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Abstract. It is well known that the nonlinear filtering problem has important applications in
both military and commercial industries. The central problem of nonlinear filtering is to solve the
Duncan—Mortensen—Zakai (DMZ) equation in real time and in a memoryless manner. The purpose
of this paper is to show that, under very mild conditions (which essentially say that the growth of
the observation |h| is greater than the growth of the drift |f]), the DMZ equation admits a unique
nonnegative weak solution u which can be approximated by a solution ug of the DMZ equation
on the ball B with uR!E)BR = 0. The error of this approximation is bounded by a function of R

which tends to zero as R goes to infinity. The solution ug can in turn be approximated efficiently by
an algorithm depending only on solving the observation-independent Kolmogorov equation on Bp.
In theory, our algorithm can solve basically all engineering problems in real time. Specifically, we
show that the solution obtained from our algorithms converges to the solution of the DMZ equation
in the L! sense. Equally important, we have a precise error estimate of this convergence, which is
important in numerical computation.
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1. Introduction. In 1961, Kalman and Bucy [Ka-Bu] first established the finite-
dimensional filter for the linear filtering model with Gaussian initial distribution,
which is highly influential in modern industry. Since then filtering theory has proved
useful in science and engineering, for example, the navigational and guidance systems,
radar tracking, sonar ranging, and satellite and airplane orbit determination. Despite
its usefulness, however, the Kalman—Bucy filter is not perfect. Its main weakness
is that it is restricted to the linear dynamical system with Gaussian initial distribu-
tion. Therefore there has been tremendous interest in solving the nonlinear filtering
problem which involves the estimation of a stochastic process z = {x;:} (called the
signal or state process) that cannot be observed directly. Information containing x is
obtained from observations of a related process y = {y;} (the observation process).
The goal of nonlinear filtering is to determine the conditional density p(t,z) of x:
given the observation history of {ys: 0 < s < t}. In the late 1960s, Duncan [Du],
Mortensen [Mo], and Zakai [Za] independently derived the Duncan—Mortensen—Zakai
(DMZ) equation for the nonlinear filtering theory, which the conditional probability
density p(t,x) has to satisfy. The central problem of nonlinear filtering theory is to
solve the DMZ equation in real time and in a memoryless way.

In 2000, we [Ya-Ya] proposed a novel algorithm to do just that. Under the as-
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sumptions that the drift terms f;(x), 1 < i < n, and their first and second derivatives,
and the observation terms h;(x), 1 < i < m, and their first derivatives, have linear
growth, we showed that the solution obtained from our algorithms converges to the
true solution of the DMZ equation. Although the above approach is quite successful,
so far it cannot handle the famous cubic sensor in engineering in which f(x) =0 and
h(x) = x3. Tt is well known that there is no finite-dimensional filter for the cubic
sensor [Su].

The purpose of this paper is to show that under very mild conditions (A.2), (A.17),
and (C.3) (which essentially say that the growth of |h| is greater than the growth of
|f]), the DMZ equation admits a unique nonnegative solution u € Wy"'((0,T) x R™)
which can be approximated by solutions ug of the DMZ equation on the ball Br with
urlopr, = 0. The rate of convergence can be efficiently estimated in the L' norm.
The solution ug can in turn be approximated efficiently by an algorithm depending
only on solving the time-independent Kolmogorov equation on Bgr. Our algorithm
can solve practically all engineering problems, including the cubic sensor problem in
real time and in a memoryless fashion. Specifically we show that the solution obtained
from our algorithms converges to the solution of the DMZ equation in the L' sense.
Equally important, we have a precise error estimate of this convergence, which is
important in numerical computation.

The filtering problem considered here is based on the signal observation model

{dm(t) = f(z(t))dt + dv(t), x(0) = o,

(1.1)
dy(t) = h(a(t)) dt + dw(t), y(0) =0,

in which x, v, y, and w are, respectively, R?-, R"-, R™-, and R™-valued processes and
v and w have components that are independent, standard Brownian processes. We
further assume that f and h are C*° smooth vector-valued. We shall refer to z(t) as
the state of the system at time ¢ and y(t) as the observation at time ¢.

Let p(t,z) denote the conditional probability density of the state given the ob-
servation {y(s): 0 < s < t}. It is well known that p(¢,z) is given by normalizing a
function, o(t, z), which satisfies the following DMZ equation:

(1.2) do(t,z) = Loo(t,x)dt + Y Lio(t,z)dy;(t), o(0,z) = oo,
i=1

where

I~ ? &, 0 0fi 1,
1. = - — — — — - -
(1.3) Lo 2 £~ Oz Zf’azi L~ Jx; 2 Zhw

=1 ? =1 =1 =1

and for i = 1,...,m, L; is the zero degree differential operator of multiplication by

h;. (Here we have used the notation p; to represent the ith component of the vector
p.) o9 is the probability density of the initial point zg.

Equation (1.2) is a stochastic partial differential equation. In real applications,
we are interested in constructing robust state estimators from observed sample paths
with some property of robustness. Davis [Da] studied this problem and proposed some
robust algorithms. In our case, his basic idea reduces to defining a new unnormalized
density

(1.4) u(t, x) = exp (— Z hi(x)yi(t)> o(t,x).
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It is easy to show that u(t, ) satisfies the time-varying partial differential equation
%(tv 'T) = Lou(t, l‘) + Z:r;l yi(t)[LOv Li]u(t’ ;E)
(1.5) + 3 21 ¥i(Oy; (Ol Lo, L], Ljlu(t, ),
IL(O, I) =00,
where [+, -] denotes the Lie bracket. It is shown in [Ya-Ya, p. 236] that the robust
DMZ equation (1.5) is of the form
3t (t,2) = 3Au(t,z) + (—f(z) + VK(t,2)) - Vu(t, )

(1.6) + (= div f(@) = 3h(@)? + JAK(L2)
. ff(x)~VK(t,x)+%\VK(t,wﬂz)u(t’x)’

u(0,x) = og(x),

where K = 377" yi(t)hj(2), f = (fi,..., fa), and h = (ha, ..., hyy).
To simplify our presentation, we introduce the following condition.

Condition (Cy).
1 1 1
—§|m2 — AK — [ VK + 5|w<|2 +|f=VK|<e V(t,z)€[0,T] x R",

where ¢ is a constant possibly depending on T

Our main theorems are as follows.

THEOREM A. Consider the filtering model (1.1). For any T > 0, let u be a
solution of the robust DMZ equation (1.6) in [0,T] x R™. Assume Condition (Cy) is

satisfied.
Then
(1.7) sup / eVIFIEPy(t ) < e(cﬁnTﬂ)T/ eViTlzly(0, z).
0<t<T Jrr n
In particular,
(1.8) sup / u(t,z) < e_V1+R26(01+"T+1)T/ eVIFEPy(0, z).
0<t<T Jjz|>R n

Theorem A above says that one can choose a ball large enough to capture almost
all the density. In fact by (1.8) we have a precise estimate of density lying outside
this ball.

THEOREM B. Consider the filtering model (1.1). For any T > 0, let u be a
solution of the robust DMZ equation (1.6) in [0,T] x R™. Assume the following:

(1) Condition (Cy) is satisfied.

(2) —%|h|* = 3AK — f(z) - VK (t,z) + {|VK[* + 12+ 2n + 4|f — VK| < ¢; for

all (t,z) € [0,T] x R™, where cq is a constant possibly depending on T.

(3) e V2P 12 4 2n + 4| f — VK] < ¢3 for all (t,z) € [0,T] x R™.

Let R > 1 and ug be the solution of the following DMZ equation on the ball Br:
‘{)g—tR = %AUR—F (=f+ VK) -Vug
L) + (= divf — Lh? + JAK - £ VK + {VE] Jun,

ug(t,z) =0 for (t,z) € [0,T] x OBRg,

ur(0,z) = oo(x).
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Letv=u—wug. Then v >0 for all (t,x) € [0,T] x Br and

2T _ 1 n
(1.10) ov(T,x) < 67036_1%6(014_ ;1)T/ eV ey (0, ),
Br C2 n
le* _ 2]2|? _R .
where ¢(x) = e r¥ ~ B —e . In particular
coT n
(1.11) / o(T,z) < ucge—%Re(cﬁ%)T/ 6’/1+|x|5u(0,x).
Br C2 n
2

Theorem B above says that we can approximate u by ug. The approximation is
good if R is large enough. In fact we have a precise error estimate of this approxima-
tion by (1.11).

