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Abstract—It is well known that the nonlinear filtering
(NLF) problem has important applications in both mili-
tary and civil industries. The central question is to solve
the posterior conditional density function of the states,
which satisfies the Kushner or the Duncan–Mortensen–
Zakai (DMZ) equation after suitable change of probability
measure. In this article, we shall follow the so-called Yau–
Yau’s algorithm to split the solution of the DMZ equation
into on- and off-line part, where the off-line part is to solve
the forward Kolmogorov equation (FKE) with the initial
conditions to be the orthonormal bases in some suitable
function space. Instead of the generalized Hermite function
investigated by the second and the third author of this arti-
cle, we shall explore the generalized Legendre polynomials.
The Legendre spectral method (LSM) is used to numerically
solve the FKE. Under certain conditions, the convergence
rate of LSM is twice faster than that of the Hermite spec-
tral method. Two two-dimensional numerical experiments
of NLF problems (time-invariant and time-varying cases)
have been numerically solved to illustrate the feasibility
of our algorithm. Our algorithm outperforms the extended
Kalman Filter and particle filter in both real-time manner
and accuracy.

Index Terms—Convergence analysis, forward Kol-
mogorov equation (FKE), Legendre spectral method (LSM),
nonlinear filtering (NLF).
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I. INTRODUCTION

THE field of nonlinear filtering (NLF) has its origin from
tracking and signal processing problems. The states in

the stochastic dynamical systems are also called signals. They
represent all kinds of quantities in various applications. It is ex-
tensively noticed that the goal of NLF is to obtain best estimate of
the states, recursively in time, based on the noisy observations of
the states. In many real applications, say the tracking problems,
the real-time performance is highly appreciated. Research in
filtering problem can be dated back to almost two centuries to
the work of Gauss. Later, the famous control scientist Wiener
advanced the filtering theory. In the early 1960s, two most
influential papers [20], [21] were published in the ASME Journal
of Basic Engineering, in which the so-called Kalman filter (KF)
and Kalman–Bucy filter were derived for the first time. Despite
its success in many practical applications, the limitations on the
nonlinearity and non-Gaussian assumption of the initial proba-
bility density of the KF spurred and pushed the mathematicians
and scientists to seek for the optimal NLF. Meanwhile, since
most stochastic dynamic systems considered in various practical
applications are nonlinear, one direction is to modify KF to
adapt the nonlinearities. The researchers developed extended
KF (EKF), unscented KF (UKF)[19], ensemble KF (EnKF)
[13], etc., which can tackle with weak nonlinearities (that is
almost linear). Essentially, EKF, which is the simplest filter
for NLF systems, performs poorly when the dynamic system
is significantly nonlinear and is very sensitive to initial value
due to Taylor approximation, and even may completely fail
(see Figs. 1 and 2). UKF assumes the posterior distribution
of the state is Gaussian which also restricts its applications.
EnKF is the NLF algorithm integrating the data assimilation into
ensemble generation problem, and has been the key ingredient
of prediction and predictability research for weather and oceanic
prediction applications [3], [4], [26].

The other direction of designing optimal NLF is the particle
filter (PF), referring to such as [5] and [8], which is developed
from sequential Monte Carlo method and becomes the most
popular method nowadays. The PF is applicable to nonlinear,
non-Gaussian state update and observation equations, and can
become asymptotically optimal as the number of particles goes
to infinity. However, the main drawback of this method is that
it is hard to be implemented as a real-time application, due to
its essence of Monto Carlo simulation. “Real-time” means that
the estimation of the states is made on the spot instantaneously,
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while the observation data keep coming in. Hence, it is necessary
to develop a real-time solver to the NLF problems.

In the 1960s, Duncan[10], Mortensen [31], and Zakai [49] in-
dependently derived the so-called Duncan–Mortensen–Zakai’s
(DMZ) equation, a stochastic partial differential equation
(SPDE), which is satisfied by the unnormalized conditional den-
sity function of the states. It is well known that the exact solution
to the DMZ equation, generally speaking, can not be written in
a closed form. With the promotion of the computational power,
many mathematicians make effort to seek an efficient algorithm
to construct a “good” approximate solution to the DMZ equa-
tion. Although the numerical methods to SPDE can yield the
approximate solution, it is inevitable to burden the heavy and
intensive computations. One of the methods to relieve the on-line
computational load is the splitting-up method originated from
the Trotter product formula [6], [7], [27], and [48]. In [28], the
second and the third author of this article generalized Yau–Yau’s
algorithm [48] to the time-varying settings of the NLF problems,
where the drift term, diffusion term, and observation term in (1)
could be explicitly time-dependent.

