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ABSTRACT
For all knownfinite dimensional filters, one always assumes that the observation termsbedegree one
polynomials. However, in practice, the observation termsmay be nonlinear, e.g. tracking problems. In
this paper, we consider the Yau filtering system (

∂f j
∂xi

− ∂fi
∂x j

=ci j is constant for all i, j) with nonlinear obser-

vation terms and arbitrary initial condition. The novelty of the paper lies in (i) the real time computa-
tion of the solution of the Duncan-Mortensen-Zakai (DMZ) equation is reduced to the computation
of Kolmogorov equation. Based on Gaussian approximation of the initial condition, the Kolmogorov
equation can be solved in terms of ordinary differential equations; (ii) For a given probability density
function, we give a new and original approach to do Gaussian approximation which is very effective
and simple. Thedirectmethoddevelopedhere canbe easily implemented in a real time andmemory-
less way. Besides, we do not need the controllability and observability assumption. Compared to the
extended Kalman filter, our method is much stable and has theoretical proof. The numerical exper-
iments show that the proposed Gaussian approximation method is very effective and our method
can track the states very well.

1. Introduction

In the early 1960s, Kalman and Bucy (1961) pro-
posed the continuous version of Kalman filter which has
been widely used in various fields of industry. However,
Kalman filter is restricted to linear systems with Gaus-
sian initial distribution. Actually, most of the filtering
systems in practice is nonlinear with non-Gaussian ini-
tial distribution. The study of nonlinear filtering (NLF)
is aimed at determining the conditional density ρ(t, x)
of the state x(t) given the observation history {y(s): 0 �
s � t}. In the late 1960s, Duncan (1967), Mortensen
(1966), Zakai (1969) independently derived the so-called
Duncan-Mortensen-Zakai (DMZ) equation for the NLF
problem. Then ρ(t, x) can be obtained by normalising
the solution σ (t, x) of the DMZ equation. Since the
DMZ equation is a stochastic partial differential equation
(PDE), there is no easy way to solve it.

Motivated by the Wei−Norman approach Wei and
Norman (1964) of using Lie algebraic method to solve
the linear time varying differential equation, Brockett
and Clark (1980), Brockett (1981), and Mitter (1979)
proposed the idea of using estimation algebra to con-
struct finite dimensional nonlinear filter. However, in
the Wei–Norman approach, one has to know explicitly
the basis of the estimation algebra in order to reduce the
DMZ equation to a finite system of ordinary differential
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equations (ODE)s, a Kolmogorov equation and first-
order linear PDEs. In Chiou and Yau (1994), Tam,Wong,
and Yau (1990), Yau (1994) and Yau and Hu (2005), all
finite dimensional estimation algebra of maximal rank
had been completely classified. Particularly, for a NLF
system satisfying ∂ f j

∂xi
− ∂ fi

∂x j
= ci j is constant for all i, j

is called the Yau filtering system in Chen (1994), which
contains the Kalman filter and Benés (1981) filter as its
special cases. However, one knows explicitly the basis of
finite dimensional estimation algebra only for a few cases
and one assumes that the linear system is controllable
and observable.

In fact, for all known finite dimensional filters, one
always needs the condition that the observation terms
hi(x), 1 � i � m are degree one polynomials. How-
ever, the observation terms may be nonlinear in many
situation. Yau and Hu (2001, 2005) first purposed the
direct method to solve the DMZ equation. Later Yau and
Lai (2003) gave the solution of Kolmogorov equation
under certain conditions with Gaussian initial distribu-
tion in terms of ODEs. In Yau and Yau (2004a, 2004b),
the Yau filtering system with linear observation and lin-
ear filtering system with nonlinear observation terms
are considered, respectively. The direct method has sev-
eral advantages. First, the method is easy to implement,
and the derivation no longer needs controllability and
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observability. Second, compared to the wildly used
extended Kalman filter (EKF), the direct method is much
stable and has theoretic convergence proof.Moreover, the
necessity of integrating n first-order linear PDEs in the
estimation algebramethod is eliminated. Recently, in Luo
and Yau (2013a, 2013b), a real-time algorithm for a gen-
eral class of NLF problems was developed. Their method
directly computes the Kolmogorov equation in advance
and uses hermite orthogonal polynomials to approximate
the initial condition at every time step.

