy(t) = h(x(t))dt + dw(t) y(0) = 0
(2.1)

in which x, v, y and w are, respectively, R
n,Rp,Rm, and R

m valued processes and
v and w independent, standard Brownian processes. We further assume that n =
p; f, g, and h are vector-valued, orthogonal matrix-valued and vector-valued C∞

smooth functions. We shall refer to x(t) as the state and y(t) as the observation at
time t.

D
ow

nl
oa

de
d 

01
/0

7/
13

 to
 1

66
.1

11
.1

53
.4

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1021

Let ρ(t, x) denote the conditional probability density of the state given the ob-
servation {y(s) : 0 ≤ s ≤ t}. It is well known that ρ(t, x) is given by normalizing a
function σ(t, x) that satisfies the following DMZ equation in Fisk–Stratonovich form:⎧⎨⎩ dσ(t, x) = L0σ(t, x)dt +

m∑
i=1

Liσ(t, x)dyi(t)

σ(0, x) = σ0(x),
(2.2)

where

L0 =
1

2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi(x)
∂

∂xi
−

n∑
i=1

∂fi
∂xi

(x) − 1

2

m∑
i=1

h2
i (x),

and for i = 1, . . . ,m, Li is the zero-degree differential operator of multiplication by
hi and σ0 is the probability density of the initial point x0.

Davis introduced a new unnormalized density

u(t, x) = exp

(
−

m∑
i=1

hi(x)yi(t)

)
σ(t, x).(2.3)

He reduced (2.2) to the following time-varying partial differential equation which is
called the robust DMZ-equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) = L0u(t, x) +

m∑
i=1

yi(t)[L0, Li]u(t, x)

+
1

2

m∑
i,j=1

yi(t)yj(t)[[L0, Li], Lj ]u(t, x)

u(0, x) = σ0(x),

(2.4)

where [· , ·] is the Lie bracket as described in [14]. It is easy to show [24] that (2.4)
is equivalent to the following time-varying partial differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(t, x) =

1

2

n∑
i=1

∂2u

∂x2
i

(t, x) +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(t)
∂hj

∂xi
(x)

)
∂u

∂xi
(t, x)

−
[

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(t)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(t)fj(x)
∂hi

∂xj
(x) − 1

2

m∑
i,j=1

n∑
k=1

yi(t)yj(t)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

]
u(t, x)

u(0, x) = σ0(x).

(2.5)

In this paper we shall solve the filtering problem in the case fi(x), 1 ≤ i ≤ n, are
degree one polynomials and hj(x), 1 ≤ j ≤ m, may be nonlinear with linear growth,
i.e., |hj(x)| ≤ C(1 + |x|) for some constant C.

3. Reduction from robust DMZ equation to Kolmogorov equation. The
fundamental problem of nonlinear filtering theory is how to solve the robust DMZ
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1022 STEPHEN S.-T. YAU AND SHING-TUNG YAU

equation (2.5) in real time and memoryless manner. In this section, we shall describe
our algorithm which achieves this goal for a large class of filtering system with arbi-
trary initial distribution by reducing it to solve Kolmogorov equation. Our algorithm
is based on the following proposition.

Proposition 3.1. For any τ1, τ2 with τ1 < τ2, ũ(t, x) satisfies the following
Kolmogorov equation:

∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
i=1

fi(x)
∂ũ

∂xi
(t, x) −

(
n∑

i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x)

)
ũ(t, x)

(3.1)

for τ1 ≤ t ≤ τ2 if and only if

u(t, x) = e
−

m∑
i=1

yi(τ1)hi(x)

ũ(t, x)

satisfies the robust DMZ equation with observation being freezed at y(τ1),

∂u

∂t
(t, x) =

1

2
Δu(t, x) +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(τ1)
∂hj

∂xi
(x)

)
∂u

∂xi
(t, x)

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(τ1)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(τ1)fj(x)
∂hi

∂xj
(x)

−1

2

n∑
k=1

m∑
i,j=1

yi(τ1)yj(τ1)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

)
u(t, x).(3.2)

Proof. It is straightforward to show that

e

m∑
i=1

yi(τ1)hi(x)
[
− ∂

∂t
+

1

2
Δ +

n∑
i=1

(
− fi(x) +

m∑
j=1

yj(τ1)
∂hj

∂xi

)
∂

∂xi

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(τ1)Δhi(x)

+

m∑
i=1

n∑
j=1

yi(τ1)fj(x)
∂hi

∂xj
(x)

−1

2

n∑
k=1

m∑
i,j=1

yi(τ1)yj(τ1)
∂hi

∂xk

∂hj

∂xk

)]
u(t, x)

= −∂ũ

∂t
(t, x) +

1

2
Δũ(t, x) −

n∑
i=1

fi(x)
∂ũ

∂xi
(t, x)

−
(

n∑
i=1

∂fi
∂xi

(x) +
1

2

m∑
i=1

h2
i (x)

)
ũ(t, x).(3.3)
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1023

Proposition (3.1) follows immediately from (3.3).
We remark that (3.2) is obtained from the robust DMZ equation by freezing the

observation y(t) to y(τ1). Based on Proposition (3.1), we shall formulate our algorithm
to solve the robust DMZ equation and we shall show in Appendices A and B that the
solution of our algorithm approximates the solution of the robust DMZ equation very
well in both pointwise and L2-sense.

Suppose that u(t, x) is the solution of the robust DMZ equation and we want to
compute u(τ, x). Let Pk = {0 = τ0 < τ1 < τ2 < · · · < τk = τ} be a partition of [0, τ ].
Let ui(t, x) be a solution of the following partial differential equation for τi−1 ≤ t ≤ τi:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui

∂t
(t, x) =

1

2
Δui(t, x) +

n∑
�=1

(
−f�(x) +

m∑
j=1

yj(τi−1)
∂hj

∂x�
(x)

)
∂ui

∂x�
(t, x)

−
(

n∑
�=1

∂f�
∂x�

(x) +
1

2

m∑
�=1

h2
�(x) − 1

2

m∑
j=1

yj(τi−1)Δhj(x)

+

m∑
j=1

n∑
�=1

yj(τi−1)f�(x)
∂hj

∂x�
(x)

−1

2

n∑
p=1

m∑
j,�=1

yj(τi−1)y�(τi−1)
∂hj

∂xp
(x)

∂h�

∂xp
(x)

)
ui(t, x)

ui(τi−1, x) = ui−1(τi−1, x).

