
Received April 19, 2020, accepted May 8, 2020, date of publication May 26, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997857

A Novel Image Description With the Stretched
Natural Vector Method: Application to
Face Recognition
WENHUI DONG 1,2, AND STEPHEN S.-T. YAU 1, (Fellow, IEEE)
1Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
2School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, China

Corresponding author: Stephen S.-T. Yau (yau@uic.edu)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 11961141005, and in part by
the Tsinghua University Start-Up Fund and Tsinghua University Education Foundation Fund under Grant 042202008.

Dedicated to Professor Roger W. Brockett on the occasion of his 82 birthday

ABSTRACT Nowadays there is growing research interest in designing high performance algorithms for
automatic facial recognition systems, and an efficient computational approach is required. Accurate face
recognition, however, is difficult due to facial complexity. In this paper, we propose a novel and efficient
facial image representation named the Stretched Natural Vector (SNV) method which is defined on the
intensity values in a grayscale image matrix, where each entry in an intensity matrix records the level of
gray at a single pixel in a m× n array. We prove that the SNV defined in this context can distinguish photo
matrices in strict one-to-one fashion. This is to say it is theoretically possible to fully recover a grayscale
image matrix from the corresponding complete SNV. Experiments on a number of datasets demonstrate that
our truncated SNV method compares favorably both in recognition accuracy and efficiency (measured in
wall-clock time) against ‘‘Full-Pixel’’ algorithm, Principal Component Analysis (PCA) method, and even its
widely used variants – two dimensional PCA (2DPCA) method and two dimensional Euler PCA (2D-EPCA)
method.

INDEX TERMS Stretched natural vector (SNV), face recognition, principal component analysis (PCA).

I. INTRODUCTION
Face recognition is one of the most important methods for
biometrical recognition. It has wide applications, including
criminal identification, security systems, image and film
processing, and human-computer interaction. Over the past
fewer years, people from many different fields of science
and engineering have addressed the challenging tasks of
computer vision and real time pattern recognition. The task
of visually matching images of the same person, which
are obtained from different cameras distributed over non-
overlapping locations of potentially substantial distances and
time differences, is called person re-identification [11]. Solv-
ing the re-identification problem is primarily focused on
the feature representation and distance measure. In [29],
the authors designed and obtained a more effective metric
for the re-identification problem. However, it is extremely
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challenging to extract effective features from different facial
images under the influences of illumination, pose, and facial
expression. Improved accuracy remains a goal and mis-
takes occur in all applications, whether the work is done by
machines or humans or both.

Face recognition mainly involves three parts, including
pre-processing, feature extraction and recognition. Principal
Component Analysis (PCA) [25] is one of the classic fea-
ture extraction methods based on statistical characteristics.
The main idea of PCA method is to convert the matrix
of the original images into vectors, through calculating
the total scattering matrix of the image vector and getting
a set of biggest standard orthogonal vector as the opti-
mal projection axis. As we all know, face image infers
high dimensions, conventional PCA spends much compu-
tational costs to handle high-dimensional data. Therefore,
based on the effectiveness of PCA in feature extraction,
researchers are tremendously interested in developing its
variations.
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As opposed to PCA, two-dimensional PCA (2DPCA)
method [30] is based on two-dimensional (2D) image matri-
ces rather than one-dimensional (1D) vectors. Instead of
transforming the image matrix into a vector and then com-
puting its covariance matrix, an image covariance matrix
in 2DPCA method is constructed directly using the original
image matrices, and correspondingly, its optimal projection
axis is derived for image feature extraction. Compared with
PCA, this approach avoids the damage to the spatial structure
distribution of original face image, but with less time cost
obtained a higher recognition accuracy. In [17], a modified
method called modular 2DPCAmethod is presented in which
the face images are divided into smaller images and the
PCA method is applied on each of them. However, 2DPCA
and its modifications extract the features from the original
image matrices and need more coefficients for image rep-
resentation than PCA, which is time-consuming. Diagonal
principal component analysis (DiaPCA) [34] as a novel sub-
space method in contrast to standard PCA, directly seeks the
optimal projective vectors from diagonal face images without
image-to-vector transformation.While in contrast to 2DPCA,
it reserves the correlations between variations of rows and
those of columns of images. The application of wavelet trans-
form in face recognition have been discussed in numerous
papers and research articles. In [19], they introduce the appli-
cation of digital curvelet transform in conjunction with dif-
ferent dimensionality reduction tools, particularly applying
to the problem of facial feature extraction from 2D images.
As the l2-norm employed by standard PCA is not robust to
outliers, researchers in [16] propose a kernel PCA method,
which is called Euler PCA (EPCA). In particular, they utilize
a robust dissimilarity measure based on the Euler represen-
tation of complex numbers and such complex representation
induces much smaller kernel matrix and principal subspaces.
Further, combining the advantages of 2DPCA with EPCA,
researchers in [27] introduce a two-dimensional Euler PCA
(2D-EPCA) algorithm, which leans projection matrix on the
2D pixel matrix of each image without reshaping it into 1D
long vector, and uncovers nonlinear relationships among fea-
tures bymapping data onto complex representation. Although
the approaches have achieved promising results, most of them
cannot obtain meaningful components of facial images since
the feature matrix is extracted by the PCA or PCA-based
extension methods. In addition, 2DPCA or its modification
methods [5]–[7] are proposed to reduce the computational
cost of the standard PCA algorithm, but the performance
of 2DPCA in reducing computational complexity and recog-
nition rate is not satisfying.

Some other powerful tools are used for data reduction and
feature extraction, such as LDA [4], [15], and Independent
Component Analysis (ICA) [3], [31]. Recently, other dimen-
sion reduction techniques [9], [10] have been proposed. These
are some local features extraction methods, not like as PCA
and its variants as holistic methods. Researchers investigate
the representation of face images by means of local binary

pattern features that are scattered in [1], [8], [12], [21], [22],
[24], [32], [33]. In [2], a novel descriptor based on local
binary pattern texture features extracted from local facial
regions is presented.