In this paper, compared to the NLF systems consid-
ered in Yau and Yau (2004a, 2004b), we consider a more
general situation, i.e. both the drift and the observations
can be nonlinear . It is well known that any non-Gaussian
density function can be well approximated by finite lin-
ear combination of Gaussian distributions and the most
wildly used technique is expectation maximisation (EM)
algorithm Dempster (1997). However, typically the EM
algorithm uses a set of sample points to determine the
Gaussianmixture parameters, which is not the case in this
paper. A new and original way to do Gaussian approx-
imation is proposed in this paper which is very effec-
tive as verified by the numerical experiments. Besides, the
method is very simple and fast. Based on our Gaussian
approximation algorithm, the conditional density func-
tion σ (t, x) is explicitly given via solutions of ODEs.

The paper is organised as follows. In Section 2, we
shall recall the basic filtering problem and some prelimi-
nary results. In Section 3, we first reduce the solution of
the robust DMZ equation to the solution of Kolmogorov
equation, followed by the Gaussian approximation algo-
rithm. Numerical experiments are given in Section 4.
Finally, the conclusions are presented in Section 5.

2. Basic concepts and preliminary results

In this paper, we consider the following signal observa-
tion model

{
dx(t ) = f (x(t ))dt + g(x(t ))dv(t ), x(0) = x0,
dy(t ) = h(x(t ))dt + dw(t ) y(0) = 0,

(1)

in which x(t), v(t), y(t) and w(t) are, respectively, Rn, Rp,
Rm and Rm valued processes and v(t) and w(t) have com-
ponents that are independent, standard Brownian pro-
cesses. We further assume that n = p, f and h are C�

smooth vector-valued functions, and that g is an orthog-
onal matrix function.

Let σ (t, x) denote the unnormalised conditional prob-
ability density function of the state given the observation

{y(s): 0� s� t}, which satisfies the following DMZ equa-
tion:{

dσ (t, x) = L0σ (t, x)dt + �n
i=1Liσ (t, x)dyi(t ),

σ (0, x) = σ0,
(2)

where

L0 = 1
2

n∑
i=1

∂2

∂x2i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂ fi
∂xi

− 1
2

m∑
i=1

h2i

(3)

and for i = 1,… , m, Li is the zero degree differential
operator of multiplication by hi. σ 0 is the probability
density of the initial value x0. In real application, we
are interested in considering robust state estimator from
observed sample paths with some properties of robust-
ness. In Davis (1980), Davis considered this problem and
proposed some robust algorithms. In our case, his basic
idea reduced to define a new unnormalised density

u(t, x) = exp

(
−

m∑
i=1

hi(x)yi(t )

)
σ (t, x), (4)

then u(t, x) satisfies the following equation:

⎧⎨
⎩

∂u
∂t (t, x) = L0u(t, x) + ∑m

i=1 yi(t )[L0, Li]u(t, x)
+ 1

2
∑m

i, j=1 yi(t )y j(t )[[L0, Li], Lj]u(t, x),
u(0, x) = σ0(x),

(5)

where [ ·, ·] is the Lie bracket. Equation (5) is called robust
DMZ equation and we can rewrite it in the following
equivalent form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t (t, x) = 1

2
∑n

i=1
∂2u
∂x2i

(t, x) + ∑n
i=1{− fi(x)

+ ∑m
j=1 y j(t )

∂h j

∂xi
(x)} ∂u

∂xi
(t, x)

−{∑m
i=1

∑n
j=1 yi(t ) f j(x)

∂hi
∂x j

(x)
− 1

2
∑m

i=1
∑n

j=1 yi(t )
∂2hi
∂x2j

(x)

− 1
2
∑n

k=1
∑m

i, j=1 yi(t )y j(t )
∂hi
∂xk

(x) ∂h j

∂xk
(x)

