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Hermite Spectral Method to 1-D Forward
Kolmogorov Equation and Its Application to

Nonlinear Filtering Problems
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Abstract—In this paper, we investigate the Hermite spectral
method (HSM) to numerically solve the forward Kolmogorov
equation (FKE). A useful guideline of choosing the scaling factor
of the generalized Hermite functions is given in this paper. It
greatly improves the resolution of HSM. The convergence rate
of HSM to FKE is analyzed in the suitable function space and
has been verified by the numerical simulation. As an important
application and our primary motivation to study the HSM to
FKE, we work on the implementation of the nonlinear filtering
(NLF) problems with a real-time algorithm developed by S.-T.
Yau and the second author in 2008. The HSM to FKE is served as
the off-line computation in this algorithm. The translating factor
of the generalized Hermite functions and the moving-window
technique are introduced to deal with the drifting of the posterior
conditional density function of the states in the on-line experi-
ments. Two numerical experiments of NLF problems are carried
out to illustrate the feasibility of our algorithm. Moreover, our
algorithm surpasses the particle filters as a real-time solver to
NLF.

Index Terms—Computational methods, filtering, forward Kol-
mogorov equations, Hemite spectral method.

I. INTRODUCTION

T HE central problem in the field of nonlinear filtering
(NLF) is to give the instantaneous and accurate estima-

tion of the states based on the noisy observations, if enough
computational resources are provided. Nowadays, the most
popular method is the particle filters (PF), refer to [1], [2] and
references therein. The main drawback of this method is that
it is hard to be implemented as a real-time solver, due to its
essence of Monte Carlo simulation. Hence, it is necessary to
develop a real-time solver to the NLF problems. In 1960s,
Duncan [8], Mortensen [19] and Zakai [24] independently
derived the so-called DMZ equation, which the unnormalized
conditional density function of the states satisfies. Hence the
central problem in NLF is translated into solving the DMZ
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equation in the real-time and memoryless manner. It is worthy
to point out that the “real-time” and “memoryless” are the most
important properties one would like to maintain in the design
of the optimal/suboptimal nonlinear filters for real applications.
More specifically, “memoryless” refers that one only needs the
latest observation to update the estimation of the states without
refering back to any earlier observation history; “real-time”
means that the decision of the states is made on the spot, while
the observation data keep coming in.
It is well known that the exact solution to the DMZ equa-

tion, generally speaking, can not be written in a closed form.
With the well-posedness theory of the DMZ equation in mind,
many mathematicians make efforts to seek an efficient algo-
rithm to construct a “good” approximate solution to the DMZ
equation. One of the methods is the splitting-up method from
the Trotter product formula, which was first described in Be-
soussan, Glowinski, and Rascanu [6], [7]. It has been exten-
sively studied in many articles later, for instance [13], [15], [16]
and [20]. In 1990s, Lototsky, Mikulevicius and Rozovskii [17]
developed a new algorithm (so-called -algorithm) based on
the Cameron-Martin version of Wiener chaos expansion. How-
ever, the above methods require the boundedness of the drifting
term and the observation term ( and in (1.1)), which leaves
out even the linear case. To overcome this restriction, Yau and
Yau [23] developed a novel algorithm to solve the “pathwise-ro-
bust” DMZ equation, where the boundedness of the drift term
and observation term is replaced by some mild growth condi-
tions on and . Nevertheless, they still made the assumption
that the drift term, the observation term and the diffusion term
are “time-invariant”. That is to say, , and in (1.1) are not
explicitly time-dependent. In [18], we generalized Yau-Yau’s al-
gorithm to the most general settings of the NLF problems, i.e.
the “time-varying” case, where , and could be explicitly
time-dependent.
Our study of solving the forward Kolmogorov equation

(FKE) by the Hermite spectral method (HSM) is closely related
to the implementation of the algorithm developed in [18].
The detailed formulation of our algorithm could be found in
Appendix A or [18]. Briefly speaking, in our algorithm, we
start from the signal based model:

(1.1)

where is a vector of the states of the system at time with
satisfying some initial distribution and is a vector of the ob-
servations at time with . and are vector Brownian
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motion processes with and
, , respectively. The DMZ equation is derived

as

(1.2)

where is the unnormalized conditional density funciton,
is the density of the initial states , and

(1.3)