(3.4)

Define the norm of the partition Pk by |Pk| = sup1≤i≤k{|τi − τi−1|}. In Appendices
A and B, we shall show that in both pointwise and L2 sense

u(τ, x) = lim
|Pk|→0

uk(τ, x).(3.5)

Therefore it remains to describe an algorithm to compute uk(τk, x). By Proposi-
tion 3.1, u1(τ1, x) can be computed by ũ1(τ1, x) where ũ1(t, x) for 0 ≤ t ≤ τ1 satisfies
the following Kolmogorov equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ũ1

∂t
(t, x) =

1

2
Δũ1(t, x) −

n∑
j=1

fj(x)
∂ũ1

∂xj
(x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
i=1

h2
j (x)

)
ũ1(t, x)

ũ1(0, x) = σ0(x)e

m∑
j=0

yj(0)hj(x)

= σ0(x).

(3.6)

In fact, by the uniqueness solution of the Kolmogorov equation, we have

u1(t, x) = ũ1(t, x), 0 ≤ t ≤ τ1.(3.7)

In general, Proposition 3.1 tells us that for i ≥ 2, ui(τi, x) can be computed by
ũi(τi, x), where ũi(t, x) for τi−1 ≤ t ≤ τi satisfies the following Kolmogorov equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ũi

∂t
(t, x) =

1

2
Δũi(t, x) −

n∑
j=1

fj(x)
∂ũi

∂xj
(t, x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

)
ũi(t, x)

ũi(τi−1, x) = e

m∑
j=1

(yj(τi−1)−yj(τi−2))hj(x)

ũi−1(τi−1, x),

(3.8)
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1024 STEPHEN S.-T. YAU AND SHING-TUNG YAU

where the last initial condition comes from

ũi(τi−1, x) = ui(τi−1, x)e

m∑
j=1

yj(τi−1)hj(x)

= ui−1(τi−1, x)e

m∑
j=1

yj(τi−1)hj(x)

= e

m∑
j=1

(yj(τi−1)−yj(τi−2))hj(x)

ũi−1(τi−1, x).

In fact, we have

ui(τi, x) = e
−

m∑
j=1

yj(τi−1)hj(x)

ũi(τi, x).(3.9)

In view of (2.3), (3.5), and (3.9), we have the following theorem.
Theorem 3.2. The unnormalized density σ can be computed via solution ũ of

the Kolmogorov equation (3.8). More specifically,

σ(τ, x) = lim
|Pk|→0

ũk(τk, x)(3.10)

Proof.

σ(τ, x) = u(τ, x) exp

(
m∑
i=1

hi(x)yi(τ)

)
by (2.3)

= lim
|Pk|→0

uk(τ, x) exp

(
m∑
i=1

hi(x)yi(τ)

)
, by (3.5)

where Pk = {0 = τ0 < τ1 < · · · < τk = τ}.

In view of (3.9), we have

σ(τ, x) = lim
|Pk|→0

e
−

m∑
i=1

yj(τk−1)hj(x)

ũk(τ, x)e

m∑
i=1

hi(x)yi(τ)

= lim
|Pk|→0

ũk(τ, x).

Observe that in our algorithm at step i (Lemma B.2), we only need the observation
at time τi−1 and τi−2. We do not need any other previous observation data. Observe
also that the Kolmogorov equation (3.8) is uniform for all time steps and it depends
on observation y(t) only via initial condition.

4. Filtering problem with nonlinear observations. Consider the filtering
system (2.1) with affine drift,

fi(x) =

n∑
j=1

�ijxj + �i, 1 ≤ i ≤ n,(4.1)

where �ij , �i are constants, and nonlinear observation

m∑
i=1

h2
i (x) =

n∑
i,j=1

qijxixj +

n∑
i=1

qixi + q0,(4.2)D
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1025

where qij = qji, qi, q0 are constants.
We first remark that if hi(x), 1 ≤ i ≤ m, are nonlinear observation with linear

growths as follows:

h2
i (x) ≤ m(1 + |x|2), 1 ≤ i ≤ m− 1,(4.3)

where M is a constant, and

h2
m(x) = (m− 1)M(1 + |x|2) −

m−1∑
i=1

h2
i (x),(4.4)

then condition (4.2) is satisfied. The purpose of this section is to prove the following
theorem.

Theorem 4.1. The unnormalized density of the filtering system (2.1) with affine
drift (4.1), nonlinear observation (4.2), and Gaussian initial distribution can be com-
puted in real time in a memoryless way.

In view of Theorem 3.2, in order to solve the nonlinear filtering problem with
conditions (4.1), (4.2) it suffices to solve the following Kolmogorov equation in real
time. For τ1 ≤ t ≤ τ2,

⎧⎪⎪⎨⎪⎪⎩
∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

⎛⎝ n∑
j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x)

ũ(0, x) = φ(x).

(4.5)

It is well known that any φ(x) is well approximated by finite linear combination of
Gaussians of the form α1G1 + · · · + αpGp, where αis are real numbers and Gis are
Gaussian distributions. Let ũi be the solution of (4.5) with initial distribution Gi.
Since (4.5) is a linear partial differential equation, it follows that the solution of (4.5) is
of the form α1ũ1+ · · ·+αpũp. Therefore it remains to solve (4.5) with Gaussian initial
distribution. Theorem 4.2 gives an explicit solution of (4.5) with linear drift (4.1),
nonlinear observation (4.2), and Gaussian initial distribution in terms of solutions of
ODEs.

