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Novel Suboptimal Filter via Higher Order Central
Moments

In this paper, we construct a new suboptimal filter by deriving
the Ito’s stochastic differential equations of the estimation of higher
order central moments, satisfy, and impose some conditions to form
a closed system. The essentially infinite-dimensional cubic sensor
problem has been investigated in detail numerically to illustrate the
reasonableness of the imposed conditions, and the numerical
experiments support our discussion. A two-dimensional polynomial
filtering problem has also been experimented.

I. INTRODUCTION

The nonlinear filtering (NLF) problem involves the
estimation of a stochastic process (called the signal or
state process) that cannot be observed directly.
Information containing the state is obtained from
observations of a related process, i.e., the observation
process. The main goal of NLF is to determine the
conditional expectations, or perhaps even to compute the
entire conditional density of the state, given the
observation history. For an excellent introduction to NLF
theory, we refer the readers to the book by Jazwinski [1].

In 1960, Kalman [2] published a historically important
paper on linear filtering that is highly influential in modern
industry. It is the so-called Kalman filter (KF). One year
later, the continuous version of KF was investigated by
Kalman and Bucy [3]. Since then, the Kalman-Bucy filter
has been widely used in science and engineering, for
example in navigation and guidance systems, radar
tracking, sonar ranging, satellite and airplane orbit
determination, and forecasting in weather, econometrics,
and finance. However, the Kalman-Bucy filter has limited
application due to the linearity assumptions of the drift
term, the observation term, and the Gaussian assumption
of the initial value.

The success of KF for the linear Gaussian estimation
problems encouraged many researchers to generalize
Kalman’s results to nonlinear dynamical systems.
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However, the NLF problem is an essentially more difficult
problem since the resulting optimal filter is, in general,
infinite-dimensional, i.e., the conditional density depends
on all its moments. Those methods which attempt to
compute the density function directly or numerically are
called the global approaches, see the survey paper [4] for
details.

Although the global ones can completely solve the
NLF problems, the heavy computation is one of the major
obstacles in their real-time applications. Another way out
is to use the approximate method to construct a
suboptimal filter. The existing approximate filters for the
NLF problems include the extended Kalman filter (EKF),
the unscented Kalman filter (UKF), the ensemble Kalman
filter (EnKF), particle filters (PF), and the splitting up
method; see [5–8]. All of these methods have their own
weakness. UKF and EnKF assume that the probability
density of the state vector is Gaussian. PF could be
inefficient and is sensitive to outliers. Resampling step is
applied at every iteration, which results in a rapid loss of
diversity in particles. Furthermore, PF are more applicable
at low- and moderate high-dimensional systems; see [9]
for the obstacles to high dimensional cases. The splitting
up method requires g and h in the model (1) to be bounded,
which even excludes the linear case. Recently, Germani
et al. [10–11] developed a suboptimal method, so-called
Carleman approach, based on the algorithm for the bilinear
system [12]. However, recently the first and the last author
found that the Carleman approach can fail completely in
some one-dimensional NLF problem and developed a
suboptimal method via Hermite polynomials [13]. The use
of higher central moments to improve the performance of
NLF has been studied by many researchers; see [14] and
references therein. In fact, the cumulants can be a better
choice than the central moments, and the study on the
cumulants for NLF can be found in [15].

In this paper, we shall propose a new suboptimal filter
by investigating the Ito’s stochastic differential equation
(SDE) which the higher central moments satisfy. Although
the use of the higher central moments for NLF problems
has been attempted for a long time and the second order
EKF has been standard in the literature, see [1], the
detailed derivation has never been clearly written down for
NLF, especially the polynomial filtering problems, which
can be viewed as the truncation of Taylor expansion of any
nonlinear smooth functions. When arrived at an infinite
dimensional system, the higher central moments are
conventionally truncated to form a closed system, as in
[16]. No one doubts the reasonableness of the truncation.
It is in this paper that for the first time we investigate other
options to form a closed system, say condition (12). The
numerical experiments support the condition. Also we
compare our methods with some existing ones. Our
method works in nearly perfect agreement with theory.

An outline of this paper is as follows. In Section II, we
introduce the continuous-time model in this paper. Our
method is derived and described in Section III. Section IV
is devoted to two numerical experiments, which validate

our method. Our method is more flexible by choosing
different truncation mode �N . The conclusion is in
Section V.