To maintain the real-time property, solving the DMZ equation
is translated into solving a FKE off-line and updating the initial
data on-line at the beginning of each time interval. Let

be a partition of . The
FKE needs to be solved at each time step is

(1.4)

where is defined as (1.3). The initial data is updated as follows

(1.5)

where is transformed from , see the detailed formulation
of our algorithm in the Appendix A or [18]. From the above
description, it is not hard to see that the FKE (1.4) needs to
be solved repeatedly on each time interval . Thus, it
is crucial to obtain a good approximate solution to (1.4). In this
paper, we adopt HSM to solve FKE for two reasons: on the one
hand, HSM is particularly suitable for functions defined on the
unbounded domain which decays exponentially at infinity; on
the other hand, HSM could be easily patched with the numerical
solution obtained in the previous time step while the moving-
window technique is in use in the on-line experiments.
The HSM itself is also a field of research, which could be

traced back to 1970s. In [11], Gottlieb et al. gave the example
to illustrate the poor resolution of Hermite polynomials.

To resolve wavelength of , it requires nearly Her-
mite polynomials. Due to this fact, they doubted the useful-
ness of Hermite polynomials as basis. The Hermite functions
inherit the same deficiency from the polynomials. Moreover, it
is lack of fast Hermite transform (some analogue of fast Fourier
transform). Despite of all these drawbacks, the HSM has its in-
herent strength. Many physical models need to solve a differen-
tial equation on an unbounded domain, and the solution decays
exponentially at infinity. From the computational point of view,
it is hard to describe the rate of decay at infinity numerically or to
impose some artificial boundary condition cleverly on some far-
away “boundary”. Therefore the Chebyshev or Fourier spectral
methods are not so useful in this situation. As to theHSM, how to
deal with the behavior at infinity is not necessary. Recent appli-
cations of theHSMcan be found in [9], [10], [12], [21], [22], etc.
To overcome the poor resolution, a scaling factor is necessary

to be introduced into the Hermite functions, refer to [4], [5]. It is
shown in [5] that the scaling factor should be chosen according

to the truncated modes and the asymptotical behavior of the
function , as . Some efforts have been made in
seeking the suitable scaling factor , see [5], [14], [21], etc. To
optimize the scaling factor is still an open problem, even in the
case that is given explicitly, to say nothing of the exact
solution to a differential equation, which is generally unknown
a-priori. Although some investigations about the scaling factor
have beenmade theoretically, as far as we know, there is no prac-
tical guidelines of choosing a suitable scaling factor. Nearly all
the scaling factors in the papers with the application of HSM
are obtained by the trial-and-error method. Thus, we believe it
is necessary and useful to give a practical strategy to pick an ap-
propriate scaling factor and the corresponding truncated mode
for at least the most commonly used types of functions, i.e.
the Gaussian type and the super-Gaussian type functions. The
strategy we are about to give only depends on the asymptotic
behavior of the function. In the scenario where the solution of
some differential equation needs to be approximated (the exact
solution is unknown), we could use asymptotical analysis to ob-
tain its asymptotic behavior. Thus, our strategy of picking the
suitable scaling factor is still applicable. A numerical experi-
ment is also included to verify the feasibility of our strategy.
Although it may not be optimal with respect to the accuracy, our
strategy provides a useful guideline for the implementations of
HSM. In this paper, the precise convergence rate of the HSM to
FKE is obtained in suitable funciton space by numerical anal-
ysis and verified by a numerical example.
Let us draw our attention back to the implementation of our

algorithm to NLF problems. Through our study of HSM to FKE,
the off-line data could be well prepared. However, when syn-
chronizing the off-line data with the on-line experiments, to
be more specifical, updating the initial data according to (1.5)
on-line, another difficulty arises due to the drifting of the condi-
tional density function. The untranslated Hermite functions with
limited truncation modes could only resolve the function well,
if it is concentrated in the neighborhood of the origin. Let us
call this neighborhood as a “window”. Unfortunately, the den-
sity function will probably drift out of the current “window”.
The numerical evidence is displayed in Fig. 6. To efficiently
solve this problem, we for the first time introduce the trans-
lating factor to the Hermite functions and the moving-window
technique for the on-line experiments. The translating factor
helps the moving-window technique to be implemented more
neatly and easily. Essentially speaking, we shift the windows
back and forth according to the “support” of the density func-
tion, by tuning the translating factor.
This paper is organized as follows. Section II introduces the

generalized Hermite functions and the guidelines of choosing
suitable scaling factor to improve the resolution; Section III fo-
cuses on the analysis of the convergence rate of HSM to FKE
and a numerical verification is displayed. Section IV is devoted
to the application of the NLF problems. The translating factor
and the moving-window technique are addressed in detail. Nu-
merical simulations of two NLF problems solved by our algo-
rithm are illustrated, compared with the particle filter. For the
readers’ convenience, we include the detailed formulation of
our algorithm in Appendix A and the proof of Theorem 2.1 in
Appendix B.
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II. GENERALIZED HERMITE FUNCTIONS