Theorem 4.2. Consider the filtering system (2.1) with linear drift (4.1), nonlin-
ear observation (4.2), and Kolmogorov equation. For τ1 ≤ t ≤ τ2,

⎧⎪⎨⎪⎩
∂ũ

∂t
(t, x) =

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

(
n∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

)
ũ(t, x)

ũ(τ1, x) = exp[xTA(τ1)x + BT (τ1)x + C(τ1)],

(4.6)

where A(τ1) = (Aij(τ1)) is a n × n matrix, BT (τ1) = (B1(τ1), . . . , Bn(τ1)), xT =
(x1, . . . , xn) are 1 × n matrix and C(τ1) is a scalar. Then the solution of (4.6) is of
the following form:

ũ(t, x) = exp(xTAx + BTx + C),(4.7)

where A = AT = (Aij(t)) is a n × n matrix valued function of t, BT = (B1(t), . . . ,
Bn(t)) is a 1 × n matrix valued function of t, and C(t) is a scalar function of t.
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1026 STEPHEN S.-T. YAU AND SHING-TUNG YAU

Moreover, A(t), BT (t), and C(t) satisfy the following system of nonlinear ODEs:⎧⎨⎩
dA

dt
(t) = 2A2(t) −A(t)L− LTA(t) − 1

2
Q

A(t)|t=τ1 = A(τ1)
(4.8)

⎧⎨⎩
dBT

dt
(t) = 2BT (t)A(t) −BT (t)L− 2�TA(t) − 1

2
q

BT (t)|t=τ1 = BT (τ1)

(4.9)

⎧⎨⎩
dC

dt
(t) = tr A(t) +

1

2
BT (t)B(t) − �TB(t) − 1

2
q0 − tr L

C(t)|t=τ1 = C(τ1),
(4.10)

where L = (�ij), Q = (qij), 1 ≤ i, j ≤ n, �T = (�1, . . . , �n), qT = (q1, . . . , qn) as in
(4.1) and (4.2).

Proof. Differentiating (4.7) with respect to t and x, respectively, we get the
following equations:

∂ũ

∂t
=

(
xT dA

dt
x +

dBT

dt
x +

dC

dt

)
ũ(4.11)

∇ũ = [(A + AT )x + B]ex
TAx+BT x+C

Δũ = {2trA + [(A + AT )x + B]T [(A + AT )x + B]}exTAx+BT x+C

= [xT (AAT + ATA + 2A2)x + 2BT (A + AT )x + 2trA + BTB]ũ
n∑

j=1

fj(x)
∂ũ

∂xj
= (Lx + �)T∇ũ

= [xT (AT + A)Lx + (BTL + �TA + �TAT )x + �TB]ũ,

where L = (�ij), �
T = (�1, . . . , �n)⎛⎝ m∑

j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x) =

(
1

2
xTQx +

1

2
qTx +

1

2
q0 + trL

)
ũ(t, x),

where Q = (qij), q
T = (q1, . . . , qn).

Therefore the R.H.S. of (4.6) is given by

1

2
Δũ(t, x) −

n∑
j=1

fj(x)
∂ũ

∂xj
(t, x) −

⎛⎝ n∑
j=1

∂fj
∂xj

(x) +
1

2

m∑
j=1

h2
j (x)

⎞⎠ ũ(t, x)

=

[
xT

(
1

2
AAT +

1

2
ATA + A2

)
x + BT (A + AT )x + trA +

1

2
BTB

]
ũ

−[xT (AT + A)Lx + (BTL + �TA + �TAT )x + �TB]ũ

−
(

1

2
xTQx +

1

2
qTx +

1

2
q0 + trL

)
ũ(t, x)

=

[
xT

(
1

2
AAT +

1

2
ATA + A2 −ATL−AL− 1

2
Q

)
x + (BTA + BTAT −BTL

−�TA− �TAT − 1

2
qT )x + trA +

1

2
BTB − �TB − 1

2
q0 − trL

]
ũ.(4.12)
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1027

By comparing (4.11) and (4.12), we get (4.8), (4.9), and (4.10), which are necessary
and sufficient conditions for (4.7) to be a solution of (4.6).

5. Conclusion. All the known finite dimensional filters require observation terms
linear in nature. In this paper we have solved the nonlinear filtering problem with
linear drift and nonlinear observations in real time and memoryless manner. We
first show that the solution of the DMZ equation can be obtained by solving the
Kolmogorov equation. We also show that the Kolmogorov equation can be solved
via solutions of systems of ODEs if the summation of observations is a quadratic
polynomial (cf. (4.2)).

Appendix A: Pointwise Convergence of (3.5). By changing variables from
xi to

√
2xi and by letting

u(t, x) = u

(
t,

x√
2

)
,(A.1)

we get

∂u

∂t
(t, x) =

∂u

∂t

(
t,

x√
2

)
,

∂u

∂xi
(t, x) =

1√
2

∂u

∂xi

(
t,

x√
2

)
,

∂2u

∂x2
i

(t, x) =
1

2

∂2u

∂x2
i

(
t,

x√
2

)
.

Hence the robust DMZ equation becomes

∂ u

∂t
(t, x) = Δu(t, x) +

m∑
i=1

f i(t, x)
∂ u

∂xi
(t, x) − V (t, x)u(t, x),(A.2)

where

f i(t, x) =
√

2

[
− fi

(
x√
2

)
+

m∑
j=1

yj(t)
∂hj

∂xi

(
x√
2

)]
(A.3)

V (t, x) =

n∑
i=1

∂fi
∂xi

(
x√
2

)
+

1

2

m∑
i=1

h2
i

(
x√
2

)
−

m∑
i=1

yi(t)Δhi

(
x√
2

)
(A.4)

+

m∑
i=1

n∑
j=1

yi(t)fj

(
x√
2

)
∂hi

∂xj

(
x√
2

)

−1

2

m∑
i,j=1

n∑
k=1

yi(t)yj(t)
∂hi

∂xk

(
x√
2

)
∂hj

∂xk

(
x√
2

)
.

For any τ > 0, we shall consider the following parabolic equations on [0, τ ]× R
n.⎧⎪⎨⎪⎩

∂ u

∂t
(t, x) = Δu(t, x) +

n∑
i=1

f i(t, x)
∂ u

∂xi
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x)

(A.5)D
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1028 STEPHEN S.-T. YAU AND SHING-TUNG YAU⎧⎪⎨⎪⎩
∂ũ

∂t
(t, x) = Δũ(t, x) +

n∑
i=1

f̃i(0, x)
∂ũ

∂xi
(t, x) − Ṽ (0, x)ũ(t, x)

ũ(0, x) = ψ̃(x),

(A.6)

where f̃i(0, x) := f i(0, x) and Ṽ (0, x) := V (0, x) are obtained from f i(t, x) and V (t, x)
by freezing the time variable at 0. For simplicity, we shall assume that the first, second,
and third derivatives of h(x) are bounded.