II. PRELIMINARIES

The model we consider in this paper is the
continuous-state-continuous-observation one:{

dxt = f (xt , t)dt + g(xt , t)dvt

dyt = h(xt , t)dt + dwt ,
(1)

where xt, vt, yt, and wt are R
n−, R

p−, R
m−, and R

m−
valued processes, respectively, and f : R

n × R+ → R
n,

g : R
n × R+ → R

n×m, h : R
n × R+ → R

m are possibly
nonlinear function of x. Assume that {vt , t ≥ 0} and
{wt, t ≥ 0} are Brownian motion processes with Var[dvt]
= Q(t)dt and Var[dwt] = R(t)dt, respectively. Moreover,
{vt, t ≥ 0}, {wt, t ≥ 0} and x0 are independent. The initial
observation is assumed to be y0 = 0.

Without loss of generality, we assume Q(t) is a
diagonal matrix, Q(t) = diag(q2

1 , . . . , q2
n). In fact, if it is

not, we have spectral decomposition of Q(t) = P�P′,
where PP′ = I, � is diagonal matrix. By letting g* = gP,
dv* = P′dv, then Var[dv*] = �dt. We could further
assume that Q(t) = I, due to the function g in front
(replacing g by gQ1/2).

Let us clarify the notations we shall use in this paper.
Let p ≡ p(x, t | Yt ) be the conditional probability density
function of the state xt, given the observation history
Yt ≡ {ys, 0 ≤ s ≤ t}, then the conditional expectation of
xt is defined as

x̂t ≡ Et [xt ] ≡ E[xt | Yt ]. (2)

For conciseness, we may use the vector notations,
denoted as �k = (k1, k2, · · · , kn). We say �k ≤ �α, if ki ≤ αi,

for all 1≤ i ≤ n. The strict inequality holds, if ki < αi, for
some 1 ≤ i ≤ n.

We denote P�k as

P�k ≡ Et
[
(x1 − x̂1)k1 . . . (xn − x̂n)kn

]
≡ E

[
(x1 − x̂1)k1 . . . (xn − x̂n)kn | Yt

]
.

Say P�k is the lower order of P�α if �k < �α. By convention,
�0 = (0, 0, · · · , 0) and �ei denotes 1 for the i-th component,
0 otherwise. P�0 = 1 and P�ei

= 0, for 1 ≤ i ≤ n.
Furthermore, min{�k, �l} = (min{k1, l1}, min{k2, l2},

· · · , min{kn, ln}), �k + �l = (k1 + l1, · · · , kn + ln),
|�k|1 = ∑n

i=1 ki , and |�k|∞ = max1≤i≤nki .

III. NEW SUBOPTIMAL FILTER

Let fi(x, t), gij(x, t), and hi(x, t), 1 ≤ i ≤ n, 1 ≤ j ≤ m,
be some smooth nonlinear functions in x. They can be
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approximated by their truncated Taylor expansions:

fi(x, t) ≈
∑

| �m|1≤Mf

fi; �m(t)
n∏

a=1

xma

a (3)

gij (x, t) ≈
∑

| �m|1≤Mg

gij ; �m(t)
n∏

a=1

xma

a (4)

hi(x, t) ≈
∑

| �m|1≤Mh

hi; �m(t)
n∏

a=1

xma

a (5)

where Mf, Mg, and Mh are the highest degrees kept in the
expansions of {fi}1≤i≤n, {gij}1≤i≤ n,1≤ j≤ p and {hi}1≤i≤m,
respectively.

In the sequel, we shall focus on the derivation of the
method for the polynomial filtering problems.

PROPOSITION 3.1 For continuous filtering problem given
by the system (1) with fi(x, t), gij (x, t), hi(x, t)
approximated by (3)–(5), the conditional mean x̂i satisfies
the following Ito’s SDE

dx̂i =
∑

| �m|1≤Mf

∑
�0≤�k≤ �m

fi; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�kdt

+
∑

1≤j,s≤m

rjs

(
dyj −

∑
| �m|1≤Mh

∑
�0≤�k≤ �m

hj ; �m

(
n∏

a=1

(
ma

ka

)

× (x̂a)ma−ka

)
P�kdt

)
·
( ∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hs; �m

(
n∏

a=1

(
ma

ka

)

× (x̂a)ma−ka

)
P�k+�ei

)
, (6)

where (rjs)m×m is the matrix R–1.