THEOREM C. Let Q be a bounded domain in R™. Let F:[0,T] x Q@ — R"™ be a
family of vector fields C*° in x and Hélder continuous in t with exponent o and let
J:[0,T) x Q@ —= R be a C* function in x and Hélder continuous in t with exponent
a such that the following properties are satisfied:

(1.12)  |divF(t,2)| + 2|0 (t, )| + |F(t.2)| < ¢ for (t,z) € [0,T] x

(1.13) |F(t,x) — F(t,z)| + |div F(¢t,z) — div F(t,z)| + | J (¢, z) — J(t,z)| < eq]t — £
for(, x), (t,2) € [0,T] x Q.

Let u(t, z) be the solution on [0,T] x 2 of the equation

‘?)—?(t7 z) = 3Au(t,x) + F(t,z) - Vu(t,z) + J(t, z)u(t, z),
(1.14) u(0, ) = a¢(x),
u(t,z)| 5 = 0.

Forany0 <7 <T,letPr,={0=71<7 <72 <- <7 =T} be a partition of
[0,7], where 7; = *T. Let u;(t,x) be the solution on [ti_1,7;] X Q of the equation

8“’ it r) = Aui(t, )+ F(ri—1,x) - Vui(t, ) + J(1i—1, ©)u; (¢, ),
(115) ui(Ti,l,x) = uifl(Tifl, I)7

u;i(t, )| ,0 = 0.

Here we use the convention ug(t,xz) = o(xz). Then the solution u(t,z) of (1.1
can be computed by means of the solution u;(t,x) of (1.15). More specifically, u(r,x)
limy, o0 ug (7, ) in the L' sense on Q and the following estimate holds:

4)

202 Ta+1 cT

(1.16) /\u—uk| Thy T )_ 1 e

where

(1.17) co = c1eT + ¢/ Vol (Q)eCZT\/%?T/ u?(0,x) —|—/ |Vu(0, z)|?
) Q

The right-hand side of (1.16) goes to zero as k — oo.
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In case (1.14) and (1.15) are DMZ equations, i.e., F(t,z) = —f(z) + VK and
J(t,z) = —divf—1|h>+ JAK — f- VK + 1|VK|?, by Proposition 2.1 below (which
is similar to Proposition 3.1 of [Ya-Ya]), u;(7;, z) can be computed by @;(7;, z), where
u;(t,x) for 7,1 <t < 7; satisfies the Kolmogorov equation

(1.18)
Gt ) = SAT (@) = S5y fi(0) 55 () = (div £ (@) + § 7y W (@) st @),
ii(rie1,) = exp (7L, (5(ri1) = 45(7i-2)) by () ) i (71, ).

In fact
(1.19) wi (1, x) =exp | — Zyj(ri_l)hj(ac) (15, ).
j=1

Therefore theoretically to solve the DMZ equation in a real time manner, we only
need to compute the following Kolmogorov equation off-line:

GE(t,2) = §AT(t @) — X5, f(0) 22 (4 2) - (div f() + § T, W3() )it ),
(0. 2) = ¢i(),

where {¢;(x)} is an orthonormal base in L?(R™). The only real time computation
here is to express arbitrary initial condition ¢(z) as the linear combination of ¢;(x).
But this can be done by means of parallel computation.

The idea of solving the Kolmogorov equation “off-line” for the elements of an
orthogonal basis has a substantial history; see, for example, [L-M-R] and the references
therein. In the Lototsky—Mikulevicius—Rozovskii [L-M-R] approach, the authors used
the Cameron—Martin expansion for the solution of the DMZ equation. Unfortunately,
to determine the coefficients of the expansion, they need to consider a system of
Kolmogorov-type equations which is a recursive system. The advantage of our method
is that we need to deal with only one Kolmogorov equation.

THEOREM D. Let ug be the solution of (1.9), the DMZ equation on Bgr. Assume
the following:

(1) f(z) and h(z) have at most polynomial growth.

(2) For any 0 <t < T, there exist positive integer m and positive constants ¢/

and ¢’ independent of R such that the following two inequalities hold on R™:
(a) 5 [P = 5 (m = 2)[ ™ =l |2 (f = VE) = 45— [P
—f VK +3|VK]? > —¢.
(b) |m2\fﬂ|2m72 _ m(mgn*Q) |z|m72 _ m|a:|m72(f _ VK) 1‘| < M#m|x|2m72
+ C”-
(3) —1|n)2— %AK—Z?Zl fjg—g+%|VK|2 < ¢ for all (t,x) € [0,T] x R™, where
c1 is a constant possibly depending on T'.
Then for any Ry < R,

BRO

- T/B (e 1" — e~ )0 (x)
Ro

e fio' (m(m +1)

+ R4 ) (1— eC/T)/ oo(z).
/ 2 BR

C
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In particular, the solution u of the robust DMZ equation on R™ has the estimate

/ e 1" (T, z) > e_C/T/ e 17" oo ().

In practical nonlinear filtering computation, it is important to know how much
density remains within the given ball. Theorem D provides such a lower estimate. In
particular, the solution u of the DMZ equation in R™ obtained by taking limp_.~ ug,
where ugr is the solution of the DMZ equation in the ball Bg, is a nontrivial solu-
tion.

In the appendix, we give a priori estimation of derivatives of the solution of the
DMZ equation up to second order. As a consequence we prove the existence of a
weak solution of the DMZ equation. The uniqueness of the weak solution is shown in
Appendix C.

Existence and uniqueness of solutions to the robust DMZ equation (1.6) have
been treated by many well-known authors, including Pardoux [Pal], [Pa2], Chaleyat-
Maurel, Michel, and Pardoux [C-M-P], Rozovskii [Ro], Bensoussan [Be], Fleming and
Mitter [F1-Mi], Sussmann [Su], Michel [Mi], and Baras, Blankenship, and Hopkins
[B-B-H]. They all obtained important estimates on the DMZ equation under spe-
cial conditions. For example, Fleming and Mitter [FI-Mi] treated the case where f
and Vf are bounded, while Michel [Mi] analyzed regularity properties of solutions
to DMZ equations with bounded f and h. Pardoux’s earlier paper [Pal] treated
the case f, h bounded using arguments based on coercivity. It also contains many
other interesting ideas. Pardoux [Pa2] has also treated nonlinear filtering prob-
lems with unbounded coefficients (f,h have linear growth). Starting with meth-
ods somewhat like those used by [Pa3], Baras, Blankenship, and Hopkins also ob-
tained important results on existence, uniqueness, and asymptotic behavior of so-
lutions to a class of DMZ equations with unbounded coefficients. However, they
focused on only one spatial dimension and their result cannot cover the linear case.
The Sobolev space setup of Appendices B and C in this paper is quite standard in
partial differential equations and has been used by many people; see, for example,
[Pal].

The splitting up method has been used extensively by many authors. This tech-
nique is like the Trotter product formula from semigroup theory. Hopkins and Wong
[Ho-Wo] used the Trotter product formula to study nonlinear filtering. The approx-
imation method proposed for the DMZ equation, that of operator splitting, has a
history going back to Bensoussan, Glowinski, and Rascanu [B-G-R1], [B-G-R2]. More
recent articles on operator splitting methods in nonlinear filtering are [Gy-Kr|, [Na],
[It], [It-Ro]. Rates of convergence and “true” numerical schemes are developed in
[Fl-Le], [It], and [It-Ro]. As pointed out by Bensoussan, Glowinski, and Rascanu
[B-G-R1, section 4.3, p. 1431] the method bears the serious limitation that h must
be bounded. The numerics of the Kushner—Stratonovitch equations were studied by
many people. Two highly competitive classes of methods are “particle methods” (see,
for example, [D-J-P] and [Cr-Ly]), in which particles move according to the signal
dynamics and are weighted, killed, or duplicated according to their likelihood, and
“discrete state” approximations (see, for example, [Ku] and [Pa-Ph]). These methods
work nicely under the assumption that h is bounded (cf. [D-J-P, p. 348]).