The goal of this appendix is to prove that if ψ̃(x) is close to ψ(x) uniformly in x,
then ũ(τ, x) is close to u(τ, x) uniformly in x. From (A.5) and (A.6), we deduce that

(A.7)

∂(u− ũ)

∂t
(t, x) = Δ(u− ũ)(t, x)+

n∑
i=1

f i(t, x)
∂(u− ũ)

∂xi
(t, x)−V (t, x)(u− ũ)(t, x)

+
n∑

i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x)

= (Δ − V (t, x))(u− ũ)(t, x) +

n∑
i=1

f i(t, x)
∂(u− ũ)

∂xi
(t, x) + Gτ (t, x),

where

Gτ (t, x) =

n∑
i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x).(A.8)

Lemma A.1. There exists a nonnegative function α(t, x, y) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂t
(t, x, y) = Δxα(t, x, y) −

n∑
i=1

f i(τ − t, x)
∂α

∂xi
(t, x, y)

−
[
V (τ − t, x) +

n∑
i=1

∂f i

∂xi
(τ − t, x)

]
α(t, x, y)

α(0, x, y) = δy(x),
∫
x
α(0, x, y)dx = 1,

(A.9)

where
∫
x

denotes the integration with respect to x variable.
Proof. Let βn(x, y) be a sequence of Gaussian with∫

x

βn(x, y)dx = 1 and lim
n→∞

βn(x, y) = δy(x).(A.10)

In view of [26], there exists a solution αn(t, x, y) with initial condition αn(0, x, y) =
βn(x, y). By maximal principle, α(t, x, y) ≥ 0 for all t ≥ 0. We shall take α(t, x, y) =
limn→∞ αn(t, x, y).

Theorem A.2. Let w(t, x) = u(t, x)− ũ(t, x), where u and ũ are the solutions of
the parabolic equations (A.5) and (A.6), respectively. Let α(t, x, y) be the nonnegative
function in Lemma A.1. Then

w(τ, y) =

∫
x

α(τ, x, y)w(0, x)dx +

∫ τ

0

∫
x

α(t, x, y)Gτ (t, x)dx,
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1029

where Gτ (t, x) is given in (A.8).
Proof.∫ τ

0

d

dt

∫
x

α(τ − t, x, y)w(t, x)dx = −
∫ τ

0

∫
x

∂α

∂t
(τ − t, x, y)w(t, x)dx(A.11)

+

∫ τ

0

∫
x

α(τ − t, x, y)
∂w

∂t
(t, x)dx

L.H.S. of (A.11) = w(τ, y) −
∫
x

α(τ, x, y)w(0, x)dx

R.H.S. of (A.11) = −
∫ τ

0

∫
x

Δxα(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

n∑
i=1

f i(t, x)
∂α

∂xi
(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

[
V (t, x) +

n∑
i=1

∂f i

∂xi
(t, x)

]
α(τ − t, x, y)w(t, x)dx

+

∫ τ

0

∫
x

α(τ − t, x, y)
∂w

∂t
(t, x)dx

=

∫ τ

0

∫
x

α(τ − t, x, y)

[
∂w

∂t
(t, x) − Δw(t, x) −

n∑
i=1

f i(t, x)
∂w

∂xi
(t, x)

+V (t, x)w(t, x)

]
dx

=

∫ τ

0

∫
x

α(τ − t, x, y)Gτ (t, x)dx. by (A.7)

In the above computation, we have used the fact proved in [26] that α(t, x, y) has
Gaussian decay in x.

Proposition A.3. Let α(t, x, y) be the nonnegative function in Lemma A.1.
Suppose that V (t, x) ≥ −c1 for some positive constant c1. Then∫

x

α(τ, x, y)dx ≤ ec1τ .(A.12)

Proof.

ec1t
d

dt

(
e−c1t

∫
x

α(t, x, y)dx

)
= −c1

∫
x

α(t, x, y)dx +

∫
x

∂α

∂t
(t, x, y)dx

= −c1

∫
x

α(t, x, y)dx +

∫
x

Δxα(t, x, y)dx−
∫
x

n∑
i=1

f i(τ − t, x)
∂α

∂xi
(t, x, y)dx

−
∫
x

[
V (τ − t, x) +

n∑
i=1

∂f i

∂xi
(τ − t, x)

]
α(t, x, y)dx

= −c1

∫
x

α(t, x, y)dx−
∫
x

V (τ − t, x)α(t, x, y)dx

= −
∫
x

[V (τ − t, x) + c1]α(t, x, y)dx ≤ 0.
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1030 STEPHEN S.-T. YAU AND SHING-TUNG YAU

It follows that e−c1t
∫
x
α(t, x, y)dx is a decreasing function of t and (A.12)

follows.
Theorem A.4. With the assumption of Proposition A.3, let w(t, x) = u(t, x) −

ũ(t, x), where u and ũ are the solutions of the parabolic equations (A.5) and (A.6),
respectively. If τ is small and w(0, x) is small uniformly in τ , then w(τ, x) is small
uniformly in x. More precisely, we have

sup
y∈Rn

|w(τ, y)| ≤ ec1τ sup
x∈Rn

|w(0, x)| + τec1τ sup
x∈Rn

0≤t≤τ

|Gτ (t, x)|,(A.13)

where Gτ (t, x) is given in (A.8).
Proof. In view of (A.3), (A.4), and (A.8), we have

Gτ (t, x) =

n∑
i=1

(f i(t, x) − f̃i(0, x))
∂ũ

∂xi
(t, x) − (V (t, x) − Ṽ (0, x))ũ(t, x)

=
n∑

i=1

√
2

m∑
j=1

(yj(t) − yj(0))
∂hj

∂xi

(
x√
2

)
∂ũ

∂xi
(t, x)

+

[
−

m∑
i=1

(yi(t) − yi(0))Δhi

(
x√
2

)
+

m∑
i=1

n∑
j=1

(yi(t) − yi(0))fj

(
x√
2

)
∂hi

∂xj

(
x√
2

)

−1

2

m∑
i,j=1

n∑
k=1

(yi(t)yj(t) − yi(0)yj(0))
∂hi

∂xk

(
x√
2

)
∂hj

∂xk

(
x√
2

)]
ũ(t, x).