+ ∑n
i=1

∂ fi
∂xi

(x) + 1
2
∑m

i=1 h
2
i (x)}u(t, x),

u(0, x) = σ0(x),

(6)

In 1990, Yau (1990) first studied the filtering system (1)
with the following conditions:

C′
1)

∂ f j
∂xi

− ∂ fi
∂x j

= ci j, 1 ≤ i, j ≤ n,

where cij is constant. The filtering system with condition
C′
1) is called the Yau filtering system in Chen (1994). Yau

filtering systems include the Kalman–Bucy filtering sys-
tems and Benés filtering systems as special cases.
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Theorem 2.1 (Theorem 1, Yau (1994)): The condition
(C′

1) holds if and only if

( f1, . . . , fn) = (l1, . . . , ln) +
(

∂F
∂x1

, . . . ,
∂F
∂xn

)
,

where l1,… , ln are polynomials of degree one and F is a C�

function.

Define

η(x) =
n∑

i=1

f 2i (x) +
n∑

i=1

∂ fi
∂xi

(x) +
m∑
i=1

h2i (x). (7)

In this paper, we consider system (1)with the following
three conditions:

(C1) fi(x) = li(x) + ∂F
∂xi

(x), 1 ≤ i ≤ n;
(C2)

∑m
i=1 h

2
i (x) = ∑n

i, j=1 qi jxix j +
∑n

i=1 qixi + q0;
(C3) η(x) = ∑n

i, j=1 ηi jxix j +
∑n

i=1 ηixi + η0;

where li(x) = ∑n
j=1 di jx j + di and di j, di, qi j = q ji, qi,

q0, ηi j, ηi, η0, 1 ≤ i, j ≤ n are constants. We remark that
nonlinear observation hi’s are allowed in this paper and
the Kalman–Bucy filtering systems satisfies (C3) and so
does in Benés (1981).

3. Solution of the robust DMZ equation

In this section, we first reduce the robust DMZ equation
to a Kolmogorov equation. Then the Kolmogorov equa-
tion can be solved in terms of ODEs based on an original
Gaussian approximation method.

Let PN = {0 = τ 0 < τ 1 < τ 2 < ··· < τN = T} be a
partition of [0, T]. For each time interval τ k−1 � t � τ k,
let uk(t, x) be the solution of the following PDE (8), which
is obtained from (6) by freezing the observation term y(t)
to y(τ k−1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uk
∂t (t, x) = 1

2
∑n

i=1
∂2uk
∂x2i

(t, x) + ∑n
i=1{− fi(x)

+ ∑m
j=1 y j(τk−1)

∂h j

∂xi
(x)} ∂uk

∂xi
(t, x)

−{∑m
i=1

∑n
j=1 yi(τk−1) f j(x) ∂hi

∂x j
(x)

− 1
2
∑m

i=1
∑n

j=1 yi(τk−1)
∂2hi
∂x2j

(x)
− 1

2
∑n

k=1
∑m

i, j=1 yi(τk−1)y j(τk−1)
∂hi
∂xk

(x) ∂h j

∂xk
(x)

+ ∑n
i=1

∂ fi
∂xi

(x) + 1
2
∑m

i=1 h
2
i (x)}uk(t, x),

uk(τk−1, x) = uk−1(τk−1, x).
(8)

Define the norm of the partition PN by |PN | =
sup1≤i≤N (τi − τi−1), it has been proved in Yau and
Yau (2000, 2005) that in both pointwise sense and

L2-sense

u(τ, x) = lim
|PN |→0

ui(τ, x). (9)

3.1 Reduction of the robust DMZ equation to
Kolmogorov equation

Our reduction of the robust DMZ equation to Kol-
mogorov equation is based on the following important
proposition.
Proposition 3.1 (Proposition 3.1, Yau and Yau (2004b)):
For each τ k−1 � t � τ k, 1 � k � n, ũk(t, x) satisfies the
following parabolic equation:

∂ũk
∂t

(t, x) = 1
2
�ũk(t, x) −

n∑
i=1

fi(x)
∂ũk
∂xi

(t, x)

−
( n∑

i=1

∂ fi
∂xi

(x) + 1
2

m∑
i=1

h2i

)
ũk(t, x) (10)

for τ k−1 � t � τ k, if and only if

uk(t, x) = exp

(
−

m∑
i=1

yi(τk−1)hi(x)

)
ũk(t, x) (11)

satisfies (8).