In this paper, a novel approach coined the StretchedNatural
Vector (SNV) method is proposed for image representation,
which is based on two-dimensional grayscale image matrix
directly. As for the construction of the SNV, the first group of
the components in SNV are the quantaties of the grayscales,
which define the number of all level grayscales, respectively.
The second group of components in SNV are the average
locations across rows and columns in the image matrix of
all level grayscales, respectively. Meanwhile, the third group
of components in SNV are the normalized higher order cen-
tral moments, which can represent the distribution of the
grayscales with respect to their corresponding average loca-
tions, respectively. The physical meaning of an image about
counts, locations, and distributions of the grayscales are fully
considered in the construction of SNV, i.e., the first, second
and third groups of components.

The proposed method can reduce data dimensions and
computational loads without discarding too much informa-
tion. We have proven that the SNV defined in this context
can distinguish image matrices in strict one-to-one fash-
ion. Concretely to say, it is theoretically possible to fully
recover a grayscale pixel matrix from the corresponding
complete SNV.

A series of experiments are performed on three face image
datasets for the purpose of testing the SNV method. At the
same time, the Euclidean metric is widely used on the dataset
to find a similar image of a given query image by measuring
the distance between those images. We use a truncated SNV
method to match face images to people in order to compute
recognition accuracy and time consuming, comparing with
the basic PCA method, its variants–2DPCA and 2D-EPCA
methods and the ‘‘Full-Pixel’’ algorithm, which is detailed
in (18). In addition, Face recognition experiments on the
commonly used ORL dataset, and two more face datasets
which we have detailed in section IV, show the superiority
of our proposed method over classical PCA method, 2DPCA
method, 2D-EPCA method, and ‘‘Full-Pixel’’ algorithm in
terms of recognition accuracy, and also in reduced CPU
time. Along with the training sample numbers increasing,
the experimental results also indicate that the SNV method
is more computationally efficient than PCA algorithm, and
owns an acceptable and compatible computational time costs.

The remainder of this paper is organized as follows. The
proposed SNV method is described in section II. In section
III we give our key contribution, namely amathematical proof
that the assignment of an SNV to a image pixel matrix is one-
to-one. In section IV we introduce truncated SNV and com-
pare the recognition accuracy of our truncated SNV method
to classical PCA, 2DPCA, 2D-EPCA and ‘‘Full-Pixel’’ algo-
rithms on the three referred datasets. Finally, we state our
conclusions in the last section.
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II. CONSTRUCTION OF THE STRETCHED NATURAL
VECTOR (SNV) ON A TWO-DIMENSIONAL
IMAGE PIXEL MATRIX
A grayscale image having m × n pixels, with 256 possible
intensities at each pixel (i.e., with 8 bits there are 28 = 256
possible values) determines an m × n matrix Q with entries
q(i, j) ∈ K = {0, 1, 2, 3, . . . , 255}. The perspective in the
constrcution of SNV is that the information is captured by the
k–valued matrix entry locations for all values k ∈ K . Thus,
we say that the SNV is determined by a two–dimensional
distribution on a matrix.

Denote by nk the cardinality of q−1(k). Thus for k ∈ K =
{0, 1, 2, . . . , 255}, nk is the total number of k–valued pixels

in the grayscale image. Then N = mn =
255∑
k=0

nk is the total

number of pixels. Furthermore, let q−1(k) = {(is,k , js,k )|s =
1, 2, . . . , nk} be the set of all k–valued pixel positions.
Here is a small example of a hypothetical photo intensity

matrix. 3 25 5 34 45 34 255 0
4 34 32 56 45 57 234 189
23 45 56 77 34 1 0 6


3×8

(1)

In the example matrix above, q−1(34) consists of four
pixels. The value k = 34 shows up as following

{(i1,34, j1,34), (i2,34, j2,34), (i3,34, j3,34), (i4,34, j4,34)}
= {(1, 4), (1, 6), (2, 2), (3, 5)}.

For an actual photo intensity matrix, there would be
256 sets capturing similar information. Now we describe
an SNV corresponding to a given photo matrix. It is eas-
ily seen that a similar SNV could be constructed from
any two–dimensional matrix with values in a finite set.
Theoretically, there is a big messy mathematical object even
in the case of an integer–valued or a real–valued matrix with
infinitely many possible entry values, but it will be of some
importance for us that the set K is finite.

1) The first group of components in the SNV are the
256 counts (n0, n1, . . . , n255). They’re all non–negative
integers bounded by the size of the matrix and some of
them could be zero. In our little example above, n34 = 4
and most of the nk ’s are 0 since most intensity values
don’t show up in the matrix.

2) The second group of components in the SNV are mean
pixel locations Eµk = (µ1,k , µ2,k ) for intensity values
k = 0, 1, . . . , 255.

µ1,k :=

∑nk
s=1 is,k
nk

=
i1,k + i2,k + · · · + ink ,k

nk
, (2)

µ2,k :=

∑nk
s=1 js,k
nk

=
j1,k + j2,k + · · · + jnk ,k

nk
, (3)

where (is,k , js,k ) ∈ q−1(k), for all s = 1, 2, . . . , nk .
Let’s look at our example, where Eµ34 = (µ1,34,
µ2,34) = ( 1+1+2+34 , 4+6+2+54 ) = ( 74 ,

17
4 ). Define

Eµk := (0, 0) if nk = 0. For all other k’s, these vector
components are positive rationals and not necessarily

integers. The SNV will have components from Eµ0
through Eµ255.

3) The third group of parameters that we include in the
SNV are the normalized higher order central moments.
There is a set of D’s for each k ∈ K . Let Dk,0,0 := 0
for k ∈ K . For any other exponent pair (r, s), we define

Dk,r,s :=
nk∑
t=1

(it,k − µ1,k )r · (jt,k − µ2,k )s

(nk )r+s · N r+s−1 (4)

where k ∈ K , r is the arbitrary non-negative integer,
and s = 0, 1, 2, . . . , nk .