Therefore if τ is small, then Gτ (t, x) is uniformly small in x for 0 ≤ t ≤ τ , because

both ũ(t, x) and ∂ũ
∂xi

(t, x) have Gaussian decay by [26]. The estimate (A.13) follows
readily from Theorem A.2.

Now we consider the global situation. For a fixed T > 0, we want to find the
solution u(t, x) of the following parabolic equation on [0, T ] × R

n:⎧⎪⎨⎪⎩
∂ u

∂t
(t, x) = Δu(t, x) +

n∑
j=1

f j(t, x)
∂ u

∂xj
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x).

(A.14)

Let {0 < τ1 < τ2 < · · · < τk = T} be a partition of [0, T ]. Let ũi(t, x) be the solution
of the following parabolic equation on [τi−1, τi] × R

n:⎧⎪⎨⎪⎩
∂ũi

∂t
(t, x) = Δũi(t, x) +

n∑
j=1

f̃j(τi−1, x)
∂ũi

∂xj
(t, x) − Ṽ (τi−1, x)ũi(t, x)

ũi(τi−1, x) = ũi−1(τi−1, x),

(A.15)

where ũ1(0, x) = ψ(x); f̃j(τi−1, x) and Ṽ (τi−1, x) are functions independent of t and
equal to f j(τi−1, x) and V (τi−1, x), respectively.

Lemma A.5. Fix T , let Gτi(t, x) =
∑n

j=1(f j(t, x) − f̃j(τi−1, x)) ∂ũi

∂xj
(t, x) −

(V (t, x) − Ṽ (τi−1, x))ũi(t, x). For any given ε > 0, we can choose k sufficiently large
so that

sup
1≤i≤n

sup
τi−1≤t≤τi

sup
x∈Rn

|Gτi(t, x)| ≤ ε.

Proof. This follows from the proof of Theorem A.4.
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1031

We are now ready to prove the main theorem in this appendix.
Theorem A.6. Let u(t, x) and ũk(t, x) be the solutions of (A.14) and (A.15),

respectively. For any ε > 0, let k be sufficiently large so that Lemma A.5 holds. Then

|u(T, x) − ũk(T, x)| ≤ εTec1T ,

where c1 is the constant in Proposition A.3.
Proof. In view of ũ1(0, x) = ψ(x) = u(0, x) and Theorem A.4, we have

|u(τ1,x) − ũ1(τ1,x)| ≤ τ1e
c1τ1 sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)|.

By Theorem A.4 and induction, we have

|u(τ2,x) − ũ2(τ2,x)| ≤ τ1e
c1τ1ec1(τ2−τ1) sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)|

+(τ2 − τ1)e
c1(τ2−τ1) sup

x∈Rn

τ1≤t≤τ2

|Gτ2(t, x)|

|u(τk,x) − ũk(τk,x)| ≤ τ1e
c1τk sup

x∈Rn

0≤t≤τ1

|Gτ1(t, x)| + (τ2 − τ1)e
c1(τk−τ1) sup

x∈Rn

τ1≤t≤τ2

Gτ2(t, x)|

+ · · · + (τi − τi−1)e
c1(τk−τi−1) sup

x∈Rn

τi−1≤t≤τi

|Gτi(t, x)|

+ · · · + (τk − τk−1)e
c1(τk−τk−1) sup

x∈Rn

τk−1≤t≤τk

|Gτk(t, x)|

≤ ε[τ1e
c1τk + (τ2 − τ1)e

c1(τk−τ1) + · · · + (τi − τi−1)e
c1(τk−τi−1)

+ · · · + (τk − τk−1)e
c1(τk−τk−1)]

≤ ε[τ1 + (τ2 − τ1) + · · · + (τi − τi−1) + · · · + (τn − τn−1)]e
c1T

= εTec1T .

Theorem A.7. Fix T > 0, let Pn = {0 < τ1 < τ2 < · · · < τk = T} be a partition
of [0, T ]. Let u(t, x) be the solution of the following parabolic equation on [0, T ]×Rn:

⎧⎪⎪⎨⎪⎪⎩
∂ u

∂t
(t, x) = Δu(t, x) +

n∑
j=1

f j(t, x)
∂ u

∂xj
(t, x) − V (t, x)u(t, x)

u(0, x) = ψ(x).

Let ui(t, x) be the solution of the following parabolic equation on [τi−1, τi] ×Rn:

⎧⎪⎪⎨⎪⎪⎩
∂ũi

∂t
(t, x) = Δũi(t, x) +

n∑
j=1

f̃j(τi−1, x)
∂ũi

∂xj
(t, x) − Ṽ (τi−1, x)ũi(t, x)

ũi(τi−1, x) = ũi−1(τi−1, x),
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1032 STEPHEN S.-T. YAU AND SHING-TUNG YAU

where ũi(0, x) = ψ(x) and f̃j(τi−1, x) = f j(τi−1, x), Ṽ (τi−1, x) = V (τi−1, x) are

obtained from f j(t, x) and V (t, x) by freezing time variable at τi−1. Then

u(τ, x) = lim
|Pk|→0

ũk(τk, x) uniformly in x.

Appendix B: L2 Convergence of (3.5). In Appendix A we have shown that
the solution ũ(t, x) of (A.6) is uniformly close to the solution u(t, x) of (A.5) for

0 ≤ t ≤ T if ψ̃(x) = ũ(0, x) is uniformly close to ψ(x) = u(0, x). In this section, we

shall show that ũ(t, x) is also close to u(t, x) in L2-sense, if ψ(x) is close to ψ̃(x) in
L2 sense. We first recall the following lemma.