2. Some basic results. In this section, we recall some results from our previous
paper. The following proposition plays a fundamental role in our real time solution
to the robust DMZ equation (1.6) in a memoryless manner.
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PROPOSITION 2.1. u(t,x) satisfies the Kolmogorov equation

(2.1) %(t,x) = %Aﬂ(t, z) — f(z)- Vit z) — (dlvf Z}ﬁ ) ,T)

for mo_1 <t <71y if and only if
(2.2) u(t,x) = e~ L vilre- D@t )
satisfies the robust DMZ equation with observation being frozen at y(1o—1):

O 1,2) = 3 Bult, @) + (~[(@) + VE (re1,2)) - Vult,2)

(2.3) + < div f(z) — %\h(z)|2 + %AK(Tg_l,I)

—f(z) - VK(1e_1,x) + ;|VK(U_1,$)|2) u(t, ).

Proof. Proposition 2.1 is the left-hand version of Proposition 3.1 in [Ya-Ya]. The
proof is a straightforward computation. ]

We remark that (2.3) is obtained from the robust DMZ equation by freezing the
observation term y(t) to y(7,—1). We shall show that the solution of (2.3) approximates
the solution of the robust DMZ equation very well in the L' sense.

Suppose that u(t, ) is the solution of the robust DMZ equation and we want to
compute u(7,z). Let P, ={0 =7 <7 <7p <--- <7, =T} be a partition of [0, 7],
where 7; = % Let u;(t,x) be a solution of the following partial differential equation
for 1 <7 <7y

Qs (t, ) = §Aui(t,x) + (—f(2) + VK (7,1, 1)) - Vu(t, z)
+ (= div f(2) = 3h(@)P + JAK (i1, )
— f(x) VK (ri_1,z) + %|VK(Ti,1,x)|2)ui(t,x),

ui(Tio1,) = ui—1(Ti—1, 7).

(2.4)

In section 4 below we shall show that u(7,x) = limg_ oo ug(7x, z) in the L sense.
By Proposition 2.1, u; (71, ) can be computed by @y (71, x), where u; (¢, z) for 0 < ¢ <
71 satisfies (2.1) with initial condition

(2.5) 1(0,2) = o(x).
In fact
(2.6) uy (1, z) = Ui (71, 2).

In general Proposition 2.1 tells us that for i > 2, u;(7;, ) can be computed by u;(7;, x),
where u; (¢, x) for 7,_1 <t < 7; satisfies (2.1) with initial condition

(2.7) Us(Ti—1,2) = exp Z yi(Tic1) — yi (Tio))hj () | Ui (i1, ),
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where the last initial condition comes from

Ui(Ti—1,7) = u;(Ti—1, %) €xp Zyj(Ti—l)hj(x)
=1

m

= Uj—1 Tz 1, eXp E Tz 1

=exp | =Y _yi(ric2)hj(x) | Wioa(rior, ) exp [ D yi(ri1)hy(z)
Jj=1 j=1

m

= exp (y;(im1) — yj(Ti—2)hj(2) | Wim1(Tio1, ).
j=1

In fact,

(28) Ui(Tu = exp Zyj Ti— 1 ﬂz('rz,x)

3. Reduction of the problem to the bounded domain case. In this section,
we shall prove that in order to solve the robust DMZ equation (1.6) in R", it suffices
to solve the same equation in a bounded ball B with radius R. The important points
here are that we know how large the R needs to be and that a precise error estimate is
given. These are the essential ingredients for a successful implementation of nonlinear
filters.

Proof of Theorem A. Let ¢ be a C* function on R" and Br = {z € R": |z| < R}.

Let ug be the solution of (1.9), the DMZ equation on the ball Bg:

1

d Pup = 7/ e¢AuR+/ e¢(—f+VK)~VuR
2 Br Br

i)y,
. 1 2 1 1 2 [
+ *lef*§|h| +§AKff~VK+§|VK| e®ugr
Br

1 1
= —f/ e¢V¢~VuR+7/ ¢8U—R— div[e?(—f + VK)Jur
2 /g, 2)oB, OV Br

+/ e?ur(—f+VK)-v
OBRr
. 1,1 1
+ | e®ur|(—divf—Z|h|"+ ;AK - f- VK + -|VK]|
. 2 2 2

1/ . 1 1 Oug
= - div[e?Vlu —f/ U 6¢V¢'V~|—*/ e? 4
2By [ Jur 2 Jop, 2Jop, OV

—/ e¢V¢-(—f+VK)uR—/ e?(—div f + AK)ug
Br

Br
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—|—/ upe?(—f +VK) v
OBRr
. . 1, 1 L
+ | e®up|(—divf—z|h|"+AK - f- VK + -|VK]|
. 2 2 2

- ;/BRe%R(A(b Vo) + /BRe%Rw- (f - VK)

1 1 1
+/ ePup <—h|2 —ZAK - f-VK + |VK2>
B 2 2 2

1 1
_,/ €¢URV¢'V“‘*/ e¢7aUR +/ e¢uR(—f+VK)-u
2 JoBg 2 JoBg v OBr

where v is the unit outward ngrmal of Bg. Choose ¢ = \/1+ |z[>. Then ¢; =
\/W’ i = \/1Jlr\x|2 — {iT.poe- Recall that ulpp, = 0 and n|op, < 0. It
follows that

d 1 1 1
= Pup < Pup|—=|h]* = =AK — f- VK + =|VK|?
dt/BRe“R/BRe“R{ M= 3 f +5IVK]

+ 580+ 5VOP + V6 (f - VK|

1 1 1 n
_ 9} 2 2
= e?up|—=|h? - zAK — f - VK + -|VK|? + ——
/ r| gl - GAK — VK 4 GVEP 4 - ——
|z 1 Jzf? z }
— = + —~ VK
2(1+‘$|2)3/2 21+|x\2 /71+|x\2(f )
1 1 1 1
g/ e®ur {|h|2AKf~VK+|VK|2+”+ +|fVK|]
Br 2 2 2 2

IN

1
(c1+n+ )/ e¢uR.
2 Br

/ ePup(t,z) < e(cﬁ'%)t/ e?up(0,z) Vtel0,T].
Br Br
Let R go to infinity. We have

/ ePu(t, ) < e(cﬁ%)t/ e?u(0, x) Vtelo,T],

which implies

Hence

sup / eqﬁu(t,m)ge(“*‘";lw/ e®u(0, z).

0<t<T

In particular

eV sup / u(t,z) < sup / e®u(t,z) < sup / e®u(t, x)
O<t<T |z|>R 0<t<T J)z|>R 0<t<T Jrn

Se(cl-&-";l)T/ €¢u(0’x).
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This implies

sup / u(t,z) <e Vv 1+R2€(01+"T+1)T/ eVIHE (0, ). 0
0<t<T J|z|>R n

Theorem A says that we can choose R large enough so that supy<;<r f\zlz pu(t,z)
is arbitrarily small. For numerical calculation, we can restrict the DMZ equation
to the ball Br. In fact we can prove Theorem B, which states that ugr is a good
approximation of u when R is large.

Proof of Theorem B. By the maximum principle (cf. Theorem 1, p. 34 in Fried-
man’s book [Fr]), we have v > 0 for (¢,z) € [0,T] x Bg since v|gp, > 0for 0 <t < T:

d dv
@)y, = L

2 pavs [ wravE) v
2 /B, Br

1 1 1
+/ <divf S|h2+ ZAK — f - VK + |VK|2> b
B 2 2 2

:_1/ VQ/).VU_F} w@_
Br

: G [BRdiv[¢(—f+VK)}v

+ Yo(—f+VK)- v
OBRr

1 1 1
+/ (—divf— S|h2+ AK — f- VK + |VK|2> v
B 2 2 2

_1 1 o 1 v _ (-
=g oy [ g [ g [ e s

2 v_i BRUaV 2 Br

- Y(—divf+AK)v+ Ypv(—f+VK) - v
Br OBRr

1 1 1
+/ (—divf—|h|2+AK—f-VK+|VK|2> bo.
B 2 2 2

Let ¢ be a radial symmetric function such that ¢lop, = R, Vlap, = 0, and ¢ is
increasing with |x|. Let

S e~ %) _ R

Then ¢|sp, = 0 and Vi|gp, = 0. Hence
d 1
G w=5 [ @op- [ voo-revE
dt Br 2 Br Br
1, 1 1o
+ ——|h|* — AK — f- VK + - |VK|* | ¥
s\ 2 2 2

- 1 ve_‘b _ 2\ €_¢’U . —
_2/BR (—A¢ + |Vo[?) / [Voé-(f - VK)]

Br
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1.5 1 1 9
+ L - SAK — f-VE 4 < |[VK]?) g
Br 2 2 2
1 1 9
= [ wv|-580+ SIVP ~ Vo (f - VK)
Br
1.5 1 1 9
5 Ih? = SAK — - VE + | VK| ]

— /B [§<—A¢+ Vol?) - V- (f - VK)] v

IN

sup |- 380 + 5IVO = Vo (f - VK)

Br
1, 1 1
WP - SAK — fVE + S [VEP?| - [ g
2 2 2 B
7 |1
s e o {VIET | L-a6 4 Vo) - Vo (£ - ) |
Br
x/ eV ity
Br
Observe that 0 < v < wu for (t,z) € [0,T] x B+ R. Let

x(r)=1—-(1—2)* and qb(x):Rx(l;';).