Let us introduce the generalized Hermite functions and de-
rive some properties inherited from the physical Hermite poly-
nomials.
Let be the Lebesgue space, which equips with the

norm and the scalar product .
Let be the physical Hermite polynomials given by

, and . The three-term
recurrence

(2.1)

is more handy in implementations. One of the well-known and
useful facts of Hermite polynomials is that they are mutually
orthogonal with respect to the weight . We define
our generalized Hermite functions as

(2.2)

for and , where , are some constants,
namely the scaling factor and the translating factor, respectively.
It is readily to derive the following properties for (2.2):
1) forms an orthogonal basis of , i.e.

(2.3)

where is the Kronecker function.
2) is the eigenfunction of the following Strum-
Liouville problem

(2.4)

with the corresponding eigenvalue .
3) By convention, , for . For and

, the three-term recurrence holds:

(2.5)

4) The derivative of is a linear combination of
and :

(2.6)

5) Property 1) and 4) yield the “orthogonality” of
:

(2.7)

The generalized Hermite functions form a complete orthog-
onal base in . That is, any function can be
written in the form

where are the Fourier-Hermite coefficients, given by

(2.8)

Let us denote the subspace spanned by the first gener-
alized Hermite functions by :

(2.9)

In the sequel, we follow the convention in the asymptotic
analysis that means that there exists some constants

such that ; means that there
exists some constant such that . Here,
and are generic constants independent of , and .

A. Orthogonal Projection and Approximation

It is readily shown in [22] for , that the difference
between an arbitrary function and its orthogonal projection onto

in some suitable function space could be precisely esti-
mated in terms of the scaling factor and the truncation mode
. Let us first introduce the function space , for any

integer ,

(2.10)

where is in (2.4) and is the Fourier-Hermite coefficient
in (2.8). We shall denote for short, if no confusion will
arise. Also, the norms are denoted briefly as . The larger
is, the smaller space is, and the smoother the functions
in are. The index can be viewed as the indicator of the
regularity of the functions.
Let us define the -orthogonal projection
, i.e. given ,

(2.11)
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The superscript will be dropped in in the sequel if no
confusion will arise. More precisely,

where are the Fourier-Hermite coefficients defined in (2.8).
And the truncated error , for any integer ,
has been essentially estimated in Theorem 2.3, [12] for ,

, and in Theorem 2.1, [22] for arbitrary and .
For arbitrary and , the estimate still holds.
Theorem 2.1: For any and any integer
, we have

(2.12)

where are the seminorms, if .
The proof is extremely similar as those in [12] and [22]. Thus,

we omit it here and include it in Appendix B for the readers’
convenience.

B. Guidelines of the Scaling Factor
From Theorem 2.1, it is known for sure that any function

in could be approximated well by the generalized Her-
mite functions, provided the truncation mode is large enough.
However, in practice, “sufficiently” large is a chanllenge of
computer capacity. To improve the resolution of Hermite func-
tions with reasonably large , we need the scaling factor , as
pointed out in [5].Many efforts have beenmade along this direc-
tion, refer to [4], [5], [14], etc. However, the optimal choice of
(with respect to the truncation error) is still an open problem. In
this subsection, we give a practical guideline to choose an appro-
priate scaling factor for the Gaussian type and super-Gaussian
type functions.
It is well known that, for smooth functions

, the exponential decay of with re-
spect to implies that the infinite sum is dominated by the first
terms, that is,

for . Thus, the suitable scaling factor is supposed to get
the Fourier-Hermite coefficients decaying as fast as possible.
Once the coefficient approaching the machine error (say ),
many other factors such as the roundoff error will come into
play. Hence, it is wise to truncate the series here. Therefore, we
need some guidelines of choosing not only the suitable scaling
factor but also the corresponding truncation mode .
Suppose the function concentrates in the neighborhood

of the origin and behaves asymptotically as with some
and , as . Our guidelines are motivated

by the following observations:
1) The function decays exponentially fast, as . So,

, provided is large enough,
due to (2.8).