PROOF According to [1], the conditional mean x̂i satisfies

dx̂i = f̂idt + (
dy − ĥdt

)T
R−1

(
ĥxi − ĥx̂i

)
. (7)

Using binomial expansion, we have

n∏
a=1

xma

a =
n∏

a=1

(xa − x̂a + x̂a)ma

=
n∏

a=1

∑
�0≤�k≤ �m

(
ma

ka

)
(xa − x̂a)ka (x̂a)ma−ka

=
∑

�0≤�k≤ �m

n∏
a=1

(
ma

ka

)
(xa − x̂a)ka (x̂a)ma−ka (8)

then
n∏

a=1

(xa − x̂a)αahs =
∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hs; �m
n∏

a=1

(
ma

ka

)
× (xa − x̂a)αa+ka (x̂a)ma−ka ,

and hence

Et

[
n∏

a=1

(xa − x̂a)αahs

]

=
∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hs; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�α+�k. (9)

Similarly, we have

Et

[
n∏

a=1

(xa − x̂a)αafi

]

=
∑

| �m|1≤Mf

∑
�0≤�k≤ �m

fi; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�α+�k.

(10)

Especially,

f̂i = Et

[
n∏

a=1

(xa − x̂a)0fi

]

10
∑

| �m|1≤Mf

∑
�0≤�k≤ �m

fi; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�k,

ĥj = Et

[
n∏

a=1

(xa − x̂a)0hj

]
(9) ∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hj ; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�k,

and

ĥsxi − ĥs x̂i

= Et [(xi − x̂i)hs]

(9) ∑
| �m|1≤Mh

∑
�0≤�k≤ �m

hs; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�k+�ei

.

Equation (6) is followed immediately by
plugging the above three equalities into (7) with
the fact that (dy − ĥdt)′R−1(ĥxi − ĥx̂i) =
m∑

j=1
(dyj − ĥj dt)

[
m∑

s=1
rjs(ĥsxi − ĥs x̂i)

]
. �

It is clear to see that in (6), the central moments P�k+�ei

for �k ≤ �m, with | �m|1 ≤ Mh and P�k for �k ≤ �m, with
| �m|1 ≤ Mf are needed to compute x̂i . Thus, let us give the
Ito’s SDE for P�α with |�α|1 ≥ 2 in the following
proposition.

PROPOSITION 3.2 For continuous filtering problem given
by the system (1) with fi(x, t), gij (x, t), and hi(x, t)
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approximated by (3)–(5), the SDE for P�α is

dP�α

=
(

−
n∑

a=1

αa

∑
| �m|1≤Mf

∑
�0≤�k≤ �m

fa; �m

×
(

n∏
b=1

(
mb

kb

)
(x̂b)mb−kb

)
P�kP�α−�ea

+ 1

2

n∑
a=1

αa

(
αa − 1)

( ∑
1≤i,j≤n

rij

( ∑
| �m|1≤Mh

∑
�0≤�k≤ �m

hi; �m

×
(

n∏
b=1

(
mb

kb

)
(x̂b)mb−kb

)
P�k+�ea

)

·
( ∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hj ; �m

(
n∏

b=1

(
mb

kb

)
(x̂b)mb−kb

)
P�k+�ea

)
P�α−2�ea

)

+
n∑

i=1

∑
| �m|1≤Mf

∑
�0≤�k≤ �m

αifi; �m

(
n∏

a=1

(
ma

ka

)
(x̂a)ma−ka

)
P�α+�k−�ei

+
∑

1≤i<j≤n,
1≤l≤n

∑
| �m1|1≤Mg,

| �m2|1≤Mg

∑
�0≤�k≤ �m1+ �m2

αiαjgli; �m1glj ; �m2

×
(

n∏
a=1

(
m1

a + m2
a

ka

)
(x̂a)m

1
a+m2

a−ka

)
P�α+�k−�ei−�ej

+1

2

n∑
i,l=1

∑
| �m1|≤Mg,

| �m2|1≤Mg

∑
�0≤�k≤ �m1+ �m2

αi(αi − 1)gli; �m1gli; �m2

×
(

n∏
a=1

(
m1

a + m2
a

ka

)
(x̂a)m

1
a+m2

a−ka

)
P�α+�k−2�ei

+
∑
a<b

(
αaαbP�α−�ea−�eb

( ∑
1≤i,j≤n

rij

( ∑
| �m|1≤Mh

∑
�0≤�k≤ �m

hi; �m

×
(

n∏
c=1

(
mc

kc

)
(x̂c)mc−kc

)
P�k+�ea

)