Lemma B.1. If dα
dt (t) ≤ cα(t)+β(t), where c is a constant, then e−ctα(t)−α(0) ≤∫ t

0
e−csβ(s)ds.

Let f2R, f̃2R, V 2R, and Ṽ2R be the functions obtained by multiplying f, f̃ , V ,

and Ṽ , respectively, by a cut off function σ which is equal to one in the ball of radius
R ≥ 1 and equal to zero outside a ball of radius 2R. We can choose σ such that

|∇σ(x)| ≤ 4

1 + |x| and |Δσ(x)| ≤ 4

1 + |x|2 .(B.1)

Consider the following equations:

∂u2R

∂t
= Δu2R +

n∑
i=1

(f2R)i
∂u2R

∂xi
− V 2Ru2R(B.2)

∂ũ2R

∂t
= Δũ2R +

n∑
i=1

(f̃2R)i
∂ũ2R

∂xi
− Ṽ2Rũ2R(B.3)

in the ball B2R of radius 2R with the Neumann condition, where (f2R)i and (f̃2R)i
denote the ith components of f2R and f̃2R, respectively. Let ψ2R(x) = ψ(x)σ(x) and

ψ̃2R(x) = ψ̃(x)σ(x) to be the initial conditions of (B.2) and (B.3), respectively. Then
(B.2) and (B.3) have unique solutions, respectively, for t ∈ [0,∞) with Neumann
condition on ∂B2R × (0, T ].

Lemma B.2. Assume that (4.1)–(4.3) hold and the first, second, and third deriva-

tives of hi(x) are bounded. Let c̃ and δ be positive constants such that
≈
c := c̃+δ < 5

254 .
Choose τ and ε suitably small with τ + ε < δ. Then the following conclusions hold

for any 0 ≤ t ≤ τ for both ρε{ρ, ρ̃}, u ∈ {u, ũ}, and where ρ(t, x) = c̃(1+|x|2)
t+ε ,

ρ̃(t, x) =
≈
c(1+|x|2)

t+ε :

(i)

∫
{t}×B2R

eρu2
2R ≤

∫
{0}×B2R

eρu2
2R

(ii)

∫
{t}×B2R

eρ|∇u2R|2 ≤
∫
{0}×B2R

eρ|∇u2R|2 +

∫ t

0

∫
B2R

eρ(s,x)|u2R(s, x)|2

(iii)

∫
{t}×B2R

eρ|Δu2R|2 ≤
∫
{0}×B2R

eρ|Δu2R|2
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1033

+O

(∫
[0,t]×B2R

eρ|∇ρ|2|f2R|2|∇u2R|2 +

∫
[0,t]×B2R

eρ|∇f2R|2|∇u2R|2

+

∫
[0,t]×B2R

eρ|f2R||∇u2R|2|Δf2R| +
∫

[0,t]×B2R

eρ|f2R|4|∇u2R|2

+

∫
[0,t]×B2R

eρ|∇(V 2Ru2R)|2 +

∫
[0,t]×B2R

eρ|∇u2R|2
(

n∑
i=1

∂(f2R)i
∂xi

)2 )
.

Moreover, the following inequalities hold for both {ρ, f, V }, or {ρ, f̃ , Ṽ } or {ρ̃, f , V }
or {ρ̃, f̃ , Ṽ } if δ is small enough,

(iv)
∂ ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f i

∂ ρ

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V ≤ 0.

Proof. (i), (ii), and (iii) follow from Lemma 1.3 of [26] by setting ε1 = 1
5 in that

lemma. In equality (iv), it follows from

∂ρ̃

∂t
+ 2|∇ρ̃|2 −

n∑
i=1

f i

∂ρ̃

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V

≤
[
− ≈

c (1 − 8
≈
c)

(t + ε)2
+

2c
≈
c

t + ε
+ (n + 2)c

]
(1 + |x|)2

as 1 − 8
≈
c≥ 0.

Proposition B.3. Consider the parabolic differential equations (A.5) and (A.6).
Let φ be any smooth function defined on R

n with compact support contained in a
domain Ω. Let ρ be any smooth function on R+ × R

n satisfying

∂ ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f i

∂ ρ

∂xi
−

n∑
i=1

∂f i

∂xi
− 2V ≤ 0.(B.4)

Then

d

dt

∫
{t}×Ω

φ2eρ(u− ũ)2 ≤
∫
{t}×Ω

φ2eρ(u− ũ)2 + 10

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2

+ 4

∫
{t}×Ω

eρ
∣∣∣∣ n∑
i=1

f i

∂φ

∂xi

∣∣∣∣2(u− ũ)2 + 4

∫
{t}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

+ 2

∫
{t}×Ω

eρφ2ũ|f − f̃ |2 + 4

∫
{t}×Ω

eρφ2ũ2|V − Ṽ |2

+ 2

∫
{t}×Ω

eρφ2|f − f̃ |2ũ2 + 4

∫
{t}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2.(B.5)

Proof. From (A.5) and (A.6), we deduce that

∂(u− ũ)

∂t
= Δ(u− ũ) +

n∑
i=1

fi
∂(u− ũ)

∂xi
− V (u− ũ) +

n∑
i=1

(f i − f̃i)
∂ũ

∂xi
− (V − Ṽ )ũ.

(B.6)
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1034 STEPHEN S.-T. YAU AND SHING-TUNG YAU

Then using (B.6) and integrating by part, we obtain

d

dt

∫
{t}×Ω

φ2(u− ũ)2eρ ≤
∫
{t}×Ω

eρφ2(u− ũ)2

(
∂ρ

∂t
+ 2|∇ρ|2 −

n∑
i=1

f iρi −
n∑

i=1

∂f i

∂xi
− 2V

)

−1

2

∫
{t}×Ω

eρφ2|∇(u− ũ)|2 + 8

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2

−2

∫
{t}×Ω

φeρ

(
n∑

i=1

f iφi

)
(u− ũ)2 − 4

∫
{t}×Ω

eρφ

[
n∑

i=1

(f i − f̃i)φi

]
ũ(u− ũ)