2) For the exact Gaussian function , , the op-
timal is naturally to be with the truncated mode

. In fact, with this choice, and

is orthogonal to all the rest of , . That is,
and , . This suggests

that the more matching the asymptotical behavior of to
, the faster the Fourier-Hermite coefficients de-

cays, and the smaller truncation mode is.
3) It is natural to adopt the Gaussian-Hermite quadrature
method to compute the Fourier-Hermite coefficients by
(2.8). The truncation mode has to be chosen such that
the roots of Hermite polynomial cover the domain

where the integral (2.8) is contributed most
from both and , .

We describe our guidelines for the Gaussian type and the
super-Gaussian type functions separately as follows.
Case I: Gaussian type, i.e. , , as
.

1) as , which yields
;

2) The integrand in (2.8) is approximately . Using the
machine error to decide the domain of interest ,
i.e. , yielding that ;

3) Determine the truncation mode such that the roots
of Hermite polynomial covers approximately

, where .
Case II: Super-Gaussian type, i.e. , as
for some , .

1) Notice that , when . Thus,
we require that , which implies that

;
2) We match near yields that

. Hence, ,
;

3) Determine the truncation mode such that the roots
of Hermite polynomial cover approximately

.
To exam the feasibility of our strategy, we explore the

Gaussian type function . Ac-
cording to the strategy in Case I, we choose the scaling
factor , and

. As shown in Fig. 1, the truncation error with
decays the most fast with respect to the truncation mode
and approaches the machine error at about the 20th frequency
mode. Meanwhile, the decay of the truncation error with
and are much slower. Moreover, the truncation mode

is appropriate in the sense that the next few coefficients
start to grow, due to the roundoff error.
Remark 2.1:
1) This strategy is very useful. However, it is not the optimal
scaling factor . For example, if , then
the optimal scaling factor and , instead of

from our guideline.
2) Although the scaling factor helps to resolve the function
concentrated in the neighborhood of the origin, it helps
little if the function is peaking away from the origin. The
numerical evidence could be found in Table I. This is the
exact reason why we need to introduce the translating
factor to the generalized Hermite functions when applying
to the NLF problems, see the discussion of translating
factor in Section IV-B.
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Fig. 1. Truncation error versus the truncation mode of
is plotted, with , , 3.1 and 1, respectively.

TABLE I
TRUNCTION ERROR VERSUS THE “PEAKING” OF THE

GAUSSIAN FUNCTION

III. HERMITE SPECTRAL METHOD TO 1-D FORWARD
KOLMOGOROV EQUATION

The general 1-D FKE is in the form

(3.1)

The well-posedness of 1-D FKE has been investigated in [3].
We state its key result here.
Lemma 3.1: (Besala, [3]): Let , , (real

valued) together with , , be locally Hölder continuous
in . Assume that
1) , , for some constant ;
2) , ;
3) , .
Then the Cauchy problem (3.1) with the initial condition

has a fundamental solution
which satisfies

for some constant and

Moreover, if is continuous and bounded, then

is a bounded solution of (3.1).
Through the transformation

(3.2)

where

(3.3)

equation (3.1) can be simplified to the following FKE with the
diffusion rate equals 1 and without the convection term.

(3.4)
where

(3.5)

Remark 3.2: From the computational point of view, the form
(3.4) is superior to the original form (3.1) in general, when im-
plementing with the HSM.
(i) If both the potential and the initial data
are even functions in , so is the solution to (3.4). With
the fact that the odd modes of the Fourier-Hermite coef-
ficients of the even functions are identically zeros, it re-
quires half amount of computations to resolve the even
functions.

(ii) Even when and are not even, it is still
wise to get rid of the convection term, since this term will
drive the states to left and right, and probably out of the
current “window”. Shifting of the windows frequently by
the moving-window technique will definitely affect the
computational efficiency.

A. Formulation and Convergence Analysis
In this subsection, we shall investigate the convergence rate

of the HSM of solving the FKE. Let us consider the FKE (3.4)
with some source term . The weak formulation of HSM
is to find such that

(3.6)
for all . The convergence rate is stated below:
Theorem 3.2: Assume



2500 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 10, OCTOBER 2013

for all , for some and some constant .
If and is the solution to (3.4) with source term

, then for
with and

it yields that

(3.7)

where depends only on , and
.