Plugging r = 0 and s = 0 into the (4) yields only
normalized counts nk · N which are already captured. Dk,1,0
andDk,0,1 turn out to be zero, a property of the locationmeans
µ1,k and µ2,k . Thus central moments of combined degree
0 and 1 can be omitted. Alternatively, we could keep Dk,0,0,
Dk,1,0, Dk,0,1, omitting the nk ’s and Eµk ’s. However, that we
keep the counts and location means just to make (4) easy to
write. The SNV will have components D0,2,0, . . . ,D255,2,0,
then D0,1,1, . . . ,D255,1,1, then D0,0,2, . . . ,D255,0,2, then D’s
with combined r + s degree 3, and so forth.
After a bit of reordering, the SNV is given as follows with

D’s ordered lexicographically starting at k = 0 with degree
two.

< n0, µ1,0, µ2,0,D0,0,2,D0,1,1,D0,2,0, . . .

n1, µ1,1, µ2,1,D1,0,2,D1,1,1,D1,2,0, . . .

. . .

n255, µ1,255, µ2,255,D255,0,2,D255,1,1,D255,2,0, . . . >

(5)

Obviously, higher central moments converge to 0 for a
random generated distribution matrix since for any given k ,

Dk,r,s =
nk∑
t=1

(it,k − µ1,k )r · (jt,k − µ2,k )s

(nk )r+s · N r+s−1

≤

nk∑
t=1

max{t∈1,2,...,nk } |it,k |
r
· |jt,k |s

(nk )r+s · N r+s−1

≤
max{t∈1,2,...,nk } |it,k |

r
· |jt,k |s

(nk )r+s−1 · N r+s−1

≤
N r
· N s

(nk )r+s−1 · N r+s−1 =
N

(nk )r+s−1
, (6)

where N =
∑255

k=0 nk .
It is clear that nk ≥ 1, otherwise, there is no any k-th

grayscale distributed in the matrix.
From the viewpoint of probability, suppose that the expec-

tation value of any level grayscale is nk = N/256 (uniform
distribution) for an image with the total stencil points N of
the given distribution matrix.

Actually, for the given distribution matrix in m-by-n,
we naturally get the total entries of the matrix is N := mn.
Therefore,

lim
r+s

N
(nk )r+s−1

= lim
r+s

N
(N/256))r+s−1

= lim
r+s

256r+s−1

N r+s−2 .

(7)
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Clearly, this limit can converge to 0 as r + s increases.
Specifically, for example, as for the given distribution matrix
in 196-by-196, which has N = 216, the limit of (7) is shown
in Tabel 1.

TABLE 1. The decay of higher central moments for the grayscale.

That is, evidently, the higher central moments converge to
zero very quickly as r + s increases.
We will show in the next section that the information

in the SNV is enough to theoretically determine the entire
grayscale photo matrix. In section IV we will see that there is
practical value in the truncated ENVwhich discards moments
of combined degree three or higher.

III. RELATION BETWEEN A TWO-DIMENSIONAL MATRIX
AND ITS CORRESPONDING SNV
A crucial contribution of this paper is that different photo
matrices determine different SNVs, which is completely
stated in Theorem 1.

The basic idea is that for each k , a photo determines a
set of row locations {i1, . . . , ink }, which are roots of a sym-
metric polynomial whose coefficients would have to match
those from another photo having the same SNV, because the
coefficients are functions of some of the SNV components.
The difficulty is that more is required than just showing
the SNV determines the set of row locations and the set of
column locations for both photos. It must be shown that the
exact locations (i.e., the (i, j) row–column pairs) are common
to both photos having the same SNV. Namely, it is easier to
know the set of k–valued locations in one direction than it is to
know them in both directions. The main theorem is presented
as following.
Theorem 1: Suppose the finite set K = {0, 1, 2, . . . , 255}

has a distribution on the two-dimensional m× n matrix, such
as that shown on (1), then the corresponding SNV deter-
mines the distribution, i.e., the SNV determines all the matrix
entries.

Before we give the complete proof of the main theorem,
which can be referred to Appendix, we need to state several
lemmas. Firstly, Newton’s identities [18] (also known as the
Newton-Girard formula) relate different types of symmetric
polynomials, namely power sums and elementary symmetric
polynomials. Evaluated at the roots of a monic polynomial P
in one variable, they allow expressing the sums of the k-th
powers of all roots of P (counted with their multiplicity) in
terms of the coefficients of P, without actually finding those
roots.

The following lemma is the full statement.

Lemma 2 ( [18]): Let x1, x2, . . . , xn be variables, and

pk (x1, x2, . . . , xn) =
n∑
i=1

xki = xk1 + x
k
2 + . . .+ x

k
n ,

for k ≥ 1. Namely, pk is the sum of k th powers of the variables
x1, . . . , xn. Define ek (x1, x2, . . . , xn) as the elementary sym-
metric polynomial, namely the sum of all distinct products of
k distinct variables), for k ≥ 0 shown below,

e0(x1, x2, . . . , xn) = 1,

e1(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn,

e2(x1, x2, . . . , xn) =
∑

1≤i<j≤n

xixj,

. . .
. . .

en(x1, x2, . . . , xn) = x1x2 . . . xn,

ek (x1, x2, . . . , xn) = 0, for k > n. (8)

Then Newton’s identities can be stated as:

kek (x1, x2, . . . , xn) =
k∑
i=1

(−1)i−1ek−i(x1, x2, . . . , xn)

· pi(x1, x2, . . . , xn) (9)

for all n ≥ 1 and k ≥ 1.
Also, one has

0 =
k∑

i=k−n

(−1)i−1ek−i(x1, x2, . . . , xn) · pi(x1, x2, . . . , xn)

(10)

for all k > n ≥ 1.
Lemma 3: Let Z+ be a set of all positive integers, given a

fixed element in Z+ denoted by N , i.e., N ∈ Z+, for arbitrary
elements m, n, a, b ∈ Z+, and m ≤ N , n ≤ N , a < b ≤ N,
then we have

aL · m < bL · n, (11)

if L ∈ Z+ and L ≥
[
logNb

a

]
+ 1.