−2

∫
{t}×Ω

eρφ2
n∑

i=1

(f i − f̃i)
∂ρ

∂xi
ũ(u− ũ) + 2

∫
{t}×Ω

eρφ2ũ2|f − f̃ |2

−2

∫
{t}×Ω

eρφ2(u− ũ)ũ

n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)
− 2

∫
{t}×Ω

eρφ2(u− ũ)ũ(V − Ṽ ).(B.7)

In view of (B.4), (B.7) implies that

d

dt

∫
{t}×Ω

φ2eρ(u− ũ)2 ≤ 8

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2 + 4

∫
{t}×Ω

eρ(u− ũ)2
∣∣∣∣ n∑
i−1

f i

∂φ

∂xi

∣∣∣∣2
+

1

4

∫
{t}×Ω

eρφ2(u− ũ)2 +
1

4

∫
{t}×Ω

eρφ2(u− ũ)2

+ 4

∫
{t}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2 + 2

∫
{t}×Ω

eρφ2ũ2|f − f̃ |2

+
1

4

∫
{t}×Ω

eρφ2(u− ũ)2 + 4

∫
{t}×Ω

eρφ2ũ2|V − Ṽ |2

+ 4

[
1

2

∫
{t}×Ω

eρ(u− ũ)2|∇φ|2 +
1

2

∫
{t}×Ω

eρφ2|f − f̃ |2ũ2

]

+ 2

⎡⎣1

8

∫
{t}×Ω

eρφ2(u− ũ)2 + 2

∫
{t}×Ω

eρφ2ũ2

∣∣∣∣∣
n∑

i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣∣
2
⎤⎦.

Inequality (B.5) follows immediately.
The following theorem states that when τ is sufficiently small and ψ(x) close to

ψ̃(x) in L2-sense, then the solution ũ(t, x) of (A.6) approximates the solution u(t, x)
of (A.5) well in L2-sense.

Theorem B.4. Consider the parabolic differential equation (A.5) and (A.6).
Assume that (4.1)–(4.3) hold and the first, second, and third derivatives of hi(x) are

bounded. Let c̃ and δ be positive constants such that
≈
c := c̃ + δ < 5

254 . Let

ρ(t, x) =
c̃(1 + |x|2)

t + ε
, ρ̃(t, x) =

≈
c (1 + |x|2)

t + ε
.

Suppose that ∫
Rn

eρ(0,x)(|ψ(x)|2 + |∇ψ̃(x)|2 + |Δψ(x)|2) < ∞∫
Rn

eρ(0,x)(|ψ̃(x)|2 + |∇ψ̃(x)|2 + |Δψ̃(x)|2) < ∞.
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1035

Choose τ and ε suitably small so that τ + ε < δ and the conclusions of Lemma B.2
hold. Suppose that for 0 ≤ t ≤ τ ,

|f(t, x) − f̃(t, x)| ≤ ε̃1c(1 + |x|)(B.8) ∣∣∣∣ n∑
i=1

(
∂f i

∂xi
(t, x) − ∂f̃i

∂xi
(t, x)

)∣∣∣∣ ≤ ε̃1c(B.9)

|V (t, x) − Ṽ (t, x)| ≤ ε̃1c(1 + |x|2)(B.10) ∫
Rn

eρ(0,x)|ψ(x) − ψ̃(x)|2 ≤ ε̃2.(B.11)

Then ∫
{t}×Rn

eρ(u− ũ)2 ≤ ε̃2e
t + 16ε̃ 2

1 c
2c̃ 2 t

ε(t + ε)
etd1 + 24tε̃ 2

1 c
2etd1

≤ ε̃2e
τ + ε̃ 2

1 τe
τ c1,

where d1 =
∫

Rn eρ(0,x)(ψ̃(x))2, c1 = 16c2c̃ 2d1

ε2 + 24c2d1, and c is a constant for linear

growth of ∇V and ∇Ṽ , i.e., |∇V (t, x)| ≤ c(1 + |x|), and |∇Ṽ (t, x)| ≤ c(1 + |x|).
Proof. Let R0 ≥ 1 and Bc

R0
= {x ∈ R

n : |x| > R0} and

φ(x) =

⎧⎨⎩
1 for |x| ≤ R0
logR−log |x|
logR−logR0

for R0 ≤ |x| ≤ R = 2R0

0 for |x| ≥ R = 2R0.

Let Ω be defined as BR in Proposition B.3. In view of Lemma B.1 and (B.5), we
have

e−t

∫
{t}×Ω

φ2eρ(u− ũ)2 −
∫
{0}×Ω

φ2eρ(u− ũ)2

≤ 10

∫ t

0

e−s

∫
{s}×Ω

eρ(u− ũ)2|∇φ|2 + 4

∫ t

0

e−s

∫
{s}×Ω

eρ

∣∣∣∣∣
n∑

i=1

f i

∂φ

∂xi

∣∣∣∣∣
2

(u− ũ)2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣∣
n∑

i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣∣
2

ũ2 + 2

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|f − f̃ |2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|V − Ṽ |2 + 2

∫ t

0

e−s

∫
{s}×Ω

eρφ2|f − f̃ |2ũ2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣∣
n∑

i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣∣
2

≤ 10eρ(0,R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(BC

R0
∩BR)

(u− ũ)2

+
4c2(1 + R)2eρ(4R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(Bc

R0
∩BR)

(u− ũ)2
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1036 STEPHEN S.-T. YAU AND SHING-TUNG YAU

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|f − f̃ |2 + 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2|V − Ṽ |2

+ 4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2.(B.12)

Observe that (B.11) implies

et
∫
{0}×BR

eρ(u− ũ)2 ≤ ε̃2e
t.(B.13)

By Corollary 4.1 of [26], u and ũ decay like Gaussian in x variables. So we shall
assume

max
x∈Rn

(|u|, |ũ|) ≤ D1e
−D2|x|2 for t small,(B.14)

for some D1, D2 > 0. In view of the proof of Corollary 4.1 of [26], we can take

D2 ≥ 4c̃
ε + 1 for sufficiently small t

[10 + 4c2(1 + R)2]eρ(0,R)

R2
0(logR− logR0)2

∫ t

0

e−s

∫
{s}×(Bc

R0
∩BR)

(u− ũ)2

≤ 4[10 + 4c2(1 + R)2]teρ(0,R)