Before we prove Theorem 3.2, we need some estimate on
, for any integer :

Lemma 3.2: For any function , with some
integer , we have

(3.8)

Proof: For any integer ,

by (2.5) and (2.6), where for each fixed, is a product of
factors of or , with

. Let such that . And notice that
for and for .

Hence, we have

for any integer , by (2.3).
Proof of Theorem 3.2: Denote for simplicity.

By (3.4) with source term and the definition of , we
obtain that

(3.9)

for all . Combine with (3.6), it yields that

for all . Set . Choose the function
, then we have

(3.10)

By Young’s inequality,

(3.11)

The assumption for yields that

(3.12)

for . Moreover, we have

(3.13)

by Cauchy-Schwartz’s inequality. Substitute (3.11)–(3.13) into
(3.10), we obtain that

(3.14)

Notice that , for some . Essentially by
the estimate in Lemma 3.2, we can estimate

(3.15)

The estimate of the second term on the right hand side of (3.15)
is followed by Theorem 2.1. Again, by Theorem 2.1, we obtain

(3.16)

Substitute (3.15), (3.16) into (3.14), we obtain

provided that
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Therefore, it yields that

By the triangular inequality and Theorem 2.1,

where is a constant depending on ,
and .

B. Numerical Verification of the Convergence Rate

To verify the convergence rate of HSM, we explore an 1-D
FKE with some source . The exact solution could be
found explicitly as our benchmark. The error versus the trun-
cation mode is plotted.
We consider the 1-D FKE

(3.17)

for . It is easy to verify that
is the exact solution.

Notice that the initial data, the potential and the source in
(3.17) are all concentrated around the origin. So, we set .
For notational convenience, we drop in this example. As to the
suitable scaling factor , from our strategy in Section II-B, we
know that it is better to let . However, if we do so, the first
two modes will give us extremely good approximation. Hence,
the error versus the truncation mode won’t be observable. Due
to this consideration, we pick (a little bit away from
1, but not too far away so that it won’t affect the resolution too
much). The formulation (3.6) yields

(3.18)

for all . Take the test functions ,
, in (3.18). The numerical solution can

be written in the form

The matrix form of (3.18) follows from (2.5) and (2.7):

(3.19)

Fig. 2. The -errors of the HSM to FKE (3.17) versus the truncation mode
, 15, 25, 35 and 45 is plotted, with , and the time step

.

where ,
are column vectors with

entries, , , are the Fourier-Hermite coeffi-
cients of and is a penta-diagonal
constant matrix, where ,

and

The errors versus the truncation mode at time
is plotted in Fig. 2. The ODE (3.19) is numerically solved by
central difference scheme in time with the time step .
It indeed shows the spectral accuracy of HSM.

IV. APPLICATION TO NONLINEAR FILTERING PROBLEMS

Recall the brief description of our algorithm in the introduc-
tion (and more details in Appendix A), the off-line computation
is to numerically solve the FKE (1.4) repeatedly on each interval

. Equation (1.4) is in the form of (3.1) with

where , , , and are in (1.1).
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A. Existence and Uniqueness of the Solution to the FKE

In this subsection, we interpret the well-posedness theorem
(Lemma 3.1) for general 1-D FKE in Section III in the frame-
work of the NLF problems.
Proposition 4.1 (Existence): Let , , in (1.1) are Hölder

continuous functions in . , and exist
and are also Hölder continuous in . Assume further that
1) , for some ;
2) ;
3) , for some constant

,
for . Then there exists a bounded solution to
(3.1), if the initial condition is continuous and bounded.

Proof: Conditions 1)–3) in Lemma 3.1 are directly trans-
lated into conditions 1)–3) in this proposition with . For

, let , then satisfies

(4.20)

for , with the initial condition . The
coefficients of (4.20) satisfy the conditions in Lemma 3.1. Thus,
we apply Lemma 3.1 directly to (4.20). The existence of the
solution to (3.1) follows immediately.
Remark 4.3: In practice, the initial data of the conditional

density function either hascompact support or decays exponen-
tially as . So, the assumption on the initial data in
Proposition 4.1 holds.
For concise of notations, we give the uniqueness for the (3.4),

instead of (3.1). It can be easily transformed into each other, due
to the bijective transformation (3.2).
Proposition 4.2 (Uniqueness): There exists a unique solution

to (3.4) in the class that if is
bounded from above in .