Then

X'(z)=2(1-2), x"(z)=-2, x(1)=1, Xx'(1)=0,
2z, (|x]? CAfz? (2PN | 20, (af?
v¢(‘r) - R X < R2 9 A¢ - R3 X R2 + R X R2 9
1 1 ., 1, ., 1 1 )
sup|—=A¢ + = |V — Vo (f — VK) — = |h|> — ~AK — f- VK + ~|VEK]|
el 2 2 2 2 2

20z> , (|z*\ 0, (= > [, (1z[>\]?
_— L . LR 27 o
Sélf{ X)) 7\ ") VR X (R

2 2 1 1 1
_2y (|ﬂf|> [ f — @ VK] = 5[h? ~ JAK — [ - VK + 2VK|2}

R R?

IN

[4|x2 2n  8lx|?
su — +

4 1 1 1
— —VK|—=|h|* - =AK — f-VK + =|VK|?
Tt TRkl - VK =S -3 f-VEK+ 5|V |}

Br
1., 1 1 )
<12+ 2n+dfef|f - VK| = 5[] = SAK — f- VK + S| VK]

< co.
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Similarly

sup {e—\/w B(—Aqﬁ +IVoP) = Vo (f - vm] }

Br

< sup {e—\/1+\wl2[12 + 20+ 4fz||f — VK|]} < cs.
Br

In view of Theorem A, we have

— Yo < ¢ Yv + 6_R03/ eVItzl?y
dt Jg, Br Br

n+1 /
< e v + e_R036(01+TT)/ eV (0, 2),
BR n

d d
— e‘th/ wv] =e @2 — Yv — coe” 2 Yv
dt [ Br dt /g, ? Br

R — ntl / 2
< cge”flemezteert T/ eVIHEPy(0, ).

Recall that v(0,z) = 0 on Br. Therefore we have

—e2T _ 1 n
e—c2? Yu(T,x) < 676367R6(61+ ;I)T/ eV (0, ),

Br —C2

which implies
ec2T — 1 nt1 5}
Yu(T,z) < 70367R6(61+T)T/ eVITelP (0, 2).
Br C2 n

4 2
[z 2|z]

Notice that ¢(z) =er¥ ~ r —e

v
o
Q]
5
B
S
=
=N
~
&

Therefore

CQT _ a1
/ o(T,z) < uc\ge*%Re(clJr : )T/ eVIFIEP (0, ). d
BR n
2

2

Theorem B above says that if we replace u by ug, then the error is small when
R goes to infinity. In fact (1.11) gives the precise error estimate.
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4. L'-convergence. In this section, we shall show that our algorithm described
in section 2 will yield an L!-convergence for bounded domains, i.e., u(7,z) = limg_
uy (T, z) in the L' sense for bounded domain. We first begin with the following
technical lemma.

LEMMA 4.1. Let Q be a bounded domain in R™ and let v: [0,T] x Q2 — R be a C*
function. Assume that v(t,z) = 0 for (t,x) € [0,T] x 9. Let Q = {x € Q: v(t,z) >
0}. Then

4 v(t,z) = / @(t,x) for almost all t € [0, ].
Q

dt Jor +dt
Proof.
d L fQ:lm v(t+ At,z) — fQT v(t, )
dt o V) = A, A
. vt + At z) —o(t,z) . Jap,, 06T = for v(t @)
= lim + lim
A=0 Jor At At—0 At
- / dl(t x) + lim anAtin— U(t, SC) fQ+7Q:—+At ’U(t, x)
Q+ dt ’ t—0 At
dv _u(t, &) Vol (o, — )
B /Qtf E(t’ =)+ Aliglo At
+ +
(4.1) i U EIVOL (S~ Q)

At—0 At ’

where & € Q;_At —Qf and & € QfF — Q:_er' Clearly we have lima;—gv(t,&1) =0 =
limat—ov(t, &2). Therefore it remains to prove that

. Vol (Q:_—Q—At - Q?—) . Vol (Q;" - Qj—i—At)
lim and lim
At—0 At At—0 At

are bounded for almost all ¢.

Let w: A — R be a Lipschitz function, where A C R™ is measurable. The coarea
formula for Euclidean space, an important tool of geometric measure theory (cf. [Fe],
[Mal]), reads as follows:

(4.2) /Ah(x)Vw(x)dx/R/w_l(y) h(z)H ][ () dy,

where Hﬁ*l denotes the Hausdorff measure with respect to the Euclidean distance
and h: A — [—00, 0] is a measurable function.

Let A = Qf —Qf \, = {&# € Q: v(t + At,z) < 0}. Let L be the Lipschitz
constant such that

(4.3) lo(t,z) —v(t+ At,z)| < LAt ¥V x € Q.
Since v(t, ) > 0 for x € A, we have

(4.4) v(t+ At,z) > v(t,z) — LAt > =LAt for xz € A.
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Let h(x) and w(x) = v(t + At, z) in the coarea formula (4.2). We have

1
= Vo(t+At)]|
Vol (9] — Q;:_At) = Vol (A)
Lo T
—LAt J{z€A: v(t+At,x)=y} |Vv(t + Atv 3?)‘

Consider the map ®: [0,7] x Q@ — [0,T] x R given by ®(¢t,z) = (t,v(t,z)). By
Sard’s theorem, the set of critical values of ® has Lebesgue measure zero. Therefore

for almost all ¢, almost all At, and almost all y, Vu(t + At,xz) # 0 for all z €
Vol (2F —0F A,)

(4.5) H' () dy.

{z:v(t + At,z) = y}. It follows that limas—.o ——— x> is bounded for almost
+ o+

all t. Similarly one can prove that lima; . W is bounded for almost all

t. 1]

Remark 4.2. Lemma 4.1 is not true for all ¢ € [0,T]. As we shall see from the
vol (QF —f, A,)

Y is not necessarily bounded

following example, this is because lima;_.g
for all ¢.

Ezample 4.3. Let 0 < a < b < c < d < oo and Q = [a,d]. Let v(t,z) =
(x—a)(z—b—+/t)(x—c—+/t)(x—d) be defined on [0, T]|x Q. Then Q = [b-+/t,c+/1]

and Qpyiar = [0+ VE+ At, ¢+ Vt + At], and

length (% —Qfa) _ VEFAI- VI 1

im =1

At At A0 At 2Vt

which is finite except at t = 0.
Proof of Theorem C. Observe that (4.14) and (4.15) imply

Ou iy P

1
E(t’ x) 5 (t,z) = iA(u —w;)(t,x) + F(ri—1,2) - V(u — u;)(t, x)

+ (F(t,z) — F(ri—1,2)) - Vu(t,z) + J (11, ) (v — w;) (¢, x)
(4.6) + (J(t,x) — J(7i—1, 2))u(t, z).
Let Qf = {x € Q: u(t,z) — wi(t,x) > 0}.

d 1
dt/ﬂj(u—ui)(t,x) =3 o Au — u;)(t, ) +/Qt+ Friov,2) - V(u—w)(t,z)

+ /Qj(F(m) — F(r;-1,2)) - Vu(t, z)

+ / )= w) 40

+ /er(J(t,m) — J(ti—1,2))u(t, )

_ 1/891’+ Ou=wi) oy [ div F(rsy, ) — u) (£, 2)

2 81/ Q:r

+ /Q:r (F(t,z) — F(1i—1,2)) - Vu(t, )
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—|—/ J(ric1, ) (u —w;)(t, )
o
+ [ Ut - I o)ulta)
Qi

<C/Qt+(u—ui)(t7m)+cl(t—n1)‘“/ u(t, z)

af

(4.7) +e1(t—71-1)” /+ |Vu(t, z)|.

t

Notice that

%/ﬂu(t,x):%/QAUJF/QF(t,x)oVu(t,z)Jr/QJ(t,w)U(t@)
7

= gu _ div F(t, z)u(t, =) —|—/ J(t, x)u(t, x)
Q ov Q Q
(4.8) < c/ u(t, ).
Q
This implies, for 0 <¢ < T,
(4.9) / u(t,x) < eCT/ u(0, ).
Q Q

In order to estimate [, |Vu(t,z)|?, we need to estimate the L? norm of u(t,z).

d 9 ou
pr Qu (t,x) = Q/Qu(tw)a(t,x)
(4.10) _ /Q u(t, ) Au(t,z) + 2 /Q ult, ) F(t, ) - Vult, z) +2 /Q Tt 2t 7).