·
( ∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hj ; �m

(
n∏

c=1

(
mc

kc

)
(x̂c)mc−kc

)
P�k+�eb

)))

−
∑
a=1

(
αa

∑
i,j

rij

( ∑
| �m|1≤Mh

∑
�0≤�k≤ �m

hi; �m

×
(

n∏
b=1

(
mb

kb

)
(x̂b)mb−kb

)
P�k+�ea

)

·
( ∑

| �m|1≤Mh

∑
�0≤�k≤ �m

hj ; �m

(
n∏

b=1

(
mb

kb

)
(x̂b)mb−kb

)

× (P�α+�k−�ea
− P�α−�ea

Pk)

)))
dt

− (dy − ĥdt)′R−1

( ∑
| �m|1≤Mh

∑
�0≤�k≤ �m

[hi; �m]n×1

×
(

n∏
b=1

(
mb

kb

)
(x̂b)mb−kb

)

·
(

n∑
a=1

αaP�k+�ea
P�α−�ea

− P�α+�k + P�αP�k

))
. (11)

With (6) and (11) in hand, we are ready to propose our
new suboptimal method. Our idea is to cleverly impose
some conditions to eliminate the terms P�α in (6) and (11),
for |�α|∞ > | �N |∞, for some given truncation �N, such that
the equations of x̂t and P�α, �α ≤ �N, form a closed system.
Thus, it is solvable and provides, generally speaking,
more accurate approximation than its first order
approximation—EKF.

We motivate by observing the last term of (11) for
�α > �ei, for some 1 ≤ i ≤ n. That is, we exclude two trivial
cases: (a) P�ei

= 0, for some 1 ≤ i ≤ n; (b) P�0 = 1. It turns
out that the last term vanishes if we impose the condition
that

P�α+�k =
n∑

a=1

αaP�k+�ea
P�α−�ea

+ P�αP�k. (12)

Notice that P�α−�ei
, P�k+�ei

, P�α , and P�k on the right-hand side
of (12) are of lower order of P�α+�k.

Let us state our conditions more precisely. Given the
truncation mode �N > �ei, for some 1 ≤ i ≤ n, we shall
form a closed system of equations for x̂it , 1 ≤ i ≤ n, and
P�α, �α ≤ �N. For arbitrary �α > �ei, for some 1 ≤ i ≤ n,
there are three cases:

Case 1: �α ≤ �N. Keep as it is, i.e. P�α;
Case 2: There exist 1 ≤ i �= j ≤ n such that αi ≤ Ni

and αj > Nj. We impose the condition (12) to P�α = P �β+�k,
where �β = min{�α, �N} and �k = �α − �β;

Case 3: �α > �N . Condition (12) is imposed to
P�α = P �N+�k, where�k = �α − �N .

REMARK 3.3 Given any �α in Case 2 or 3, we shall impose
the condition accordingly until it reduces to the
combination of P�ls, where all �ls belong to Case 1. Hence,
the condition (12) may be imposed more than once to
reduce certain P�α in Case 2 or 3 to Case 1.

ALGORITHM OF OUR METHOD For continuous
filtering problem given by system (1) with fi(x, t), gij (x, t),
and hi(x, t) approximated by (3)–(5), then a closed system
of equations of x̂i , 1 ≤ i ≤ n, and P�α, �α ≤ �N is derived, if
the condition (12) is imposed accordingly. Specifically, the
closed system of the equations is given by: (6) for
conditional mean x̂i , 1 ≤ i ≤ n; SDE (11) for P�α, for
�α < �N ; ordinary differential (11) for P �N (the last term of
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(11) vanishes here) and all the P�α with �α in Case 2 or 3 are
properly reduced to P�α, α in Case 1 by condition (12).

REMARK 3.4 By examining term-by-term in (6) and (11)
with |�α|1 = 2, we see that when Mf, Mg, and Mh ≤ 1, they
form a closed system under the condition (12), which
yields exactly the Kalman-Bucy filter. Indeed, if
f(x, t) = F(t)x, g(x, t) = G(t), and h(x, t) = H(t)x in (1) for
arbitrary n ≥ 1, and the condition (12) is imposed, then
our method gives{

dx̂ = F x̂dt + PHT R−1(dy − Hx̂dt)
dP
dt

= FP + PFT + gQgT − PHT R−1HP,

where x̂ = [x̂1, · · · , x̂n], P = [P�k]|�k|∞=1.