Proof: Case I: Assume in . Suppose there
exist two distinct solutions to (3.4), say and . Denote

, and satisfies

(4.21)

in with the initial condition . Use the standard
energy estimate, i.e. multiplying (4.21) with and integrating
with respect to in :

by the integration by parts, and the facts that
and in . This yields that

for . With the fact that , we conclude
that in , i.e. .
Case II: Assume , for some .

We use the strategy in the proof of Proposition 4.1. Let
, then satisfies (3.4) with the

potential in . By case I, we conclude the
uniqueness of , so does .

Remark 4.4: The similar conditions as in Proposition 4.1 are
derived to guarantee the well-posedness of the “pathwise-ro-
bust” DMZ equation in [23] and to establish the convergence
of our algorithm in [18]. They essentially require that has to
grow relatively faster then . They are not restrictive in the sense
that most of the polynomial sensors are included. For example,

, and , with
, and are constants, , provided

.

B. Translating Factor and Moving-Window Technique

As we mentioned in the introduction, the untranslated Her-
mite functions with the suitable scaling factor could resolve
functions concentrated in the neighborhood of the origin accu-
rately and effectively. However, the states of the NLF problems
could be driven to left and right during the on-line experiments.
It is not hard to imagine that the “peaking” area of the density
function escapes from the current “window”.
The translating factor is introduced under the circumstance

that the function is peaking far away from the “window” cov-
ered by the current Hermite functions. We translate the current
Hermite functions to the “support” of the function, by letting the
translating factor near the “peaking” area of the function.
In Table I, we list the truncation error of the Gaussian func-

tion with various
and different translating factors or 3. According to the
guidelines in Section II-B, the scaling factor is and
the truncation mode . As shown in the table, the fur-
ther the function is peaking away from the origin, the larger
the error is with untranslated Hermite functions. But with ap-
propriate translating factor, the function could be resolved very
well with the same scaling factor, for example,
for .
Indeed this fact motivates the idea of moving-window tech-

nique. The suitable width of the window could be pre-deter-
mined if the trunction error of the density function versus var-
ious “peaking” is investigated beforehand. To be more pre-
cise, suppose we know the asymptotical behavior of the den-
sity function of the NLF problem from the asymptotical anal-
ysis, say , with some , . According to the
guideline in Section II-B, the suitable scaling factor and the
truncation mode with could be chosen. With these
parameters, the similar table as Table I could be obtained, i.e.
the truncation error of the function versus
various . If the error tolerance is given, then the appropriate
width of the window is obtained according to the table. Take
Table I as a concrete example. If the asymptotical behavior of
the density function is , then the scaling factor
and the truncation mode . Suppose we set the error tol-
erance to be , then the suitable width of the window would
be , from the first two column of Table I. The window
covers the origin would be [ 3, 3].
Our algorithm with moving-window technique is illustrated

in the flowchart Fig. 3. It reads as follows. Without loss of
generality, assume that the expectation of the initial distribu-
tion of the state is near 0. During the experimental time, say

, the state remains inside some bounded interval ,
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Fig. 3. Flowchart of our algorithm, where .

for some . We first cover the neighborhood of 0 by the
untranslated Hermite functions , where , can be
chosen according to the guidelines in Section II-B. With the
given error tolerance, the suitable width of the window could
be pre-defined, denoted as . If , then
no moving-window technique is needed. Hence, the on-line ex-
periment runs always within the left half loop in Fig. 3. Other-
wise, , for some , need to be prepared beforehand,
such that . The off-line
data corresponding to different intervals
have to be pre-computed and stored ahead of time. During the
on-line experiment, if the expectation of the state moves
accross the boundary of the current “window” (the condition in
the rhombic box in Fig. 3 is satisfied), the current “window” is
shifted to the nearby window where falls into. That is, the
right half loop in Fig. 3 is performed once.
Let us analyze the computational cost of our algorithm. No-

tice that only the storage capacity of the off-line data and the
number of the flops for on-line performance need to be taken
into consideration in our algorithm. Without loss of generality,
let us assume as before is near 0 and our state is in-
side . For simplicity and
clarity, let us assume further that
1) The operator is not explicitly time-
dependent;

2) The time steps are the same, i.e. .
For the storage of the off-line data, on each interval

, it requires to store floating point num-
bers. Hence, the total intervals requires to store

floating point numbers. As to the number of the flops
in the on-line computations, if no moving-window technique is
adopted during the experiment, for each time step, it requires

flops. The number of the flops to complete the

experiment during is .
Suppose the number of shifting the windows during is ,
then the total number of flops is .
Remark 4.5: If either assumption 1) or 2) is not satisfied,

then the real-time manner won’t be affected. That is, the number
of the flops in the on-line experiment remains the same. But
the off-line data will take more storage as the trade-off. To be
more specific, on each interval , it requires
to store floating point numbers, where is the
total number of time steps. Therefore, the total storage is

floating point numbers.