Proof: Let c := b
a and we can easily know that

c > 1 since a < b. Therefore, the function logxc is
an increasingly monotonous function with respect to the
variable x.
For m ≤ N and n ≤ N , we know that mn ≤ N . And from

L ≥
[
logNb

a

]
+ 1, we get

cL > N , (12)

where the inequality strictly holds.
Subsequently, cL > m

n , namely aL · m < bL · n naturally
holds, and then (11) strictly holds as well. �
Observe that the construction of the SNV, and sequentially

we have the information of all nk , Eµk , and Dk,r,s, which have
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the corresponding definitions as described in section II. Here,
we simply list them out again:

Eµk = (µ1,k , µ2,k ),

Dk,r,s =
nk∑
t=1

(it,k − µ1,k )r · (jt,k − µ2,k )s

(nk )r+s · N r+s−1 , (13)

where µ1,k =

∑nk
t=1 it,k
nk

, µ2,k =

∑nk
t=1 jt,k
nk

, r is any
non-negative integer, s ∈ {1, 2, . . . , nk}, and k ∈ K .
Lemma 4: Given the information of all nk ,µk , if we define

a new higher moment as:

D̃k,r,s =
nk∑
t=1

(it,k )r · (jt,k )s

(nk )r+s · N r+s−1 , (14)

then {Dk,r,s} and {D̃k,r,s} can be linearly represented by each
other, where r, s, and k are defined as in (4).

Proof: On the one hand, if we know the information of
nk , µk and Dk,r,s, then we want to use this information to
obtain all D̃k,r,s. For any r , s, according to the definition of
D̃k,r,s, we have

(nk )r+s · N r+s−1
· D̃k,r,s

=

nk∑
t=1

(it,k )r · (jt,k )s

=

nk∑
t=1

(it,k − µ1,k + µ1,k )r · (jt,k − µ2,k + µ2,k )s

=

nk∑
t=1

[
r∑
l=0

C(r, l) · (it,k − µ1,k )l · (µ1,k )r−l
]

·

[
s∑

ν=0

C(s, ν) · (jt,k − µ2,k )ν · (µ2,k )s−ν
]

=

nk∑
t=1

r∑
l=0

s∑
ν=0

C(r, l)C(s, ν) · (µ1,k )r−l(µ2,k )s−ν

· (it,k − µ1,k )l(jt,k − µ2,k )ν

=

r∑
l=0

s∑
ν=0

C(r, l)C(s, ν)(µ1,k )r−l(µ2,k )s−ν

·

[ nk∑
t=1

(it,k − µ1,k )l(jt,k − µ2,k )ν
]

=

r∑
l=0

s∑
ν=0

C(r, l)C(s, ν)(µ1,k )r−l(µ2,k )s−νDk,l,ν . (15)

Then we have

D̃k,r,s =
r∑
l=0

s∑
ν=0

C(r, l)C(s, ν)(µ1,k )r−l(µ2,k )s−ν

(nk )r+s · N r+s−1 Dk,l,ν .

(16)

Namely, the D̃k,r,s can be linearly represented by the
combination of Dk,l,ν , where l = 0, 1, 2, . . . , r and ν =
0, 1, 2, . . . , s.

On the other hand, if we know the information of nk , Eµk
and D̃k,r,s, following the similar procedure, we can get

Dk,r,s=
r∑
l=0

s∑
ν=0

C(r, l)C(s, ν)(−µ1,k )r−l(−µ2,k )s−ν

(nk )r+s · N r+s−1 D̃k,l,ν .

(17)

Therefore, we finish the proof and get the conclusion. �

IV. THE APPLICATION OF THE SNV METHOD
IN FACE RECOGNITION
The proposed SNV method is used for face recognition and
tested on three datasets (ORL dataset, ‘total_73_95faces’
dataset, and ‘total_151_96faces’ dataset). For the three
datasets, specifically, the ORL dataset is used to evaluate
the performance of SNV under conditions where the poses
are varied. The ‘total_73_95faces’ dataset is employed to
test the performance of the proposed method under condi-
tions where there is a variation in lighting conditions. The
‘total_151_96faces’ dataset with complex background of face
image is utilized to examine the performance when both the
facial expression and background of face image are varied.

The final two datasets are taken from the Computer Vision
Science Research Projects designed and maintained by Dr.
Libor Spacek, which can be downloaded on the link https :
//cswww.essex.ac.uk/mv/allfaces. These datasets have dif-
ferent numbers of individuals, together with 20 distinct face
images per person, showing very minor changes in head turn,
tilt, slant, and head position in the image. Hairstyle variation
was minimal as the images were taken in a single session.
All images were in color, meaning three intensity values per
pixel. We converted all color face images to grayscale data
as the first step, which specifically says that we converts the
RGB color image to the grayscale intensity image by elimi-
nating the hue and saturation information while retaining the
luminance.

It is necessary to emphasize that our proposed method is
entirely based on the information of pixels of the face image,
so we construct an comparison with the conventional PCA
algorithm, 2DPCA method and 2D-EPCA approach for the
face recognition. And further there exists a natural algorithm
based on all pixels of an image, which we define as ‘‘Full-
Pixel’’ algorithm. For detailed description of the ‘‘Full-Pixel’’
algorithm, if there are two image A and B both with m × n,
we define the Euclidean distance between A and B as:

dist(A,B) =

√√√√ m∑
i=1

n∑
j=1

(Ai,j − Bi,j)2. (18)

The ‘‘Full-Pixel’’ algorithm takes advantage of the defined
distance to convey the similarity between each pair images.

We tested our SNV method against classical PCA,
2DPCA, 2D-EPCA, and ‘‘Full-Pixel’’ algorithm by using
only moments up to degree two. That is, the truncated SNV
we used is consisted of counts, locations, and three degree-
two moments for each k ∈ K . We found that a reduc-
tion in dimension of the data from N = mn (i.e., from
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10, 000 or more) to 6 ·256 = 1536 gave fairly accurate facial
recognition, on account of the (6) and (7). Specifically, for
each face image, we use the SNV listed in (19). As for PCA,
2DPCA, and 2D-EPCA methods, the maximum reduced
dimensionality equals to the number of non-zero eigenvalues.
When algorithms are applied across these datasets, we select
different number of images of each individual for training and
the remaining images of each individual for testing.