It has been a long history of using the spectral method with
orthogonal polynomials to solve various problems, such as in
the field of computational fluid dynamics, which can be dated
back to 1970s [15]. It provides very accurate approximation
with a relatively small number of modes if the solution is
smooth, (see [9]). Actually, the second and third author of
this article made on- and off-line algorithm feasible by using
Hermite spectral method (HSM) to solve the FKE [29]. The
selection of Hermite functions is that they are defined on the
unbounded domain decaying exponentially at infinity without
worrying about the boundary conditions. However, they found
that the NLF problems can be solved accurately by on- and
off-line algorithm using HSM, only when some key parameters
are properly tuned. Although the generalized Jacobi polynomials
are also introduced and investigated to numerically solve the
FKE arising from NLF problems in [30], they are only used in the
scalar NLF problem. As it is known that the solution of the FKE
can actually be considered as the probability density function
(PDF), which is usually assumed to vanish at infinity and satisfy
the normality constraint and positivity constraint, thus it leads us
to find the solution of the FKE in the bounded domain with zero-
boundary. In this article, we propose to solve the FKE of general
dimensions in a bounded domain with Dirichlet boundary
condition by using Legendre polynomials, see the numerical
Section IV, as similar as the off-line ingredient of the algorithm
in [29].

In the literature, a large number of spectral methods are
discussed with a wide range of variations where the boundary
conditions are enforced. In [35], Chebyschev approximations
are employed to solve the 1-D FKE in the presence of two
barriers a finite distance apart, and further the solutions are
presented for the fundamental intervals (−1,+1) and (0, +1).
The eigenfunction expansions of FKE for the first and second
order nonlinear systems are discussed in [2], [17], [18], and [36].
In [25], by taking Fourier transformation in FKE, the analytic
solutions of FKE with special initial conditions were obtained in
the linear filtering system. In [45], with the same transformation

in FKE, then it becomes an initial-boundary value problem about
the characteristic function of the states, which is solved by using
the finite difference (FD) technique. Later on, with the same
transformation onto the FKE first, high-order FD schemes to
solve the FKE have been developed [44].

Back to the real applications and computer simulations, then
intuitively, the states to be estimated in the stochastic dynamical
systems are normally in a large enough but bounded domain, thus
the solution of the FKE is posed in a cylinder [−a, a]d × [0,∞]
likewise, where d is the dimension of the states. It is then a
question how to include the zero-boundary condition naturally in
the orthogonal polynomials on a bounded domain. It is motivated
by Shen [38] that the zero-boundary Legendre polynomials can
be constructed from the classical ones, where the associated
spectral method in solving second- and forth-order elliptic PDE
have also been investigated. In this article, we shall study the
zero-boundary Legendre spectral method (LSM) to solve the
FKE served as the off-line part of Yau–Yau’s algorithm, which is
closely related to the implementation of the algorithm developed
in [28], or (see Appendix A, [29]). Under certain conditions,
the convergence rate of LSM is twice faster than the HSM.
Two 2-D numerical experiments of NLF problems, including
time-invariant and time-varying cases, have been numerically
solved to illustrate the feasibility of our algorithm. Our algorithm
outperforms the EKF and PF in both real-time manner and
accuracy.

In order to maintain accuracy in traditional discretization-
based numerical methods such as the finite element (FE) and
FD method, it has been widely observed that the degrees of
freedom of the approximation, i.e., the number of unknowns
grow exponentially as the dimensionality of the underlying state
space increases. This well-known curse of dimensionality fun-
damentally limits the use of FKE for NLF in high dimensional
systems. Extensive research works have been devoted to devel-
oping efficient numerical solvers for high dimensional FKE [23],
[24], [39]. In [46] and [47], the authors have done the numerical
integration of high dimensional FKE by using the generalized
Laguerre polynomials. They have previously applied standard
Bubnov–Galerkin FE techniques to solve the FKE in two and
three dimensions [37], [43]. Dolgov et al. [12] used tensor train
format [32], [33] for parabolic PDEs in modeling polymeric
liquids where the FKE of the states up to 12 dimensions was
successfully solved. Sun and Kumar [40], [41] utilized tensor
decomposition approach combined with Chebyshev spectral dif-
ferentiation to tackle the FKE. The generalized LSM inevitably
encounters the curse of dimensionality when the state dimension
d grows, and the medium or low dimensional NLF problems
are successfully solved in this article. Numerically solving high
dimensional NLF problems by using generalized LSM is one of
our future research topics.