Observe that

AU(t»$>F(fax)-Vu(t,x):_/

[ utt.a) divlut, ) (1. 0)] + / V(4 2)F(tz) - v

o0
= —/ u(t, z)Vu(t,x) - F(t,z) — / u?(t, ) div F(t, ).
Q Q

This implies
1
(4.11) / u(t, ) F(t,2)Vult, ) = 2 / W2(t,2) div F(t, 2).
Q Q
Putting (4.11) into (4.10), we get

i u(t,z) = — u(t, )| ux@x— u?(t, ) div T
4 [t = - [vuwap+ [ uenFien - [ ena e

+2/QJ(t,x)u2(t7x)

(4.12) < c/@uz(t,x).
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This implies

(4.13) /Qu2(t7x) < eCt/QuQ(O,x) < eCT/ u?(0, ).

Q

Now we are ready to estimate [, |Vu(t, z)[?.

d 2 o 8u
@/QIWI (t,z) = /sza(t,x).vu(t,x)

ou ou Ju
= -2 A a(t@)Au(t,m) +2 . a(t@)%(t, x)

_ / (Au(t,))? - 2 / Ft,2) - Vult, z) Ault, z)
Q Q

fQ/QJ(t,x)u(t,:c)Au(t,x)

IN

2 2 2, 1 wlt. o))
- [@utto)?+2 [P aPIvatoP + 5 [ Qutt.o)
+2/QJ2(t,a:)u2(t,z)+%/Q(Au(t,z))2
§202/ |Vu(t,x)|2+2cz/u2(t,x)
Q Q

(4.14) SZCZ/ |Vu(t,:c)|2—|—2026d/ u?(0, ).
Q Q

This implies

d e’QCQt/ IVt z) 2 _ 2Rt i/ \Vu(t,:z:)|2—2c2/ |Vu(t, z)|?

(4.15) < 2826_(2C2_C)t/ u?(0,z) < 202/ u?(0, z).
Q Q

Hence

e*m/ |Vu(t,x)|2—/ IV (0, z)|? §202t/ u?(0, z)
Q Q Q

and
/ IVu(t, z)|? < 2cte! / u2(0,x) + 27 / IVu(0, z)|?
Q Q Q
(4.16) SZCQTeQCQT/u2(0,x)+6202T/ |Vu(0,z)|%
Q Q

It follows that

/QIVu(LxH < \/Vol () [/Q Vu(t,a;)|2] ]

(4.17) < \/Vol (Q)eczT\/ZCQT/QuQ(O,x)+/Q|Vu(0,x)|2.
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Putting (4.9), (4.17) into (4.7), we get

jt/ﬂj(u—ui)(t,x) Sc/ﬂf(u—ui)(t,x)+cl(t—7'i—1)a/ u(t, x)

Q

+ Cl(t — Tifl)a A |Vu(t, fE)|

SC/
Q

F it — 1im1)*/Vol (Q2)e”’T

\/2c2T/Qu2(o,z)+/QVu(0,x)l2

(4.18) = c/QJr(u—ui)(t,x) +co(t — Tii1)%,

(w—w;)(t,x) + c1(t — Ti_l)aeCT/ u(0, x)

Q

t
t

where

(4.19) ¢ = cleCT/ u(0, z) + ¢14/ Vol (Q)eczT\/ZCQT/ w?(0,z) + [ |Vu(0,z)[?,
Q Q Q

d —c(t—Ti—1
u [e ( )/Q?(u—ui)(t,x)]

— pclt=Tiz1) [jt /QT (u —uy)(t, ) — c/Q+ (u— ui)(t,x)l

t
< Cg(t — Tiil)ae—c(t—n,l).

This implies

e ct=Ti-1) / (u—u;)(t,x) — / (u—u;)(Tiz1, 2)
(t — Tifl)a+1

t
(420) S CQ/T 1(5 - Ti_l)aeic(siﬂfl) S C2 o+l

—

Hence

/Q? (u—u;)(t, o) < ec(tfn,l)/ (1 — g 1)(7i1, )

Qf

Ti—1
(t—Ti_l)aJrl (t, . )
4.21 et TTim)
(421) te a+1 ¢

Similarly one can prove that
[ w-ue) et [ (- unia)
Q Tica
(t — 7'1‘_1)Oé+1

4.22 A AN C(t_Tifl).
(422) te a+1 ‘
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Consequently, we have

/Q|uu¢|<t7x>—/w<uui><t,x>+/t<uiu)(@x)

i t—Ti— atl
(4.23) < eclt=mim1) {/Q lu — ui—1|(Ti-1,7) +262a+1)1} .

By applying (4.23) inductively, we have the following estimate:

/Q\u—uk|(7'k,x)

_ a+1
< eclm=Ti-1) T 90, Tk = Th=1)"""
<e [/Qu Up—1|(Th—1,T) + 2¢2 )

a+1
< e(Th—=Th—1) pC(Th—1—Th—2) / — _ _ 2 (Tk_l _ Tk_Q)
<e e Q|u Ug—2|(Th—2, ) + 2¢9 P

(T — Th—1)* Tt
a+1

ec(Tk*Tk—Z)/ ‘u — uk,2|(7k72,1') +
Q

4 eC(Tk—Tk—1)202

—T_Ql [(kal B TkiQ)a«}lec(‘rkakfg)
«

+ (Tk _ Tk,l)a-‘rlec(m_m’l)]

ec(Tk*Tk—i)/ "Z,L*Uk—i|(7_k—i7x)
Q

262
a+1

IN

[(Tk _ kal)a—"_lec(ﬂ‘_ﬂ“’l) + (kal _ Tk72)a+1ec(7—k—m,2)

+- ( g1 — The Z)0z+1 (T —Th— w)]

CT/|u—u0\ 0,z) +

+ (Tk—l - Tk_2)a+1ec('rk—7'k72) R (7-1 _ To)a+1eC(Tk—TO)]

a+1 ec(T;c —Tk—1)

\ /\

[(Tk = Tk-1)

2cy Tt! El

2T kT
= [eF +eF 4o f e F ]
a+1
(4.24) a+1k
202 Ta—i—lecT
“a+1 kx
which goes to zero as k — oo. 1]

5. Lower estimate of density function. In practical nonlinear filtering com-
putation, it is important to know how much density remains within a given ball. In
this section, we shall provide such a lower estimate. In particular, the solution u of
the DMZ equation in R™ obtained by taking limp_. ., ur, where ug is the solution of
the DMZ equation in the ball By, is a nontrivial solution.

Proof of Theorem D. Let ¢ = e ?(®) — ¢=r(Fo) where p is an increasing function
of |z]. Observe that ¢ > 0 for x € Bgr,, ¢ =0 on dBg,, and %bg% <0, where v is
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the outward normal of 0Bg,.

d 1
—_— gbuR: - ¢AUR+ ¢(*f+VK) 'VUR
dt Jpg, 2 JBng, Br,

1 AK 1
+/ <divf|h|2+f~VK+|VK|2> dur
Brg 2 2 2

1 1 96 1 dur
= - A —_—— [ p— -
2 /BRO uRAP 2/BBRO ot 2/63% B

—/ uRdiv[gb(—f+VK)]+/ ¢pur(—f+VK)-v
B,

6330

1 AK 1
+/ <divf|h|2+f~VK+|VK|2> Pug
Ba, 2 2 2

1
22/BROuRA¢+/BROuRV¢-(f—VK)

AK 1

1
— =2 P = f VK + = |VE[]? .
+/BRU< 5 gV +2Vk>¢uR

Notice that V¢ = —e P Vp and Ap = e *) (|Vp|? — Ap). Hence

d A 2
- Pur > / ue ?@ |22 4 Vol _ Vp-(f = VK)
dt I, . 2 2

AK 1 1
+/ <|h|2f~VK+VK|2> pug.
Br, 2 2 2

Let r = |z|. We have

/ —
Vp:@x and Ap:p”(r)er’(T)nTl.
Hence
2
S eunz [ upeetn {A’#W' Vp~<fVK>}
dt Jp,, By 2 2
Ap  |Vp|?
+/ [—p+|p|—Vp~(f—VK)
omy L 2 2
AK 1, 1
_ 2R P f VK 4 - |VK
S~ gl = 1K+ JIVKE] bun
_efp(Ro)/ pr o n=l (F-VEK) - Zu
- s |2 2 22 PP e
Ap  [Vp|?
+/ [p+|p|Vp'(fVK)
ny | 2 2
AK 1 1
(5.1) - - §|h|2 —f VK + 2|VK|2} pug.
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We want to choose p such that

12 /! _ 1
e~ P(Ro) / {p Sy (- VK) - x} uR
Br, r

< E(RO)v

2 2 2r

where €(Rp) is small and will be determined later. Then (5.1) implies

d A Vpl|?
G oz —drys [ -5 B o)
dt Jp,, By L 2 2
AK 1 1
(5.2) 22h|2f~VK+2|VK|2}¢uR.