The initial condition for (10) on τ k−1 � t � τ k is

ũk(τk−1, x)

=
⎧⎨
⎩

σ0(x) exp(− ∑m
j=1 y j(0)h j(x)) = σ0(x), k = 1

exp{∑m
j=1(y j(τk−1) − y j(τk−2))h j(x)}

ũk−1(τk−1, x), k ≥ 2
(12)

From (4), (9) and (11), we have

σ (t, x) = lim
|Pk|→0

ũk(τk, x). (13)

Hence, to compute the unnormalised density σ (t, x), we
only need to find the solution ũk(t, x) of the Kolmogorov
Equation (10).
Lemma 3.1: For each k, τ k−1 < t < τ k, (10) is equivalent
to the following equation

∂ũk
∂t

(t, x) = 1
2
�ũk(t, x) +

n∑
i=1

θi(x)
∂ũk
∂xi

(t, x)

+ θ (x)ũk(t, x), (14)

where θi(x) = − fi(x) and θ (x) = 1
2 (

∑n
i=1 θ2

i (x) +∑n
i=1

∂θi
∂xi

(x) − η(x)).
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Proof: Recall from (7) that

η(x) =
n∑

i=1

f 2i (x) +
n∑

i=1

∂ fi
∂xi

(x) +
m∑
i=1

h2i (x).

Define θi(x) = − fi(x), the coefficient of ũk(t, x) in (10)
is given by

−
( n∑

i=1

∂ fi
∂xi

(x) + 1
2

m∑
i=1

h2i

)

=
n∑

i=1

∂θi

∂xi
(x) − 1

2
(η(x) −

n∑
i=1

f 2i (x) −
n∑

i=1

∂ fi
∂xi

(x))

= 1
2

n∑
i=1

θ2
i (x) − 1

2
η(x) +

n∑
i=1

∂θi

∂xi
(x) + 1

2

n∑
i=1

∂ fi
∂xi

(x)

= 1
2

( n∑
i=1

θ2
i (x) +

n∑
i=1

∂θi

∂xi
(x) − η(x)

)
=: θ (x).

�

In order to solve the Kolmogorov Equation (14) in
terms of ODEs, we first introduce a new transformation
in the following theorem.

Theorem 3.1: For each k, τ k−1 � t� τ k, suppose ũk(t, x)
is a solution of (14) and let

ûk(t, x) = e
(x)ũk(t, x), (15)

then ûk(t, x) is the solution of the following Kolmogorov
equation

⎧⎨
⎩

∂ ûk
∂t (t, x) = 1

2�ûk(t, x) − ∑n
i=1 Hi(x) ∂ ûk

∂xi
(t, x)

−P(x)ûk(t, x)
ûk(τk−1, x) = e
(x) · ũk(τk−1, x)

(16)

if we can choose Hi(x), P(x) and 
(x) such that the follow-
ing equations:

−∂


∂xi
(x) + Hi(x) + θi(x) ≡ 0, 1 ≤ i ≤ n, (17)

−1
2
η(x) + 1

2

n∑
i=1

H2
i (x) − 1

2

n∑
i=1

∂Hi

∂xi
(x) + P(x) ≡ 0

(18)

hold.

Proof: Differentiating ûk(t, x)with respect to t and x, we
have the following equations:

∂ûk(t, x)
∂t

= e
(x) ∂ũk(t, x)
∂t

, (19)

∂ûk(t, x)
∂xi

= e
(x)
(

∂
(x)
∂xi

· ũk + ∂ũk(t, x)
∂xi

)
, (20)

∂2ûk(t, x)
∂x2i

= e
(x)
{ (

∂2
(x)
∂x2i

+
(

∂
(x)
∂xi

)2
)
ũk(t, x)

+ 2
∂
(x)

∂xi
· ∂ũk(t, x)

∂xi
+ ∂2ũk(t, x)

∂x2i

}
.