C. Numerical Simulations
In this subsection, we shall solve two NLF problems by our

algorithm: the almost linear sensor and the cubic sensor. Since
the drift term could always be absorbed into the potential
by the transformation (3.2), for simplicity, in our examples, we
set . Our algorithm is compared with the particle filters
(PF) in both examples. The PF is implemented based on the
algorithm described in [1]. And the systematic resampling is
adopted if the effective sample size drops below 50% of the total
number of particles. As we shall see, our algorithm surpasses the
PF in the real-time manner.
1) Almost Linear Filter: We start from the signal observation

model

where , , , are scalar Brownian motion processes
with , . Suppose the signal at
the beginning is somewhere near the origin.
The corresponding FKE in this case is

(4.22)

Assume further that the initial distribution of is
. This assumption is not crucial at all. The non-Gaussian

ones, for example , will give the similar results
as the Gaussian one.
It is easy to see that the asymptotical behavior of the solu-

tion to (4.22) is . With the guidelines in Section II-B,
we choose , and for the starting in-
terval. We shall run the experiment for the total time .
Thus, we expect the density function probably will move out of
the starting interval. Table I suggests that the appropriate width
of the window should be 3, if the error tolerance is set to be

. We shall overlap the adjacent windows a little bit to pre-
vent frequent shifting of windows. Let us take the width of the
overlaped region to be 0.5. Therefore, as the preparation for the
moving-window technique, we shall prepare the off-line data
for , , , [ 3, 3], [2.5, 8.5],
[8, 14] and [13.5, 19.5]. The correpsonding s are 16.5, 11,
5.5, 0, 5.5, 11 and 16.5. The barrier in the rhombic box in the

flowchart Fig. 3 should be 3 (the width of the “window”).
Our algorithm is compared with the PF with 10 or 50 parti-

cles in Fig. 4 for the total experimental time . The time
step is . All three filters show acceptable experi-
mental results. It is clear (between time 12 to 18) that the PF
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Fig. 4. Almost linear filter is investigated with our algorithm and the PF with
10 and 50 particles. The total experimental time is . And the update
time is .

with 50 particles gives closer estimation to our algorithm than
that with 10 particles. The mean square errors of our algorithm
is about 1.046, while those of the PF with 10 and 50 particles
are 1.434 and 1.086, respectively. As to the efficiency, our algo-
rithm is superior to the PF, since the CPU times of the PF with
10 and 50 particles are 1.70s and 10.04s respectively, while that
of our algorithm is only 1.02s. As to the storage, the size of the
binary file to keep the off-line data is only 35.5 kB. During this
particular on-line experiment, the window has been shifted for
13 times, which can’t be observable from the figure at all. And
it seems that the moving-window technique doesn’t affect the
real-time manner of our algorithm.
2) Cubic Sensor in the Channel: We consider cubic sensor

in the channel :

(4.23)

where , , , are scalar Brownian motion processes
with , . Assume the initial state
is somewhere near 0.
The FKE is

(4.24)

Furthermore, we assume the initial distribution is
. Since the state is inside the channel, we set our trans-

lating factor and the moving-window technique won’t
be used. According to Section II-B, we choose the scaling
factor , and the truncated mode

.
In Fig. 5, we compare our algorithm with the PF with 50 par-

ticles for . The observation data come in every 0.01s.
Fig. 5 reads that both filters work very well. The result of our
algorithm nearly overlaps with that of the PF all the time. The
mean square error of our algorithm is 0.517, while that of the
PF with 50 particles is 0.559. The CPU time of our algorithm
is 4.90s, while that of the PF is 37.17s. With our algorithm,

Fig. 5. Cubic sensor in the channel is experimented for , with the time
step , by both the PF and our algorithm.

Fig. 6. Normalized density functions are plotted every other 0.2s for the cubic
sensor in the channel.

the on-line computational time for every estimation of the state
is around 0.001s, which is 10 times less than the update time
0.01s. This indicates that our algorithm is indeed a real-time
solver. The normalized density functions, which is defined as

, have been plotted every other 0.2s in
Fig. 6.