REMARK 3.5 When n = 1, the lower bounds for some
Pks, k ≥ 2, can be obtained by Jensen’s inequality and
Hölder’s inequality, see details in Lemma 3.6 below.
These lower bounds will be used to check the
reasonableness of the conditions (12) imposed in cubic
sensor problem in the next section.

LEMMA 3.6 (LOWER BOUND OF Pks) Let
Pk = Et [(x − x̂)k], with convention that P0 = 1, we have

1) Pk ≥ P
k
l

l , for all k ≥ l ≥ 1 and k, k
l

are even
integers greater than 2;

2) If k, l and (k−l)p
1−p

are all even integers, then

Pk ≤ P
1
p

lp P
1− 1

p

(k−l)p
p−1

, where p ≥ 1, for all k ≥ l ≥ 0.

PROOF 1) It is trivial to see that when k = l the equality
holds. So let us assume that k > l and look at P2k:

Pk =
∫

R

(x − x̂)kp(x|Yt )dx ≥
∫

R

[
(x − x̂)lp(x|Yt )

] k
l dx

≥
[∫

R

(x − x̂)lp(x|Yt )

] k
l

dx = P
k
l

l ,

as long as k ≥ l ≥ 1, where the first inequality is due to the
fact that 0 ≤ p(x|Yt ) ≤ 1 and the second one follows from
Jensen’s inequality. It is Jensen’s inequality that requires
that k

l
is an even integer greater than 2, so that x

k
l is

convex in R.
2) Similar to before, we have

Pk =
∫

R

(x − x̂)kp(x|Yt )dx

=
∫

R

(x − x̂)l+(k−l)p(x|Yt )
m+(1−m)dx

≤
(∫

R

[
(x − x̂)lp(x|Yt )

m
]p

dx

) 1
p

×
(∫

R

[
(x − x̂)k−lp(x|Yt )

1−m
] p

p−1 dx

)1− 1
p

,

for all p ≥ 1 and 0 ≤ l ≤ k. The conclusion follows by
letting mp = 1. �

REMARK 3.7 Lemma 3.6 indicates that, in general, the
moment sequence Pks satisfy the following lower bounds:

P4 ≥ P 2
2 (by 1)); P6 ≥ P 3

2 (by 1)) or P6 ≥ P 2
4

P2
(by 2)), and

etc. The lower bounds for P�kswith n ≥ 2 are not clear [17].

IV. NUMERICAL EXPERIMENTS

In this section, we shall illustrate our method applied
to two different filtering problems: cubic sensor problem
and a polynomial filtering problem with two-dimensional
state. In the cubic sensor problem, we compare our
method with N = 2, 3 with EKF, and PF with 50 particles.
Further, we formulate and implement our method to a
polynomial filtering problem with two-dimensional state.
The numerical result has been also compared with EKF,
UKF, and EnKF with 20 ensembles.

A. Cubic Sensor Problem

This problem is modeled by SDE (1) with f(x, t) = 0,
g(x, t) = 1, and h(x, t) = x3, which has been shown
rigorously that it is essentially infinite-dimensional in [18]
and has been studied by many authors, refer to [19–21]. In
order to get a fair comparison with EKF in computational
complexity, we first propose to pick N = 2. Intuitively, the
larger N is, the more accurate approximation is obtained
for the state. Hence, we also pick N = 3 in our method for
comparison.

Notice that Mh = 3, Mf = Mg = 0. On the right-hand
sides of (6) and (11) with α ≤ 2, P3-P5 show up and need
to be reduced to some functions of P2, P1 = 0, and P0 = 1.
The conditions we imposed are:

P3 = P2+1
12 2P2P1 + P1P2 = 3P1P2 = 0;

P4 = P2+2
12 2P3P1 + P2P2 = P 2

2 ; (13)

P5 = P2+3
12 2P4P1 + P2P3 = P2P3

13 0.

The condition on P4 satisfies the lower bound in Remark
3.7. Our method for x̂t and P2 gives{

dx̂t = 1
R

(P 2
2 + 3P2(x̂2

t ))(dy − (3P2x̂t + (x̂t )3)dt)
dP2
dt

= 1 − 1
R

(P 2
2 + 3P2(x̂t )2)

2 (14)

When choosing N = 3 in our method, the conditions
imposed are:

P4 = P3+1
12 3P 2

2 + P1P3 = 3P 2
2 ;

P5 = P3+2
12 3P2P3 + P2P3 = 4P2P3; (15)

P6 = P3+3
13 3P2P4 + P 2

3 = 9P 3
2 + P 2

3 .