We now take p = |z|™. Then
-1
Ap=p'(r)+p/(r)—— =m(m+n—2)r"?
r

Vol = (¢ (1)) = 222,

Since f and h are of polynomial growth, we can choose a positive integer m large
enough such that

Ap | |Vp? AK 1, , 1
- — (f-VK)— — — = — f-VK + =|VK
5 Ty Ve (f=VE) = —= = S[h" = f- VK + S |[VE|
= — 1m(m +n— 2)rm*2 + lmzrszz
2 2
/ AK 1 1
*p(r)lﬂ'(f*VK)*T*§‘h|2*f~VK+§|VK|2

< - on R”,

where ¢’ is a positive constant independent of R and Ry. Hence

LI gun> —eRo)—¢ [ oun
d c't 't
= e our| > —e(Rp)e
BR[)
/ R /
(5.3) =T pur(T,z) — dpur(0,2) > ( /0) (1—eT).
Br, Brg C

We are now ready to estimate e(Rp). Observe that % < 0 on 0Bp, where v is the
outward normal of 0Bg.

d 1
7/ UR = = AUR+/ (—f+VK)VUR
dt Jg, 2 /g, Br

1 1 1
+/ <—divf— SIW2 4 SAK — f- VK + |VK|2> un
B 2 2 2

zl/aBRauR_/BRuRdiv(—f+VK)+/ ugr(—f+VK) v

2 aV OBr
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1 AK 1
+/ <—divf— SR+ == — f-VE + VK|2> un
B 2 2 2

1 AK 1
< / (—|h2——f-VK+|VK|2) uRgcl/ UR.-
Br 2 2 2 Br
Hence
(5.4) / ug(t,z) < eclt/ ur(0,z), 0<t<T.
BR BR

In order to estimate €(Ry), we need to determine the upper bound of

'2 "
p p n—1, / z
—_— = — —VK)- - .
/BR[Q >~ PPV v)r]“R
0

Recall that p = r™. Then for m large enough,

e—P(Ro)

p P n—1, / r
pP__P _ _ _VK). <
5 T 5 P =P (f=VE)

5 - 5 rm? ™ 3(f - VK) -z

B ‘m2r2m2 m(m+n—2)

1
< m(mQ—l— )r2m—2 e

where ¢’ is independent of R and Ry. Therefore

2 Z
—p(Ro) pr_p _m—1, ,VK.E t
‘ /B[Q Ly - V) (o)
m 1
< 67R0 <m(7n2—|— )R(Q)m—Q +C//>/ ’LLR(t,ZL’)
BRO
/ m ].
by (5.4) < ¢ T-Rg (m(m;_ )R§m2+c”>/ ur(0,z),
Br

and we can set

' m 1
(o) =T (PIEL gt ) [ un(0,0)
2 Br

In view of (5.3), we have

T pup(T,z) — [ ¢ugr(0,z)
BRO BRO

>

o T—Ry' (m(m +1)
C

- 5 R(Q)m—2 +C”> (1 — €€ T)/ UR(O,SC),
Br

which implies

pup(T,z) > e~ T Pur(0,z)
BRO BRO

e fig" (m(m +1)

(5.5) +— Rgm-2+c"> (1—e“T) / ur(0, ).
C 2 Br
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Observe that the second term on the right-hand side of (5.5) tends to zero as Ry — occ.
Therefore we have

/ e 1" u(T, z) > efc,T/ e 1" u(0,2). D

Appendix A. A priori estimation of derivatives up to second order. In
this section, we shall give a priori estimation of zero, first, and second derivatives of
the solution of the robust DMZ equation on [0,7] x Bg.

THEOREM A.l. Consider the robust DMZ equation (1.9) on [0,T] x Br, where

={z € R": |z| < R} is a ball of radius R. Let C1 = maxo<i<7 [ Y 104 |yi(t)|2]%
be the smallest constant such that
(A.1) IVK(t,z)] < C1|Vh(z)| for (t,x) € [0,T] x Bg,
where |Vh|? =3 |Vhi(z)|?.

Suppose that there exists a constant C' > 0 such that for any r > 0

h|? +d
min (A +divf+C 1max|Vh|>0

wl=r /JfR+ B2 +divf+ C +|f]  lel=r

Let g(x) be a posztwe radial symmetric function on R™ (i.e., g = g(r), where r =
x| = (320, 22)2 ) such that

(A.2)

2
(A.3) ¢/ ()] < min [h” +divf+ C max |Vh|.
|z|=r \/|f|2+|h|2+d1vf+0+\f| \Il—r
Then, for 0 <t <T,
(A4) / e2uk(t,x) < eCt/ e?0%(x).
Br Br

Proof. Let p be any smooth function on R x R™. Then
d 1 2 92 _/ 2 / 8UR
a (2/BRP uR> = BRPPt“R"’ BR'O UR =5
1
= / pptu%Jr/ §p2uRAuRf/ pur(f — VK) - Vug
Br Br Br
22 |12 : 1 1 2
— poun |=|h)* +divf — —AK + f- VK — = |VK]|
Br 2 2 2
1
:/ pthQR—/ puRVp-VuR—i/ P2 Vugl?
Br Br Br
1
+/ pu%Vp~(f—VK)+f/ P2 (div f — VEK)u%
BR 2 BR

—/ puR[ ‘h|2+dlvf—*AK+f VK — - |VK|2}
Br

1
S/ PPtU%+§/ \VP|2U%¢—/ PuRl |h|2+ lef
Br Br Br

(A.5) +f-VK—;|VK2—ZV(logp)~(f—VK)].

i=1
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If we set p = e, then we get

d[1 9 o
dt[z/BR”“R]
21 1
g/ [gt+|vm—|h|2—divf—f-VK
B 2 2

2
1
+5 VK + Vg (f - VK)] PPy
_ |V9|2 1 2 1 .9
[ o B - vRE =G

1 1.
~GIhE = div 4 V- — VE)] gt

1 1 1 1
(A.6) -/ [gt T A LY divf} i
. 2 2 2 2

We shall choose g to be independent of ¢ and a constant C' > 0 so that

(A7) Vg + f— VK| <|f2+|h> +div f + C.

Notice that (A.6) and (A.7) imply

d[1 1
A8 SAs | <o Sl
(A-8) 7 {Q/BRP uR} =C [ 30

Inequality (A.7) can be achieved if we have

Vgl < VIFP + 1A% +div f + C — | f| = VK]

|h|? +div f + C

A. — _
(49 TP av £ 0+ 7]

VK.

Notice that, for 0 <t < T,

IVK(t,z)| =

O
=1

< Zlyi(t)llvm(x)l

< (Zyi(t)2> <Z|th‘(x)|2>
i=1 i=1

Let C7 = maxo<i<7 (310 |yi(t)|2)%. Then we have

(A.10) IVK(t,z)| < C1|[Vh(z)].

Now we shall choose g to be radial symmetric so that

2 .
AL |¢'(")] = |Vg| < min (b +div/+C — €y max |Vh|.
zl=r \/IfI2+ A2 +div f + C + |f]| |z|=r

185
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Inequality (A.9) implies

(A.12) / e2uk(t,x) < eCt/ e*o(x). 0
Br Br

Remark A.2. Notice that from (A.11), if h grows fast, then we can allow g to
grow fast.