< n0, n1, n2, . . . , n255,

µ1
0, µ

1
1, µ

1
A2 , . . . , µ

1
255,

µ2
0, µ

2
1, µ

2
A2 , . . . , µ

2
255,

D0,2,0,D1,2,0,D2,2,0, . . . ,D255,2,0,

D0,0,2,D1,0,2,D2,0,2, . . . ,D255,0,2,

D0,1,1,D1,1,1,D2,1,1, . . . ,D255,1,1 > . (19)

As for face classification or face recognition between a
given face image named Igiven and a query face image Iquery,
we need to detail concrete steps of the SNV method. First of
all, we would like to compute their corresponding truncated
SNVs to degree two high moments which is shown like (19),
and note them as u1 and u2 correspondingly, naturally we
know that u1, u2 ∈ R1536. Here, the distance between two
arbitrary feature SNV u1 = [u11, u

1
2, . . . , u

1
1536] and u2 =

[u21, u
2
2, . . . , u

2
1536], is defined by

d(u1, u2) =
√
(u11 − u

2
1)

2 + . . .+ (u11536 − u
2
1536)

2

=

√√√√1536∑
i=1

(u1i − u
2
i )

2. (20)

Then, we adopt minimum distance (MD) classifier to calcu-
late the recognition rate and record the time consuming of
the whole process. Note that the common Euclidean distance
measure is adopted in all methods. Suppose that the training
samples are u1, u2, . . . , uM (where M is the total number of
training samples), and that each of these samples is assigned a
given identity (class) ωk . Given a test sample u, if d(u, ul) =
minj{d(u, uj)} and ul ∈ ωk , then the resulting decision is
u ∈ ωk . In the end, the total times of true decision are
recorded and denominated by the number of testing samples
which is the recognition rate we defined.

A. EXPERIMENTS ON THE ORL DATASET
The ORL dataset which contains images from 40 individu-
als, each containing 10 different poses. For some subjects,
the images were taken at different times. The faces were pho-
tographed at intervals, with varying lighting, facial expres-
sion (eyes closed/opened, smiling/not smiling), facial poses
and facial details (with/without glasses, with/without beard),
among other type of variations. This dataset contains both
males and females. All images are in grayscale, with a res-
olution of 92 × 112 pixel. Six sample images of one person
from the ORL dataset are shown in Fig.1.

First, an experiment is performed by using five image
samples per class for training and the remaining images

FIGURE 1. Example images of ORL dataset (only 6 pose out of 10).

for test. Thus the total number of training samples and test-
ing samples are both 200. The SNV method is first used
as feature extraction which is defined as (19) a vector in
R1536. As for PCA algorithm, even 2DPCA and 2D-EPCA
methods, the eigenvectors are the maximum reduced dimen-
sionality which equals to the number of non-zero eigenvalues
of the training samples’ covariance matrix. We also employ
another kind of classifier named as Support Vector Machine
(SVM) [14] for comparison in PCA algorithm. The experi-
mental result is shown on Table 2.

TABLE 2. The performance comparison of different methods on the ORL
dataset.

Another experiment is done based on time consuming of
different face image number for training from 5 to 9. The
result is shown on Table 3.

TABLE 3. The time consuming of different face image number for training
on the ORL dataset.

B. EXPERIMENTS ON THE ‘total_73_95faces’ DATASET
The second is the ‘total_73_95faces’ dataset with 73 indi-
viduals, each with 20 face images. The background of each
individual’s images, which have the image resolution of
180×200 pixels as the second dataset, consist of a red curtain.
As subject moves forward, background variation is caused
by shadows and significant lighting arrangement. Some of
grayscale face images of one person is shown on Fig.2. The
first experiment on this dataset is that we select 18 face
images of each individual as training samples and others are
used for test, by using different methods for comparison. The
experimental result is shown on Table 4.

Another experiment is done based on time consuming
of different face image number for training from 10 to 19,
the result is shown on Table 5.

C. EXPERIMENTS ON THE ‘total_151_96faces’ DATASET
The third one is the ‘total_151_96faces’ dataset, where
there have 151 individuals, with each image resolution
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FIGURE 2. Example images of ‘total_73_95faces’ dataset (only 12 pose
out of 20).

TABLE 4. The performance comparison of different methods on the
‘total_73_95faces’ dataset.

TABLE 5. The time consuming of different face image number for training
on the ‘total_73_95faces’ dataset.

FIGURE 3. Example images of ‘total_151_96faces’ dataset (only 12 pose
out of 20).

of 196 × 196 pixels. The images of each individual have
expression variation and large head scale variation with a
complex background showing glossy posters. Significant
lighting changes occur due to the artificial lighting arrange-
ment as the subject moves forward. Some of grayscale face
images of one person is shown on Fig.3. We select 18 face
images of each individual as training samples and others are
used for test, which is the first experiment for comparison of
different methods. The result is shown on Table 6.

Another experiment is done based on time consuming of
different face image number for training. The result is shown
on Table 7.

TABLE 6. The performance comparison of different methods on the
‘total_151_96faces’ dataset.

TABLE 7. The time consuming of different face image number for training
on the ‘total_151_96faces’ dataset.

D. EVALUATION OF THE EXPERIMENTAL RESULTS
This section evaluates the SNV method by comparing it with
‘‘Full-Pixel’’ algorithm, conventional PCA algorithm, and its
variants – 2DPCA and 2D-EPCA algorithms on the three face
images datasets which have been recommended in details
above. All face images in the same dataset have been aligned
according to the same pixel. To eliminate the influence of
randomness, we repeat each trials twenty times and then
report the final results with their average recognition rate
and time consuming, and all of these experiments have been
implemented using MATLAB of version R2015b. We com-
pare our proposed method with PCA, 2DPCA, 2D-EPCA,
and ‘‘Full-Pixel’’ algorithms in terms of their average recog-
nition rate and time consuming. Furthermore, we adopt MD
classifier to calculate the recognition rate. Especially, we also
use the Support VectorMachine (SVM) [14] classifier in PCA
method to get corresponding results in all three datasets.