R2
0(logR− logR0)2

∫
Bc

R0
∩Br

D1e
−D2|x|2

≤ 4D1[10 + 4c2(1 + R)2]teρ(0,R)

R2
0(logR− logR0)2

ω0R
ne−D2R

2
0

=
4ω0D1R

n[10 + 4c2(1 + R)2]t

R2
0(logR− logR0)2

exp

(
c

ε
+

(
4c

ε
−D2

)
R2

0

)

≤ 4ω0D1R
n[10 + 4c2(1 + R)2]t

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
,(B.15)

where ω0 is the volume of the unit ball in R
n. Recall that |∇ρ|2 = 4c2|x|2

(t+ε)2 . Hence

(B.8) implies

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2

∣∣∣∣ n∑
i=1

(f i − f̃i)
∂ρ

∂xi

∣∣∣∣2ũ2

≤ 4

∫ t

0

∫
{s}×Ω

eρφ2|f − f̃ |2|∇ρ|2ũ2

≤ 4

∫ t

0

∫
{s}×Ω

ε̃ 2
1 c

2(1 + |x|)2 4c2|x|2
(s + ε)2

eρũ2

≤ 16ε̃ 2
1 c

2c̃ 2

∫ t

0

1

(s + ε)2

∫
{s}×BR

eρ̃ũ2.(B.16)
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FILTERING PROBLEM WITH NONLINEAR OBSERVATIONS 1037

Similarly, we can prove that

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ 2|f − f̃ |2 ≤ 16ε̃21c
2

∫ t

0

∫
{s}×BR

eρ̃ũ2(B.17)

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ 2|V − Ṽ |2 ≤ 4ε̃21c
2

∫ t

0

∫
{s}×BR

eρ̃ũ2(B.18)

4

∫ t

0

e−s

∫
{s}×Ω

eρφ2ũ2

∣∣∣∣ n∑
i=1

(
∂f i

∂xi
− ∂f̃i

∂xi

)∣∣∣∣2 ≤ 4ε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρũ2.(B.19)

Hence (B.12)–(B.18) and Lemma B.2 imply that∫
{t}×BR0

eρ(u− ũ)2

≤ ε̃2e
t +

4tetω0R
nD1[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
+16etε̃ 2

1 c
2c̃ 2

∫ t

0

1

(s + ε)2

∫
{s}×BR

eρ̃ũ2 + 16etε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρ̃ũ2

+4etε̃ 2
1 c

2

∫ t

0

∫
{s}×BR

eρ̃ũ2 + 4ε̃ 2
1 c

2et
∫ t

0

∫
{s}×BR

eρ̃ũ2

≤ ε̃2e
t +

4tetω0D1R
n[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R0 +

c

ε

)
+16etε̃ 2

1 c
2c̃ 2

∫ t

0

1

(s + ε)2

∫
{0}×BR

eρ̃ũ2

+24etε̃ 2
1 c

2

∫ t

0

∫
{0}×BR

eρ̃ũ2

≤ ε̃2e
t +

16etε̃ 2
1 c

2c̃ 2d1t

ε(t + ε)
+ 24tetε̃ 2

1 c
2d1

+
4tetω0D1R

n[10 + 4c2(1 + R)2]

R2
0(logR− logR0)2

exp

(
−R2

0 +
c

ε

)
.(B.20)

Let R = 2R0 go to infinity in (5.20), we obtain the estimate in the statement of
Theorem B.4.

Now we are ready to consider the global situation. For a fixed T > 0, we want to
find the solution u(t, x) of (A.5).

Theorem B.5. Let u(t, x) and ũi(t, x) be the solutions of (A.14) and (A.15),
respectively. For ε̃1 > 0, let |Pk| = supi{|ti − ti−1|} be sufficiently small so that the
following estimates hold:

|f(t, x) − f̃(τi−1, x)| ≤ ε̃1c(1 + |x|), for τi−1 ≤ t ≤ τi,(B.21) ∣∣∣∣ n∑
j=1

(
∂f j

∂xj
(t, x) − ∂f̃j

∂xj
(τi−1, x)

)∣∣∣∣ ≤ ε̃1c(B.22)

∣∣V (t, x) − Ṽ (τi−1, x)
∣∣ ≤ ε̃1c(1 + |x|2).(B.23)

Then ∫
Rn

eρ(T,x)(u(T, x) − ũk(T, x))2 ≤ ε̃ 2
1 c1k|Pk|eT ≤ ε̃ 2

1 c1c2(T ),
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where ρ(t, x) = c̃(1+|x|2)
t+ε so that the conclusion of Theorem B.4 holds, c1 is the constant

in Theorem B.4, and c2(T ) is a constant that depends only on T .
Proof. In view of ũ1(0, x) = ψ(x) = u(0, x) and Theorem B.4, we have∫

{τ1}×Rn

eρ(u− ũ)2 ≤ ε̃ 2
1 τ1e

τ1c1∫
{τ2}×Rn

eρ(u− ũ)2 ≤ ε̃ 2
1 c1[τ1e

τ2 + (τ2 − τ1)e
τ2−τ1 ].

By Theorem B.4 and induction, we have∫
{τk}×Rn

eρ(u− ũ)2 = ε̃ 2
1 c1[τ1e

τk + (τ2 − τ1)e
τk−τ1 + (τ3 − τ2)e

τk−τ2

+ · · · + (τk − τk−1)e
τk−τk−1 ]

≤ ε̃ 2
1 c1k|Pk|eT

≤ ε̃ 2
1 c1c2(T ).

As a consequence of Theorem B.5, we have the following L2-convergent theorem.
Theorem B.6. Fix T > 0, let Pk = {0 < τ1 < τ2 < · · · < τk = T} be a

partition of [0, T ]. Let u(t, x) be the solution of (A.14) on [0, T ]× R
n. Let ũi(t, x) be

the solution of (A.15) on [τi−1, τi]× R
n. Let ρ(t, x) = c̃(1+|x|2)

t+ε so that the conclusion
of Theorem B.5 holds. Then

lim
|Pk|→0

∫
{T}×Rn

ρ(u− ũk)
2 = 0.
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