V. CONCLUSIONS
In this paper, we first investigate the HSM applied to the 1-D

FKE. It is well-known that the choice of the scaling factor is
crucial to the resolution of HSM. We give a practical guidelines
to help choosing the suitable one. The convergence rate of the
HSM has been shown rigorously and has been verified by a nu-
merical experiment. As an important application, we solve the
NLF problem, by using the algorithm in [18], in the last section,
where solving 1-D FKE serves as the off-line computation. To
capture the state even if it drifts out of the “window”, translating
factor of Hermite functions and the moving-window technique
are introduced. The translating factors help the switch of the
windows back and forth easier, according to the “support” of
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the density function of the state. We analyzed the computational
complexity of our algorithm in detail, with respect to the storage
capacity of off-line data and the number of flops of the on-line
computations. Finally, two online experiments—almost linear
filtering and cubic sensor in the channel—are reported. The fea-
sibility and efficiency of our algorithm are verified numerically,
which surpasses the particle filter as a real-time solver.

APPENDIX A
DETAILED FORMULATION OF OUR ALGORITHM

Starting from the signal model (1.1), the DMZ equation (1.2)
is derived for the unnormalized density function of the
states conditioned on the observation history

. In real applications, one is more interested in the
robust state estimators. Hence, for given observation path , let
us make an invertible exponential transformation

(A.1)

The “pathwise-robust” DMZ equation is obtained:

(A.2)

The exact solution to (A.2), generally speaking, doesn’t have
a closed form. Hence, we developed an efficient algorithm to
construct a good approximation in [18].
Let us assume that we know the observation time sequence

apriorily. But the obser-
vation data at each sampling time , are
unknown until the on-line experiment runs. We call the com-
putation “off-line”, if it can be performed without any on-line
experimental data (or say pre-computed); otherwise, it is called
“on-line” computations. One only concerns the computational
complexity of the on-line computations, since this hinges the
success of “real-time” application.
Denote the observation time sequence as

. Let be the solution of the robust
DMZ equation with on the interval ,

(A.3)

Define the norm of by . Intu-
itively, as , we have

in some sense, for all , where is the exact so-
lution of (A.2). To maintain the real-time manner, our algorithm
resorts to the following proposition.

Proposition A.3: For each , ,
satisfies (A.3) if and only if

(A.4)

satisfies the FKE (1.4).
The initial data need to be updated as (1.5), followed from

(A.3).
With the observation time sequence known , we ob-

tain a sequence of two-parameter semigroup ,
for , generated by the family of operators

. The off-line computation in our algorithm
is to pre-compute the solutions of (1.4) at time , denoted
as , where (chosen as the initial
data at ) is a set of complete orthonormal base in .
These data should be stored in preparation of the on-line com-
putations.
The on-line computation in our algorithm is consisted of two

parts at each time step , .
• Project the initial condition at

onto the base , i.e.,
. Hence, the solution to (1.4) at can

be expressed as

(A.5)

where have already been computed
off-line.

• Update the initial condition of (1.4) at with the new
observation . Let us specify the observation updates (the
initial condition of (1.4)) for each time step. For
, the initial condition is . At time
, when the observation is available,

with the fact . Here,
, where is com-

puted in the previous step, and are
prepared by off-line computations. Hence, we obtain
the initial condition of (1.4) for the next time
interval . Recursively, the initial condition
of (1.4) for is

(A.6)

for , where
.

The approximation of , denoted as , is obtained

(A.7)

where is obtained from by (A.4). And
could be recovered by (A.1).
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APPENDIX B
PROOF OF THEOREM 2.1

Proof of Theorem 2.1: By induction, we first show that for
. For any integer ,

(B.1)
Suppose for , (2.12) holds for . We need to show
that (2.12) is also valid for . It is clear that

(B.2)

On the one hand, due to the assumption for , we apply
(2.12) to and replace and with and ,
respectively:

(B.3)

where the last inequality holds with the observation that

and

On the other hand, by the virtue of (2.6)

This yields that

(B.4)

due to the property of seminorms. Moreover, we estimate
and , for :

(B.5)

by (B.1). Similarly, . And

(B.6)

since , for . Similarly,
. Substitute (B.5) and (B.6) into (B.4), we get

(B.7)

by the fact that . Combine (B.2), (B.3) and (B.7),
we arrive at the conclusion.
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