The first kind of comparison is constructed among different
methods on three datasets, and from the experimental results
showing on Table 2, Table 4, and Table 6, we know that
even though the ‘‘Full-Pixel’’ algorithm has a mildly high
recognition rate, on account of using the all pixels infor-
mation, it is poorly deficient in the good performance on
time consuming. Therefore it is necessary for researchers
to reduction dimension of data, among which our proposed
method, the PCA, 2DPCA and 2D-EPCA algorithms have
good performance.

From the experimental results shown on Table 2, Table 4
and Table 6, firstly, we know that our proposed method
has a higher recognition accuracy than the PCA, 2DPCA,
2D-EPCA, and ‘‘Full-Pixel’’ algorithms across all datasets
above. Secondly, the SNV method is more computationally
efficient than PCA algorithm shown in Table 4, and Table 6
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on time consumings, and much more efficient than ‘‘Full-
Pixel’’ algorithm illustrated by Table 2, Table 4, and Table 6,
where there is a hidden property for the SNV method that
it can be on parallel computation in two aspects. The first
aspect is that when we compute the SNV of one face image,
we can compute each intensity value {0, 1, 2, . . . , 255} in
parallel, because in the truncated SNV, the intensity values
are in equivalence place. When we compute the distance
between two face images, we convert it to compute the
distance between the two corresponding truncated SNVs.
Therefore, we need to compute the distances of all the trun-
cated SNVs instead of all face images. The computation of
all distances of the truncated SNVs is also in parallel which
is the second aspect. It is known that parallel computation
is a good technique for us to reduce the time consuming,
however it is difficult to achieve in a lot of real applications.
Nevertheless, our proposed SNVmethod in the application of
face recognition can be achieved in parallel.

While the resolution of the face images in the ORL dataset
is lower than the other two datasets, the performance of our
method in time consuming is a little worse than PCA, which
illustrates that our proposed method has not very prominent
merit of reduced time consuming in the not very high dimen-
sions data. And further, our proposed method achieves a good
performance in time consuming almost similar with 2DPCA
algorithm and 2D-EPCA technique among all datasets.

In addition, the face image background is obviously differ-
ent and complex on the last two datasets. Specifically the face
images of the second dataset are in a red curtain background,
and the third with complex background of glossy posters.
As the experimental results shown about these final two
datasets, we can know that our method performs a steadily
high property in not only the recognition accuracy, but also
the computational load.

The second kind of comparison is constructed to study
the performance of our proposed method and PCA algorithm
when randomly selecting different number of face image for
training. From the experimental results showing on Table 5
and Table 7, we know that our proposed method was more
efficient than PCA method. Furthermore, when the training
number is larger, the time consuming of PCA method is
larger than SNV method, whereas our proposed method’s
time consuming is almost stable no matter how many face
images of each individual for training are, as depicted in both
two tables above. The good property of our proposed method
in the stable time consuming is not obtained on ORL dataset
shown on Table 3, which again illustrates that our proposed
method has nomuch superiority of time consuming over PCA
algorithm in the not very high dimensional data.

V. CONCLUSIONS
A new technique for image feature extraction and repre-
sentation, which is called Stretched Natural Vector (SNV)
method, was proposed and developed. While the proposed
SNV is unique to one face image, the same individual’s
different images have similar extended natural vectors which

also represents some biological character of a person. We use
this property to propose a new facial recognition algorithm,
i.e., the SNV method, in this paper.

What the most significant contribution of this paper is
that we have successfully proved that the correspondence
between a two-dimensional grayscale image matrix and its
SNV is in strict one-to-one fashion. Besides, the performance
of proposed SNV method is better than the ‘‘Full-Pixel’’
algorithm, the conventional PCA method, and its variant –
2DPCA and 2D-EPCA methods in the recognition accuracy
and computational load. In addition, along with the train-
ing sample numbers increasing, the SNV method is more
computationally efficient than PCA algorithm, and owns an
acceptable computational time cost.

Furthermore, our proposed method is not like other exist-
ing algorithms that when the number of training samples is
larger, the time consuming is higher, which is not a good
performance for face recognition. While the SNV method
maintain a mildly stable time consuming on the dataset no
matter what the number of training sample is.

APPENDIXES
Now, we begin to prove the main theorem.
Proof of Theorem 1:
Step 1: Here we show how the SNV determines the set of

row locations for a given k .

Let δk,j,0 = D̃k,j,0·n
j
k ·N

j−1,where j ∈ {1, 2, . . . , nk}. Then
the set of δk,j,0’s can be obtained by the set of D̃k,j,0’s and vice
versa. For a fixed k , the δ’s are multiples of the D̃’s by a fixed
factor that doesn’t depend on j and which is known from one
of the SNV components. The δ’s are raw power sums whereas
the D̃’s are normalized by their denominator factors and tend
to 0 as j→∞.

δk,1,0 = i1,k + i2,k + · · · + ink ,k ,

δk,2,0 = (i1,k )2 + (i2,k )2 + · · · + (ink ,k )
2,

. . . . . .

δk,nk ,0 = (i1,k )nk + (i2,k )nk + · · · + (ink ,k )
nk , (21)

where k = 0, 1, 2, . . . , 255.
To illustrate this step in the theorem clearly, we focus on

a single the grayscale k as an illustration. The row values
corresponding to k with multiplicities, i1,k , i2,k , . . . , ink ,k , are
roots of a symmetric polynomial

a0 + a1x + a2x2 + . . .+ ank x
nk

= (x − i1,k )(x − i2,k ) . . . (x − ink ,k ). (22)

Let pd (d = 1, 2, . . . , n) be the elementary symmetric
polynomials in i1,k , i2,k , . . . , ink ,k , i.e., p1 = −ank−1, p2 =
ank−2, . . . , pnk = (−1)nka0.

Then p1 =
∑nk

s=1 is,k , p2 =
∑

s<t is,k it,k , . . ., pnk =
i1,k i2,k . . . ink ,k .

By Lemma 2, we have

δk,d,0−p1δk,d−1,0+. . .+(−1)d−1pd−1δk,1,0+(−1)dpd=0,

(23)
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where d = 1, 2, . . . , nk , and pd is the elementary symmetric
polynomials in i1,k , i2,k , . . . , ink ,k .