We next give a priori estimation of the first and second derivatives of the solution
of the robust DMZ equation on [0,7] x Br. We first observe that for estimation of
second derivatives it is sufficient to estimate the Laplacian of the solution.

LEMMA A.3. Let p be a smooth function with compact support in Bgr. Let ug be
the solution of (1.9). Then

(A.13) / Zp uR)? / pQ(AuR)2+63up|Vp|2/ |Vug|?.
B B Br

R j=1 R

Proof.

/ p*(Aug)? = —/ 20(Vp-Vug AuR—/ V(Augr) - Vug
Br Br
—/ QpAUR VUR Vp / Z UR jji UR
Br Jj=1
—/ 2pAur(Vug - Vp)
Br

(A.14) + Z / 2ppj(ur)jivi + Z /

i,j=1 i,j=1

By the Schwartz inequality, we have

/ 2,oAuR(VuR-Vp)S/ 2pAug|Vug|[Vpl
Br Br

(A.15) < [ aun+ [ (TunPvop
Br Bgr

(A.16) Z/ 20p;(ur)ji(ur)i Z/B [ (ur)F; + 205 (ur); }

7,j=1 i,j=1

Inequalities (A.14), (A.15), and (A.16) imply

/ P(Bug)? > — / 2(Aug)? — / Vur|Vol
BR BR

_,/B Zp UR 22/ pJul—&-Z/ Uﬂ

R4 j=1 i,7=1 i,7=1

_ / 2(Aug)? /B Vur|Vol? -2 /B V0l [Vug]?
R R

/B Zp uR]N

R 45=1
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which is equivalent to

/ Z p*(ug) ]Z < 2/ (AuR)2—|—3/ Vo2 | Vug|?.
BRl] 1 Br

Hence

/ 3 p(ug)? i<t [ 65w VoP [ (VugP. O
B

R =1 Br Br

Now we are ready to give a priori estimation of the first and second derivatives
of the solution of the robust DMZ equation on [0,T] x Bg.

THEOREM A.4. Consider the robust DMZ equation (1.9) on [0,T] x Br, where
Br ={x € R": |z| < R} is a ball of radius R. Assume that

1 1 1 C
(A.17) \/2|h|2 +div f — 5AK+f -VK — §|VK|2 t5- |f|— VK| >0,

where C is the constant in Theorem A.1. Choose a nonnegative function g so that

_ 1 1 1 C
(A.18) Vgl < \/2|h|2 +div f — iAK—i-f -VK — §|VK|2 + 5~ lf| = |VK]|
and
27 Lo : 1 1 2 ? 2
(A.19) e“I|\V §|h\ +d1vf—§AK+f~VK—§|VK| <e,

where g is chosen as in Theorem A.1. Then

(A.20) / 2| Vg 2(T, ) / / 7(Aup)?(t, o)
Br Br
S/ ezg\VuR\Q(O,x)—&—T/ e290%(x).
Br Br
Proof. Recall that 8“R |aB = 0. We have

d 1 2g 2

Rl v

dt[Q /BRe [Vl

:/ e*IVur V—auR
Bn ot

8uR

= 2Vug - Vg — Au
/BR Y(-2Vun- R g

~ - 1
z/ e*(—2Vup - Vg — Aug) §AuR—(f—VK)-VuR
Br

1 1 1
— <2|h|2 +divf - SAK+f VK - 2|VK|2)UR]
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- / 625{—1(AUR)2 +
Br 2

+2(Vug - V§)(f — VK) - Vug

—VUR . V§+ (f - VK) . V’U,R A’LLR

1 1 1
+URAUR(—2|h2 +div f — §AK+f -VK — 2|VK|2)
(1, 1 1
+ 2urVug - Vg( 5lh? +div f = SAK + f- VK = S|VE[ ) {.
This implies
d|1 27 2 1/ 29 2
—|= - A
dtb/BRe |VUR}+4 BRe (Aug)
_ 2] 1 2 _4(—Vup- Vit (f— .
= e 1 (Aug)® —4(—Vugr-Vg+ (f —VK) - Vug |Aug
Br
+2(Vugr -Vg)(f = VK) - Vug
1o, 1 1
+urpAupr —§|h| +d1vf—§AK+f-VK—§|VK|

(1 1 1
+ 2urVug - Vg(2h|2 +div f — §AK—|—f -VK — 2|VK2)}

(1 S|
Z/ 629{—4|:AUR+QVUR'V§—2(f—VK)'VUR:| +1[2VuRV§
Br
—2(f = VK) - Vug)* + 2(Vug - V) (f — VK) - Vug
1,y . 1 L
+ urpAug —§\h| —|—d1vf—§AK—|—f-VK—§|VK\
AP 1 L
(A.21) +2ugp(Vug - 9g) §\h| +d1vff§AK+f~VKf§|VK\ .
Notice that
1 _ 2 _
Z[QVUR-VQ—Q(f—VK)«VuR] +2(VuR-Vg)[(f—VK)-VuR}
2
- [VuR~V§—(f7VK)~VuR} +2(VuR-V§)[(f7VK)~VuR]

(A.22) = [Vug-(Vi+ f - VK)F
and

/ e2ﬁuRAuR<;|h|2 +div f — %AK +f VK — ;|VK|2)
Br

_ 1 1 1
= —/ e [2uRvuR : V§(|h|2 +divf— -AK+ f-VK — VK|2>}
Br 2 2 2
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2g 21,2 . 1 1 9
- e\ Vug|®| z|h|* +divf — —AK + f- VK — —|VK]|
B 2 2 2
oz 1.9 1 1 2
(A.23) - eYupVug - V| Z|h|*+divf — AK+ f- VK — - |[VK|* ].
B 2 2 2
Putting (A.22), (A.23) in (A.21), we get
d|1 2% 2 1 / 25 2
—|= = A
g {2 /BRe |Vug| ] 1 BRe (Aug)
< [ unfvg+ s - VKP
Br
25 o L2, g 1 1 2
- e\ Vug|“| z|h|*+divf— -AK + f- VK — -|VK]|
B 2 2 2
25 Lo o 1 1 2
(A.24) — e“upVug - V| z|h|* +divf — -AK + f- VK — -|[VK|* |.
. 2 2 2
As before, we look for g so that

1 1 1 H
IVg+ f— VK| < <2h|2+divf2AK+f~VK2|VK2+§> .

Hence it suffices to set g so that

c 1

(1 , 1 1 >
Vgl < <2|h|2+d1vf2AK+f-VK2|VK|2+2> —[fI=IVK].

For such g, we have
dl 25 2 1/ 25 2
il el . - I(A
dt [2 /BRe Vurl™] 4 BRe (Bu)
1 ~ 1 _
< C’[/ 629|VUR|2:| + 7/ e*|Vug|?
2 BR 2 BR

1 B 2
(A.25) + 7/ ek,

1 1 1
V<2|h2 +divf - SJAK+f- VK~ 2|VK|2>

We can choose g so that

2

(A.26) e < e,

1 1 1
V<2|h2 +divf ~ SAK +f- VK - 2|w<|2>

Inequalities (A.25) and (A.26) imply

i 1 29 2 1/ 29 2
o {2 /BRe [Vug| } +4 BRe (Aug)

1 5= 1.
<(c+ 1)/ 5629‘VUR|2 + 56“/ e*o?(2).
Br Br
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Hence

d 1 -
2 (et - 29 2
o [e /BR 26 |Vug| ]

d 1 5 1 5
_ —(c+1)t | - 29 2 1 - 29 2
e |:dt/BR 26 |V’U,R| (C+ )LR 26 |V7.LR| :|

1 ~
et / €29 52 (1’) _ 767(C+1)t / e2g(AuR)2’
BR 4 BR

<

DN | =

which implies

1 - 1 .~
e_(C'H)T/ 762g|VuR|2(T,m)—/ *629|VUR|2(0,$>
Br 2 Br 2

T
T/ e*90%(x) — 1/ 67(C+1)t/ e2(Aug)?(t, x).
BR 4 0 BR

<

N |

It follows that

1 5 1 T _
e_(C“)T/ 5629|VUR|2(T7 T) + 16_(C+1)T/ / e*(Aug)*(t, z)
Br 0 Br

1 5= 1
S/ *629|VU,R|2(0,$)—|—*T/ 295 (x),
5y 2 2

Br
and (A.20) follows immediately. o

Appendix B. Existence of a weak solution for the DMZ equation. Let
Q = (0,7) x R™ and let L?(Q) be the space of functions that are square integrable
over Q). The scalar product of two elements v1, v of L?(Q) is defined by the equation

(v1,v2) = // V1V dx dt.
Q

The class of C™ functions in  with compact supports in @ will be denoted by
CE(Q):

DEFINITION B.1. A locally L?-integrable function is called a generalized derivative
of a locally L?-integrable function v(t,x) in Q with respect to x if for each ®(t,z) €
C§°(Q) the equation

- [ 22 o) o

holds. In this case, we write w = 8‘% The generalized derivative with respect to t

and generalized derivatives of higher order are defined similarly (see [So]).