Again from Remark 3.7, the condition on P4, P6 are
also reasonable, in the sense that P4 ≥ P 2

2 and

P6 ≥ P 2
4

P2
= (3P 2

2 )
2

P2
= 9P 3

2 . The SDE given by our method
for x̂t , P2, and P3 is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx̂t = 1
R

[dy − (x̂3
t + 3x̂tP2 + P3)dt]

·(3x̂2
t P2 + 3x̂tP3 + 3P 2

2 )
dP2
dt

= 1 − 1
R

(3x̂2
t P2 + 3x̂tP3 + 3P 2

2 )2

dP3
dt

= − 3
R

(3x̂2
t P2 + 3x̂tP3 + 3P 2

2 )

·(3x̂2
t P3 + 6x̂tP

2
2 + 3P2P3)

. (16)
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Fig. 1. Our method with N = 2, 3 for the cubic sensor problem are
compared with the EKF and the PF with 50 particles. Left: the averaged

mean vs. time; right: the averaged variance vs. time.

We randomly generate 100 sample paths (except those
EKF explodes before T) with Q = R = 1 and P0 = 0.01,
and apply EKF, PF with 50 particles, our method with
N = 2 (14) and N = 3 (16) to estimate the real state. The
PF used in our experiment is the SIR algorithm; see
Algorithm 4, [22]. It is worth noting that there has been
much progress in PF since the SIR algorithm, including:
regularised PFs [23], auxiliary PFs [24], particle flow
filters [25], Gaussian PFs [26], transport PFs [27], various
Markov Chain Monte Carlo methods (e.g., Metropolis
adjusted Langevin or MALA, hybrid Monte Carlo,
Girolami’s geodesic flow on Riemannian manifolds, etc.).
The SDEs of EKF and our methods are numerically solved
by Euler-Maruyama scheme [28]. The total experimental
time is T = 10 and the time step is dt = 0.01. The
averaged mean and variance of the 100 experiments using
EKF, PF, and our methods have been displayed in Fig. 1.
The figure shows that our method with N = 3 is superior
than the other three. The variance of the estimation errors
and the average CPU time has been list in Table I.

To explain why in Table I the number of particles is
chosen to be 500 in PF, we experiment the cubic sensor
problem by generating the sample path using

TABLE I
Variance of the Estimation Errors and Average CPU Time of Different

Filters Applied to the Cubic Sensor Problem

Filters Variance of the Errors Average CPU Time

PF with 500 particles 0.4566 4.146493 s
EKF 4.4487 0.002505 s
our method with N = 2 0.4562 0.002325 s
our method with N = 3 0.3425 0.003405 s

TABLE II
Number of Particles vs. Variance of Estimation Error

Number of Particles Variance of Estimation Errors CPU Time

50 0.5167 0.465100 s
100 0.4246 0.909719 s
200 0.4493 2.642290 s
500 0.3596 4.251382 s

1,000 0.4765 8.555768 s
5,000 0.4461 37.203790 s

randn(‘state’,100), with T = 10 and dt = 0.01. The
performance is measured by variance of estimation errors.
In Table II, we display the errors and the CPU times with
different number of particles from 50 to 5000. It shows
that using 500 particles the PF accuracy is roughly the
same as our method. Presumably, this is the optimal
accuracy, which explains why the performance stops to be
improved by using more particles.

REMARK 4.1 The condition (12) on P�α can’t be shown
rigorously. It is just like no one can show that the
truncation (conventionally operation to form a close
system) yields the theoretically best approximation of P�α .

In the sequel, we shall use the global method proposed
in [29–30] to numerically compute the Pks of cubic sensor
problem. This investigation will give us some indication
on the reasonableness of our condition (12). [29–30]
introduced a method to directly approximate the
conditional density function ρ(x, t), and then we can obtain
the approximate higher central moment of the states by

Pl = Et [(x − x̂)l] =
∫

R

(x − x̂)lρ(x, t)∫
R

ρ(x, t)dx
dx,

where l ≥ 2, for the one-dimensional state. We apply the
method in [29–30] with appropriately chosen parameters
(α = 2.5, truncation modes Nf = 45) to 10 randomly
generated real states. All the real states are generated with
Q = R = 1 and the initial density function is assumed to

be u0(x) = e− x2

2 . The total experimental time is T = 10,
and time step is dt = 0.001. The approximate higher
central moments are computed numerically by
Gaussian-Hermite quadrature rule. The averaged higher
central moments P2–P6 obtained by method in [29–30]
have been plotted in Fig. 2. It indicates that we probably
should impose P2k + 1 ≈ 0 and P2k �= 0, which matches the
condition (13) and (15).
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Fig. 2. The averaged higher central moments for cubic sensor problem
are displayed.