(21)

Putting (19)–(21) into (16), we have

∂ûk(t, x)
∂t

= e
(x) ·
{
1
2
�ũk(t, x)+

n∑
i=1

(
∂
(x)

∂xi
− Hi

)
· ∂ũk(t, x)

∂xi

+
(
1
2
�
(x) + 1

2

n∑
i=1

(
∂
(x)

∂xi

)2

−
n∑

i=1

Hi · ∂
(x)
∂xi

− P(x)
)

· ũk(t, x)
}

(22)

Using (14), (19) and (22), we have

n∑
i=1

θi(x)
∂ũk
∂xi

(t, x) + θ (x)ũk(t, x)

=
n∑

i=1

(
∂
(x)

∂xi
− Hi

)
· ∂ũk(t, x)

∂xi

+
(
1
2
�
(x) + 1

2

n∑
i=1

(
∂
(x)

∂xi

)2

−
n∑

i=1

Hi · ∂
(x)
∂xi

− P(x)
)

· ũk(t, x). (23)

Observing the coefficients of ∂ ũk(t,x)
∂xi

and ũk(t, x), we
have

θi(x) = ∂
(x)
∂xi

− Hi,

θ (x) = 1
2
�
(x) + 1

2

n∑
i=1

(
∂
(x)

∂xi

)2

−
n∑

i=1

Hi · ∂
(x)
∂xi

− P(x).
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Recall that θ (x) = 1
2 (

∑n
i=1 θ2

i (x) + ∑n
i=1

∂θi
∂xi

(x) −
η(x)), then (17) and (18) follows. �

Noting the special structure of the drift f, i.e. condition
(C1), we have a special choice of 
(x) in (15).

Theorem 3.2: Consider the NLF system (1) with condi-
tions (C1)−(C3). Then for each k, τ k−1 � t � τ k, the solu-
tion ũk(t, x) for (10) is reduced to the solution ûk(t, x) for
the following Kolmogorov equation

⎧⎨
⎩

∂ ûk
∂t (t, x) = 1

2�ûk(t, x) − ∑n
i=1 Hi(x) ∂ ûk

∂xi
(t, x)

− P(x)ûk(t, x)
ûk(τk−1, x) = eG(x)−F(x)ũk(τk−1, x)

(24)

where

ûk(t, x) = eG(x)−F(x)ũk(t, x), (25)

if we can choose H(x), G(x) and P(x) such that

1
2

n∑
i=1

H2
i (x) − 1

2

n∑
i=1

∂Hi

∂xi
(x) − 1

2
η(x) + P(x) ≡ 0

(26)

where

Hi(x) − ∂G
∂xi

(x) = li(x). (27)

Proof: Herewe use Theorem3.1with
(x)=G(x)−F(x),
where F(x) is the one in Theorem 2.1. Then

∂


∂xi
(x) = ∂G

∂xi
(x) − ∂F

∂xi
(x). (28)

Putting (28) into (17) and note that θ i(x) = −fi(x), we
have Hi(x) − ∂G

∂xi
(x) = li(x). �

In the following corollary, we choose H(x),G(x), P(x)
which satisfy the conditions in Theorem 3.2 such that the
coefficients of ûk(t, x) and ∂ ûk

∂xi
(t, x) are degree one poly-

nomial and degree two polynomial, respectively. By this
way, we can solve the transformed Kolmogorov Equation
(24) in terms of ODEs if the initial condition is Gaussian.