And ai can be obtained by δk,j,0 as shown below:

ank = 1
ank−1 = (−1)δk,1,0

ank−2 =
1
2

(
(δk,1,0)2 − δk,2,0

)
ank−3 = (−1)3

1
6

(
(δk,1,0)3 − 3δk,1,0δk,2,0 + 2δk,3,0

)
ank−4 =

1
24

(
(δk,1,0)4 − 6(δk,1,0)2δk,2,0 + 3(δk,2,0)2

+ 8δk,1,0δk,3,0 − 6δk,4,0
)

. . . . . .

(24)

As a result, the coefficients of the symmetric polynomial

a0 + a1x + a2x2 + . . .+ ank x
nk

= (x − i1,k )(x − i2,k ) . . . (x − iknk ) (25)

can be conformed, and the set of all roots can be obtained.
Let rk be the number of distinct roots, which we expect to

occur with multiplicities. We would like to identify the roots
i1,k , i2,k , . . . ink ,k in a non-decreasing order then label them
as shown below.

i1,k = i2,k = . . . = il1,k <
il1+1,k = il1+2,k = . . . = il2,k <
il2+1,k = il2+2,k = . . . = il3,k <

. . . . . .

ilrk−1+1,k = ilrk−1+2,k = . . . = ilrk ,k , (26)

where lt − lt−1 is the multiplicity of the t th root lrk = nk .
We put them all in a set denoting by S0k . Namely,

S0k := {i1,k , i2,k , . . . , il1,k , il1+1,k , il1+2,k , . . . , il2,k , il2+1,k ,
il2+2,k , . . . , il3,k , . . . , ilrk−1+1,k , ilrk−1+2,k , . . . , ilrk ,k}.

(27)

For the step 2, we will do some preparations and give some
notations. We put the equal elements on one set respectively,
and get the following sets:

G1,0
k := {i1,k , i2,k , . . . il1,k},

G2,0
k := {il1+1,k , il1+2,k , . . . , il2,k},

G3,0
k := {il2+1,k , il2+2,k , . . . , il3,k},

. . . . . . ,

Grk ,0k := {ilrk−1+1,k , ilrk−1+2,k , . . . , ilrk ,k}, (28)

where for ∀x1, x2 ∈ G
t,0
k , t = 1, 2, . . . , rk , we have x1 = x2.

We now have x < y, if ∀x ∈ Gs,0k ,∀y ∈ Gt,0k , 1 ≤ s <
t ≤ rk . Similarly, we can find all other i1,k , i2,k , . . . , ink ,k ,
k = 0, 1, 2, . . . , 255, respectively, and get the similarly
corresponding sets as shown below.

G1,0
0 , G2,0

0 , . . . ,Gr0,00 , G1,0
1 , G2,0

1 , . . . ,Gr1,01 ,

G1,0
2 , G2,0

2 , . . . ,Gr2,02 , . . . ,G1,0
255, G

2,0
255, . . . ,G

r255,0
255 . (29)

Note that if we say, given the finite integer sets A and B,
A < B, it means that x < y, where ∀x ∈ A and ∀y ∈ B. At the
similar notation expressing, given the finite integer setsC and
D, C � D, it means that u� v, for ∀u ∈ C,∀v ∈ D.
Therefore, once we find all i1,k , i2,k , . . . ink ,k , k =

0, 1, 2, . . . , 255, we can say that we have recovered the two-
dimensional distribution matrix on one direction. It is not
sufficient, however, to determine all of the exact positions
of all elements in index set K . Henceforth, what is mostly
significant is that when we have determined the positions of
all levels grayscales on one direction, how we can uniquely
get the other direction. We will give the specific answers as
step 2 shown below.
Step 2: Using the information captured in the SNV compo-

nents Dk,L,1, Dk,L,2, . . . ,Dk,L,nk , we consider the values of
(is,k )L js,k , s = 1, 2, . . . , nk for an arbitrary positive integer L,
in a slightly modifiedmimicry of step 1. Put the those integers
in a set of HL

k . Then we have

HL
k := {(i1,k )

L j1,k , (i2,k )L j2,k , . . . , (ink ,k )
L jnk ,k}. (30)

By using Lemma 3, if L � 1, then for any r < s, we can
obtain that (using t as the indexing variable in both sets)

{(it,k )L jt,k}lr−1< t ≤ lr � {(it,k )
L jt,k}ls−1< t ≤ ls . (31)

Use the notation

RLk,s := {(it,k )
L jt,k | ls−1 < t ≤ ls}

= {(ilt−1+1,k )
L jlt−1+1,k , . . . , (ils,k )

L jls,k}, (32)

where t = 1, 2, . . . , rk . We get the following sets in a strictly
increasing order,

RLk,1 := (i1,k )L j1,k , (i2,k )L j2,k , . . . , (il1,k )
L jl1,k

RLk,2 := {(il1+1,k )
L jl1+1,k , (il1+2,k )

L jl1+2,k , . . . , (il2,k )
L jl2,k}

RLk,3 := {(il2+1,k )
L jl2+1,k , (il2+2,k )

L jl2+2,k , . . . , (il3,k )
L jl3,k}

. . .

RLk,rk := {(ilrk−1+1,k )
L jlrk−1+1,k , (ilrk−1+2,k )

L jlrk−1+2,k ,

. . . , (ilrk ,k )
L ilrk ,k} (33)

i.e., RLk,1 < RLk,2 < RLk,3 < . . . < RLk,rk . The strict ordering
holds for all k = 0, 1, 2, . . . , 255.

Step 3: From step 1 and step 2, we can get the other
direction’s information just as shown below.

From (26) and (28), we take the operations shown as (34),

E1
k :=

RLk,1
(il1,k )L

= {j1,k , j2,k , . . . , jl1,k},

E2
k :=

RLk,2
(il2,k )L

= {jl1+1,k , jl1+2,k , . . . , jl2,k},

E3
k :=

RLk,3
(il3,k )L

= {jl2+1,k , jl2+2,k , . . . , jl3,k},

. . . . . .