Remark B.2. If the sequence of functions vy, (t, z) weakly tends to v(¢,x) in the
space L?(Q) as m — oo and the norms of %“T’: in L?(Q) are uniformly bounded with
respect to m, then v(¢,z) has a generalized derivative 5%; € L*(Q) and (?;;k weakly

tends to aaka [So].
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DEFINITION B.3. We denote by W(R™) the space of functions ¢(x) such that
é(x) € L2(R™) and g% € L2(R") fori=1,...,n, with the scalar product

R R 8> 2

We shall denote by W11(Q) the space of functions v(t,x) for which v(t,x) € L*(Q),
%}c;m) € L*Q) (i=1,...,n), and % € L%(Q), with the scalar product

(B.3) (v1,v2 11:—// vy (t, )va(t, x) dtdx+// <Zg;1 222 a(;??;f)dxdt.

It is known [So] that WY(R"™) and WHY(R™) are complete. The norms in L*(Q),
WYHR™), and WHH(Q) will be written ||[v]|o, ||v]l1, and |[v]1,1, respectively.

Remark B.4. 1t follows from the embedding theorems of Sobolev that a func-
tion of W1(Q) can be modified on a set of measure zero in such a way that it
is L2-integrable on the section of the cylinder @ by any n-dimensional plane or n-
dimensional C'! surface. In particular, such a function is L2-integrable on the section
of @ by any plane t = constant. Moreover, the values of v(t,z) € WH1(Q) on suffi-
ciently close n-dimensional planes will differ in mean by as little as we please [So]. In
particular, if v(t,z) € WH(Q) and v(x,0) = ¢(z), then fQ[v(t,x) —¢(x))?dz — 0
ast — 0.

DEFINITION B.5. The subspace of WY(R™) consisting of functions that have
compact supports in R™ is written Wi (R™), and the subspace of W1H1(Q) conszsting
of functions v(t, x) which have compact supports m R” for any t is written Wy (Q).

DEFINITION B.6. The function u(t,z) in Wy (Q) is called a weak solution of
the initial value problem

S o (At ) 2) + Xy Balt, )3 + Ot a)u = 32,
u(0,2) = 6(x)

(B.4)

if for any function ®(t,x) € Wol’l(Q) the following relation is valid:

ou 0P - ou
(25 //{ A m 7)o dei=0
7,=1 =1

S ot
and u(0,z) = ¢(x).

We now recall some facts concerning convergence in Hilbert spaces.

Remark B.7. A sequence {u,}, in a Hilbert space H with scalar product (-,-),
is said to be weakly convergent (to u) if the sequence {(um,, f)} is convergent (to
(u, f)) for any f € H. A weakly convergent sequence is bounded. From any bounded
sequence {u,,} in H one can extract a weakly convergent subsequence. If {u,,} is
weakly convergent to u, then there exists a subsequence {u,,,’ } whose arithmetic means
converge to u in the H norm (see [Fr, p. 273]).

THEOREM B.8. Under the hypothesis of Theorem A.4 the robust DMZ equation
(1.6) on [0, T] x R™ with initial condition oo(z) € W3 (R™) has a weak solution.

Proof. Let {Ry} be a sequence of positive number such that limy_,, Rx = oc.
Let ug(x) be the solution of the robust DMZ equation (1.9) on [0,T] x Bg,, where
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Bpg, = {z € R": || < Ry} is a ball of radius Rj. Let

ug, (t,z) ifx € Bpg,, oo(xz) if z € Bp,,
uy(t, ) or(x)
0 if 2 ¢ B, , 0 if © ¢ Bp, .

In view of Theorems A.1 and A.4, the sequence {uy} is a bounded set in Wy (Q).
By Remark B.7, there exists a subsequence {uy} which is weakly convergent to w.

Moreover, u(t, ) has generalized derivative 2% Py ¢ L*(Q), and Quy  Ouy weakly

Oz a7 Ox; ' Ox?
tend to 8—“ g %7 respectively. Now we claim that the weak derivative % exists and

is equal to ‘the right-hand side of (B.3). To see this, let ®(t,2) € W, (Q). Then

//BAu— (f(z) = VK) - Vu — (;|h2+divf_ %AK

1
+f VK — ZVK|2>4 O(t, x) da dt

1.9 . 1
- - - *A
(2|h| +div f 7 K

+f-VK - ;|VK|2>uk/] O(t,x) dv dt

Jim / / U &1, ) de
k' —oc0

= —klgnoo //ukfa(t,x) dx dt
= —//u%—f(t,x)dmdt.

Clearly u(0,z) = limp/ 00 up (0, ) = limp oo o () = 09 (). d

Appendix C. Uniqueness of a weak solution for the DMZ equation. We
are now ready to establish the uniqueness of a weak solution for the DMZ equation.
We shall follow the notation in previous sections.

THEOREM C.1. Let Q = (0,T) x R™. Assume that for some ¢ > 0,

(C.1) sup / Tu?(t, x) dr < oo,

0<t<T

(C.2) / / e |Vu(t, z)|* de dt < oo,
where r = \/x% + -+ - + x2. Suppose that there exists a finite number o such that
(C. ‘2w+f VK‘ —2<|h|2+d1vf—AK+f VK - - |VK|2) <a

Then the weak solution u(t,x) of the robust DMZ equation on Q is unique.
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Proof. We only need to prove that u(t,z) = 0 on Q if u(0,z) = 0. By iteration,
we may assume that o7 < 1. Let ® € C§°(R™). According to the definition of weak
solution (B.5), we have

1 (T T
/ —<I>dtd —5/ Vu-Vfbdxdt—/ / (f —VK) -Vuddzdt
0o Jrn 0 n

T 1 1 1
(C.4) - / / [2|h|2 +div f — 5AK +f VK — 2|VK|2} ud de dt.
O n

Replacing ® by ®e”, we have

1 /7T
/ u(T,z)Pe = — 5/ Vu - (V) — f/ / e Vr - Vu
n R‘IL n
/ [ erat-r+vE)-v

1 1 1
—/ / {2|h|2+cuvf—2AK+f-VK—2|VKI2 Pue”
O n

T o .

Approximating u by ® in the W(Q) norm, we get

/ T, x)e” = —7/ / ”'\Vu\Q—f/ / ue" Vr - Vu
+/ / e“"u(—f +VK) - Vu
0 n
T 1 1 1
—/ / [|h2+divf—AK+f-VK— VK|2] u?e
o Jrn |2 2 2
+/T/ U@ecr
o Jn Ot
1 T
== 5/ / e‘”{|Vu|2 + {CUVT‘ —2u(—f + VK)} : Vu}
0 n
T 1 1 1
—/ / [m2 +divf— -AK+ f-VK — VK|2] u?
o Jrn |2 2 2
T 1 T
—|—/ / —e"ulAu —/ / e“u(f —VK)-Vu
0 n 2 0 n
r 1 1 1
7/ / e u? {|h|2+divf “AK+ f-VK — VK|2]
o Jrn 2 2 2

T
—/0 /n ecr{\Vu\Z—l— [cuVr—2u(—f+VK)} -Vu}
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T
0 n
T
_ / / oo
0 n

T
+/ / ecru2{
O n
- (|h\2+2 divf—AK+2f-VK—VK|2)}

(C.6) < a/OT/n e“ru?(t, x).

By the mean value theorem, there exists 77 € (0,7) such that

T
/ / e“rut(t, ) = T/ e u*(Ty, x).
0 n n

In view of (C.5), we have

1 1 1
5|h|2 +divf—SAK+f VK - 2|VK2] u?e”

2

Vu — %VrfueruVK

2
SVr+f-VK

(C.7) / u? (T, x)e < aT/ u?(Ty, x)e.

By applying (C.5) successfully, there exists T}, € (0,T") such that

(C.8) / W (T2)e < (aT)" / (T )

As oT < 1, we conclude that u = 0. 0
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