Corollary 3.1: Choose G(x) � 0, P(x) = 1
2η(x) −

1
2
∑n

i=1 l
2
i (x) + 1

2
∑n

i=1
∂ li
∂xi

(x) and Hi(x) = li(x), 1 � i �
n, then (26) and (27) hold in this case. For each k, τ k−1 � t
� τ k, the corresponding Kolmogorov Equation (24) is given

by

∂ûk
∂t

(t, x) = 1
2
�ûk(t, x) −

n∑
i=1

li(x)
∂ûk
∂xi

(t, x)

+ 1
2
(

n∑
i=1

l2i (x) −
n∑

i=1

∂ li
∂xi

(x)

− η(x))ûk(t, x) (29)

with

ûk(τk−1, x)

=
⎧⎨
⎩
e−F(x)σ0(x), k = 1,
exp{∑m

j=1(y j(τk−1) − y j(τk−2))h j(x)}·
ûk−1(τk−1, x), k ≥ 2.

(30)

Then for τ k−1 � t � τ k,

ũk(t, x) = eF(x)ûk(t, x). (31)

Proof: Recall from (12) that

ũk(τk−1, x)

=
⎧⎨
⎩

σ0(x), k = 1,
exp{∑m

j=1(y j(τk−1) − y j(τk−2))h j(x)}
ũk−1(τk−1, x), k ≥ 2.

Then, for k = 1, û1(0, x) = e−F(x)σ0(x). For k � 2,

ûk(τk−1, x) = e−F(x)ũk(τk−1, x)

= e−F(x) exp
{ m∑

j=1

(y j(τk−1) − y j(τk−2))h j(x)
}
ũk−1(τk−1, x)

= exp
{ m∑

j=1

(y j(τk−1) − y j(τk−2))h j(x)
}
ûk−1(τk−1, x)

�

Suppose ûk(τk−1, x) is well approximated by a sum of
finite number of Gaussian distributions, it follows that
a well approximated solution of (29) is obtained by lin-
ear combination of solutions of (29) with Gaussian initial
condition since (29) is a linear PDE. The following theo-
rem give the solution of (29) with Gaussian initial distri-
bution in terms of ODEs .

Theorem 3.3 (Theorem 3.2, Yau & Lai, 2003): Consider
the following Kolmogorov equation with Gaussian initial
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condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ û
∂t (t, x) = 1

2�û − ∑n
i=1 li(x)

∂ û
∂xi

(t, x)
+ 1

2

( ∑n
i=1 l

2
i (x) − ∑n

i=1
∂ li(x)
∂xi−η(x)

)
û(t, x)

û(t0, x) = exTA(t0)x+BT (t0)x+C(t0)

(32)

where A(t0) = (Aij(t0)) is an n × n symmetric matrix,
BT(t0)= (B1(t0),… , Bn(t0)), xT = (x1,… , xn) are row vec-
tors and C(t0) is a scalar, t0 � 0.

Let

q(x) = 1
2

( n∑
i=1

l2i (x) −
n∑

i=1

∂ li
∂xi

(x) − η(x)

)

= xTQx + pTx + r (33)

where li(x) = ∑n
j=1 di jx j + di, Q = (qij) is an n × n sym-

metric matrix, pT = (p1,… , pn) is a row vector and r is a
scalar. Then the solution of (32) is of the following form

û(t, x) = ex
TAx+BTx+C (34)

where A(t) = (Aij(t)) is an n × n symmetric matrix val-
ued function of t, BT(t) = (B1(t),… , Bn(t)) is a row vec-
tor valued function of t, and C(t) is a scalar function of t.
Moreover, A(t), B(t) and C(t) satisfy the following system
of nonlinear ODEs:

dA(t )
dt

= 2A2(t ) − [A(t )D + DTA(t )] + Q, (35)

dBT (t )
dt

= 2BT (t )A(t ) − BT (t )D − 2dTA(t ) + pT ,

(36)
dC(t )
dt

= trA(t ) + 1
2
BTB(t ) − dTB(t ) + r, (37)

where D = (dij) is a n × n matrix and dT = (d1,… , dn) is
a 1 × n matrix.

3.2 Algorithms

In this section, we first give a new way to do Gaussian
approximation in Algorithm 1. Then the computation of
ũk(t, x) is summarised as an application in Algorithm 2.