Erkk :=
RLk,rk

(ilrk ,k )
L = {jlrk−1+1,k , jlrk−1+2,k , . . . , ilrk ,k}. (34)
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Actually, the other direction’s information are determined
by the sets E1

k , E
2
k , E

3
k , . . . , E

rk
k computed by the (34). Then

Sk (it,k , jt,k ), t ∈ {1, 2, . . . , nk} are obtained from the set
of Gl,0k and E lk , where l ∈ {1, 2, . . . , rnk }. The concrete
operation is shown below,

Sk (it,k , jt,k ) ∈ {(x, y)|x ∈ G
1,0
k , y ∈ E1

k }

∪{(x, y)|x ∈ G2,0
k , y ∈ E2

k }

∪ . . . ∪ {(x, y)|x ∈ G
rnk ,0
k , y ∈ E

rnk
k }. (35)

Similarly, we can find all Sk (it,k , jt,k ), for k =

0, 1, 2, . . . , 255 and accordingly t ∈ {1, 2, . . . , nk}. There-
fore, the corresponding grayscale intensity distribution
matrix of a given image can be recovered based on all
Sk (it,k , jt,k ), k = 0, 1, 2, . . . , 255, t ∈ {1, 2, . . . , nk}.

On the step 2 and 3, we know that we can recover an
matrix’s distribution from the SNV. There is another thing we
need to explain for the uniqueness.

Step 4: Consider the set ofMm,n(K ) ofm×nmatrices with
entries in the set K = {0, 1, 2, . . . , 255}. We will think of
such a matrix as a function q from the set of entry locations
{(i, j)|1 ≤ i ≤ m; 1 ≤ j ≤ n} to the set K of possible entry
values. Given two distinct matricesA andB, there is an integer
L for which their SNV’s truncated at degree L are different.
That implies the full SNV’s are different.
The first components of an SNV are the cardinalities nk =
|q−1(k)| of the level sets. For A and B to have the same SNV
means nk (A) = nk (B) for each k = 0, . . . , 255.
Start with a single matrix A. For each k ∈ K , we define a

function

fk (x, y)=
∏

q(i,j)=k

(
(x − i)2 + (y− j)2

)
=

∏
(i,j)∈q−1(k)

(
(x − i)2 + (y− j)2

)
=

∏
(i,j)∈q−1(k)

(
x2 − 2ix + i2 + y2 − 2jy+ j2

)
=

∏
(i,j)∈q−1(k)

(
x2+y2−2ix−2jy+(i2+j2)

)
. (36)

For fixed k ∈ K , there are nk matrix entries locations in
q−1(k) and hence nk factors in the product. Each function fk
is polynomial of combined degree 2nk in x and y. We have
∀(i, j) ∈ q−1(k), fk (x, y) = 0. Furthermore, it is clear that for
fk (x, y) to equal 0, one of the factors must equal 0 and (x, y)
must be one of the locations in q−1(k). Thus fk (i, j) = 0⇐⇒
q(i, j) = k .

The (i, j) pairs in q−1(k) appear symmetrically in the
expression for fk . I.e. if the matrix entry locations in q−1(k)
are ordered (i1, j1), (i2, j2), . . . , (ink , jnk ) and fk (x, y) is writ-
ten as

(
(x − i1)2 + (y− j1)2

)
·
(
(x − i2)2 + (y− j2)2

)
· · · ·(

(x − ink )
2
+ (y− jnk )

2
)
, the ordering doesn’t matter.

Assume A has the same SNV as B. We aim to show A and
B have the same functions fk and hence the same level sets
for each k ∈ K . We do this by showing the coefficient of the

monommial xayb in fk can be extracted from components in
the SNV.

Let us look again at our little 3 × 8 example (1). The
function f34 is a polynomial of degree eight given by

f34(x, y) =
(
(x − 1)2 + (y− 4)2

)
·

(
(x − 1)2 + (y− 6)2

)
·

(
(x − 2)2 + (y− 2)2

)
·

(
(x − 3)2+(y−5)2

)
=

(
x2 + y2 − 2x − 8y+ 17

)
·

(
x2 + y2 − 6x − 10y+ 34

)
. (37)

It is easy to see that the monomials of degree 8 are x8 +
C(4, 1)x6y2+C(4, 2)x4y4+C(4, 3)x2y6+y8 and the constant
term is (11+42)(12+62)(22+22)(32+52) = (17)(37)(8)(34).
The degree 8 coefficients would be exactly the same if some
other four matrix entry locations made up q−1(34) but the
constant term is informative. Each contribution is a product
of i2 factors from some of the entry locations and j2 factors
from the remaining locations. Thus, an accurate descrip-

tion of the constant term is
∑

S⊂q−1(k)

 ∏
(i,j)∈S

i2
∏

(i,j)∈q−1(k)\S

j2


which would be a tedious mess to write out in its entirety.
A thorough description might list summands coming from
first the empty subset, then the four singleton subsets, then
the six 2-element subsets, the 3-element subsets, and finally
the 4-element subset whose contribution is (42)(62)(22)(52).
More generally, for any intermediate monomial of the form
xrys the coefficient will be even messier, consisting of sums
of products where some of the factors are x2, some are
2ix, some are i2 + j2, some are y2, etc. The proof doesn’t
depend on a detailed description of each coefficient. It only
depends on symmetry with respect to the ordering of entry
locations. So by using Lemma 2 again, we know that if the
matrices A and B has the same SNV, namely each component
is same, naturally the Dk,r,s is same, then the coefficients of
polynomial fk (x, y) of the matrices A and B are same as well.
Hence, the uniqueness holds.

On the other hand, for a given grayscale intensity distribu-
tion matrix of the grayscale image, we can count the numbers
nk , compute µk , and get the normalized central moments
Dk,r,s from the procedure of constructing the SNV of the
two-dimensional distribution in matrix.

In terms of the Lemma 4, naturally, we can get the
information of D̃k,r,s as well.
Therefore, we have successfully proved that the correspon-

dence between a two-dimensional distribution matrix and its
SNV is one-to-one. �
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