B. Polynomial Filtering Problem With
Two-Dimensional State

In this subsection, we shall illustrate our method
formulated for polynomial filtering problems of higher
dimensional states. Let us take the following example:{

f1 = 0

f2 = x2
1

,

{
h1 = x1x2

h2 = x2
2

, g =
(

0.1 0

0 0.1

)
, R = I2,

(17)
and the initial state(

x10

x20

)
∼ N

((
1.1

1.1

)
,

(
0.1 0

0 0.1

))
. (18)

Let us choose �N = (2, 2) in our method. Notice that Mf =
2 and Mh = 2. Observing the right-hand side of (6) and
(11) for P�α with �α ≤ �N, it contains all P�α, �α ≤ �N + �k,

for|�k|1 ≤ Mh. We need to reduce all P�α , �α in case 2 or 3
by condition (12).

P30 = P(2,0)+(1,0)
12 2P20P10 + P20P10

= 3P20P10 = 0;

P31 = P(2,1)+(1,0)
12 2P20P11 + P11P20 + P21P10

= 3P20P11;

P32 = P(2,2)+(1,0)
12 2P20P12 + 2P11P21 + P22P10

= 2P20P12 + 2P11P21;

P33 = P(2,2)+(1,1)
12 2P12P21 + 2P21P12 + P22P11

= P12P21 + P22P11;

P40 = P(2,0)+(2,0)
12 2P30P10 + P 2

20 = P 2
20;

P41 = P(2,1)+(2,0)
12 2P30P11 + P21P20 + P21P20

19 2P20P21;

P42 = P(2,2)+(2,0)
12 2P12P30 + 2P21P21

+ P22P20
19 2P 2

21 + P20P22. (19)

Similar arguments could be used to obtain P03 = 0,
P13 = 3P02P11, P23 = 2P02P21 + 2P11P21, P04 = P 2

02,

P14 = 2P02P12, and P24 = 2P 2
12 + P02P22. According to

(6) and (11), our method yields a SDE of x̂1, x̂2, P02, P11,

Fig. 3. NSF compared with EKF, UKF, and EnKF with 20 ensembles
are displayed for the two-dimensional polynomial filtering problem (17),

(18). The upper one in each subfigure is the trajectory of x̂1, while the
lower one is that of x̂2.
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P20, P12, P21 and P22. We don’t write down the lengthy
expression here due to the page limitation.

Numerical results for this example are displayed in
Fig. 3. In this example, we generate 20 sample paths
randomly. The total experimental time is T = 10, and the
time step is dt = 0.001. The figures are the average of 20
runs. One can see that our method tracks as well as EKF
and UKF. But EnKF with 20 ensembles does not perform
very well. As to the efficiency, our method takes 15.4 s
while it costs 163.4 s for UKF to obtain the similar result.

V. CONCLUSIONS

In this paper, given a truncation �N, starting from (11) for
P�α, we construct our method by imposing some conditions
(12) to reduce all the higher order central moments to the
combination of the lower order ones P�α, �α ≤ �N . After the
reduction, our method arrives at a closed system of (6) for
x̂it , 1 ≤ i ≤ n and (11) for P�α, �α ≤ �N . This is completely
new and different from the conventional operation–
truncation. Since no one can show the truncation yields
the best approximation, our procedure provides another
reasonable way to form a closed system. Our method
is a natural generalization of EKF. It is also more flexible
by choosing the truncation �N according to the desired
accuracy and the demand of computational complexity.
The imposed condition (12) in our method satisfies the
lower bounds of Pks, and it is justified numerically for the
cubic sensor problem by using the higher central moments
obtained from Yau-Yau’s method [29]. Our method has also
been formulated and implemented for the filtering problems
with a two-dimensional state. Numerical results verify
that our method works in nearly perfect agreement with
theory.
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