The idea of our Gaussian approximation is the follow-
ing: given a probability density φ(x), we fit it with Gaus-
sian distributions using the peaks of φ(x) as the mean.
The procedure is repeated until the peaks of φ(x)−g(x) is
no larger than some threshold E, where g(x) is the sum of
Gaussians from previous fitting steps. In Section 4.1, the
numerical experiments show that our Gaussian approxi-
mation method works very well.

Algorithm 1 Gaussian approximation
1: Let f (x) = φ(x) and the threshold E = αmaxφ(x),
where α is a given small number.
2: Fitting the peaks of f (x) which are larger than
E with Gaussian distributions. Specifically, for a peak
Pi(xi, yi) of f (x)with yi ≥ E, we use the function gi(x) =
yi exp(− (x−xi)2

2σ 2
i

) to fit Pi(xi, yi) with points in a neighbor-
hood of Pi(xi, yi) where no other peaks exists, and the
best fitting parameterσi is obtained byfitting. Suppose the
sum of Gaussian distributions gi(x) in this step is g(x).
3: Let f1(x) = f (x) − g(x). If f1(x) has no peaks whose
values larger than E, then go to step 4. Otherwise, let
f (x) = f1(x) and go to step 2.
4: Let f2(x) = − f1(x). If f2(x) has no peaks which are
larger thanE, then done. Otherwise, let f (x) = f2(x) and
go to step 2.

Using the above Gaussian approximation procedure,
we can decompose (30) into a finite number of Gaussian
distributions. By Theorem 3.3, the Kolmogorov equation
(29) with Gaussian initial condition is solved in terms
of ODEs. The algorithm to compute ũk(t, x) is list in
Algorithm 2.

Algorithm 2 Compute ũk(t, x)
1: Choose the total computing time T,�t and the param-
eter α in Algorithm 1. LetN = T

�t , and partition the time
interval [0,T] by {0 = τ0 < τ1 < τ2 < · · · < τN = T}.
2: for k = 1 : N do
3: Using Algorithm 1, suppose ûk(τk−1, x) is decomposed
into

∑N(k)
i=1 ck,iG(μk,i, σk,i).

4: For each Gaussian distribution G(μk,i, σk,i), suppose
the solution of (29) with initial condition G(μk,i, σk,i) is
ûk,i(τk, x). Solving (35)–(37), we obtain ûk,i(τk, x). Then
ûk(τk, x) = ∑N(k)

i=1 ck,iûk,i(τk, x).
5: From (31), we have ũk(τk, x) = e−F(x)ûk(τk, x).
6: By (30), we obtain ûk+1(τk, x).
7: end for

4. Numerical experiments

In this section, we first use two examples to show the
effectiveness of the above Gaussian approximation algo-
rithm, then two concrete NLF models are considered to
verify the effectiveness of the direct method. The com-
puting platform we used have Intel(R) Xeon(R) CPU E5-
2670 v3 @ 2.30GHz. We use the mean-squared error
(MSE) as the performance metric. The average MSE over
100 times simulations is provided.
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Figure . Gaussian approximation of a givenprobability density function, (a) Gaussian approximation ofσ (x), (b) Gaussian approximation
of σ (x).

4.1 Gaussian approximation

We approximate a given probability density function by∑N
i=1 cie

−(x−μi )
2

2σ2i by using Algorithm 1. Let α = 0.01 and
we consider the following two examples.

Example 4.1: Let the probability density function be
σ1(x) = 1

71.2186e
−x sin x− 1

2 x cos x−x2+3x+2 . The performance
of our Gaussian approximation algorithm is given in
Figure 1(a). The MSE is 2.5680 × 10−7. The average
elapsed time is 0.2971 seconds. The Gaussian distribu-
tions we used is given in Table 1.

Example 4.2: Let the probability density function be
Rayleigh distribution: σ2(x) = x

b2 e
− x2

2b2 with b = 0.585.
The performance of our Gaussian approximation algo-
rithm is given in Figure 1(b). The MSE is 3.2128 × 10−6.
The average elapsed time is 0.3110 seconds. TheGaussian
distributions we used is given in Table 2.

From the above examples, we can see that the proposed
Gaussian approximation algorithm is very effective and
fast.

4.2 Directmethod

In this section, the performance of the direct method and
EKF is compared. We consider the following NLF system
which satisfies condition (C1)–(C3)⎧⎨

⎩
dxt = f (xt )dwt
dy1(t ) = xt sin(xt )dt + dv1(t )
dy2(t ) = xt cos(xt )dt + dv2(t )

(38)

Here w(t ), v1(t ), v2(t ) are scalar independent stan-
dard Brownian motions. The initial distribution is taken
as σ0(x) = 1

71.2186e
−x sin x− 1

2 x cos x−x2+3x+2 . The initial val-
ues for EKF are x̂0 and P0. In Gaussian approximation
algorithm, we choose the parameter α = 0.01. The total
simulation time is T and the time step is �t.

Example 4.3: In this example, we take the drift f(x) =
tanh (x) in (38).

(1) With T = 30 seconds, �t = 0.1 seconds and x̂0 =
1. For P0 = 1, the performance of our method
and EKF is given in Figure 2(a). One can see that
the EKF completely fails at about t = 13 seconds.
The average MSE for 100 experiments by direct
method and EKF are given in Table 3.

Table . Gaussian distributions used to approximate σ (x).

i          

ci . . . − . − . − . − . − . . .
μi . . . − . . . − . . . .
σ i . . . . . . . . . .
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Table . Gaussian distributions used to approximate σ (x).

i        

ci . . − . − . − . . . − .
μi . .  . − . − . . 
σ i . . . . . . . .

Table . Average MSE of direct method and EKF.

P MSE-direct methoda Time-direct metehodb(s) MSE-EKFc

 . . –
 . . –
 . . –

a The average MSE of direct method for  experiments.
b The average elapsed time of direct method for  experiments.
c The average MSE of EKF for  experiments.

Table . Performance of direct
method with different�t.

�t . . .

MSE . . .

(2) In this case we take T = 10 seconds and �t =
0.01 seconds. For x̂0 = 1 and P0 = 5, the per-
formance of the direct method and EKF is given
in Figure 2(b). The average MSE for 100 experi-
ments of the direct method and EKF is 0.1826 and
6.1364, respectively.

(3) With T = 10 seconds and different time step, the
corresponding MSE of our method is given in
Table 4, from which we can see that with smaller
time step, the higher the estimation precision is.
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Figure . State estimationbydirectmethodwith T= ,�t= .
seconds.

Example 4.4: In this example, we take T = 2 seconds,
�t= 0.001 seconds. The drift f (x) = x + 1 + dF

dx , where

F(x) =
∫ x

−∞
{e−(z− 1

2 )2
/∫ z

−∞
e−(y− 1

2 )2dy − 3/2}dz.

For x̂0 = 1, P0 = 3, the EKF just blow up, the perfor-
mance of our method is given in Figure 3. The MSE of
our method is 0.2016.
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Figure . State estimation by direct method and EKF, (a) T= ,�t= . seconds, (b) T= ,�t= . seconds.
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From the above two examples, we can see that our
method can track the state very well and it can be imple-
mented in a real time manner. Besides, compared to EKF,
our method is much more stable.

5. Conclusion

In this paper, we consider a general class of NLF sytems,
calledYau filtering systemwith arbitrary initial condition.
The observations can also be nonlinear which occurs in
many practical examples.We show that the solution of the
robust DMZ equation is reduced to the solution of Kol-
mogorov equation. Based on Gaussian approximation,
theKolmogorov equation can be solved in terms ofODEs.
On the one hand, the direct method can be implemented
in real time and memoryless way. On the other hand, it is
easy to implement and do not need the controllability and
observability assumption. Compared to EKF, it is much
stable and has theoretical convergence proof. Besides, we
give a new approach to decompose a given probability
density function into a finite number of Gaussian distri-
butions. The proposed Gaussian approximation method
is very simple and fast. The numerical experiments show
that our Gaussian approximationmethod is very effective
and the direct method can track the states very well.
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