There are many research works about using Galerkin spectral
methods to solve the unconstrained/constrained optimal con-
trol problems, such as [14] and [16]. Recently in [42], the
adaptive fuzzy control problem has been investigated for a
class of nontriangular structural stochastic switched nonlinear
systems with full state constraints. In [34], a fuzzy adaptive
event-triggered control strategy was designed for pure-feedback
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nonlinear systems as a more general class of triangular structural
systems. One of our future research focuses is how to combine
the Galerkin spectral method with orthogonal polynomials to
solve this kind of fuzzy control problem, even extending it to the
complex nonlinear systems with constraint states or prescribed
performance.

This article is organized as follows. Section II gives some
preliminaries, such as the general filtering problems, the on- and
off-line algorithm in [28], [29], and the classical Legendre poly-
nomials. The LSM is introduced in Section II-B. In Section III,
we focuses on the analysis of the convergence rate of LSM to
FKE. In Section IV, the detailed formulation of our algorithm
is presented, as well as the numerical simulations of two 2-D
NLF problems, including both time-invariant and time-varying
examples. We arrive at our conclusions in Section V.

II. PRELIMINARIES

In this section, we shall recall the general NLF problems
and the on- and off-line algorithm introduced in [28] and [29].
The classical Legendre polynomials and its properties are also
recalled.

A. On- and Off-Line Algorithm for the NLF Problems

In this article, we consider the following signal observation
model: {

dxt = f(xt, t)dt+G(xt, t)dvt

dyt = h(xt, t)dt+ dwt

(1)

where xt and f are d-vectors, G is a d× r matrix, and vt is a
r-vector Brownian motion process with E[dvtdv

�
t ] = Q(t)dt,

with Q(t) ∈ Rr×r. Besides, yt and h are m-vectors and wt is a
Brownian motion process withE[dwtdw

�
t ] = S(t)dt, with S ∈

Rm×m. xt is the state of the system at time t with x0 satisfying
some distribution, and yt is the observation at time twith y0 = 0.
We assume that vt, wt, and x0 are mutually independent.

Let p(x, t) denote the conditional probability density of the
state xt given the observation history {ys : 0 ≤ s ≤ t}, which
evolves according to the Kushner’s equation [22]. Under suitable
change of probability measure, p(x, t) can be transformed to the
unnormalized conditional density of the state xt conditioned
on the observation history Yt = {ys : 0 ≤ s ≤ t}, denoted as
σ(x, t), which satisfies the DMZ equation [10], [31], [49] as
follows:{

dσ(x, t) = Lσ(x, t)dt+ σ(x, t)h�(x, t)S−1(t)dyt

σ(x, 0) = σ0(x)
(2)

where σ0(x) is the probability density of the initial state x0, and

L(∗) = 1

2

d∑
i,j=1

∂2

∂xi∂xj

[
(GQG�)ij∗

]− d∑
i=1

∂(fi∗)
∂xi

. (3)

The normalized conditional density p(x, t) is then given by
p(x, t) = σ(x,t)∫

σ(x,t)dx
. Compared with the Kushner’s equation, the

DMZ equation (2) is much easier and cheaper to solve. In [28],

the second and the third author of this article designed an on-
and off-line algorithm for DMZ equation, which yields robust
state estimation from a given sample path. Given an observation
path yt, through an invertible exponential transformation [11],
one obtains that

ρ(x, t) = exp
[−h�(x, t)S−1(t)yt

]
σ(x, t) (4)

where ρ(x, t) satisfies the “pathwise-robust” DMZ equation
which involves yt only in the coefficients of the PDE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
(x, t) +

∂

∂t

(
h�S−1

)�
ytρ(x, t)

= exp(−h�S−1yt)

[
L− 1

2
h�S−1h

]
· [exp(h�S−1yt)ρ(x, t)

]
ρ(x, 0) = σ0(x).

(5)

We set up the observation time sequence as Pk = {0 = τ0 ≤
τ1 ≤ · · · ≤ τk = T}. Let ρi, i = 1, . . . , k be the solution of
the “pathwise-robust” DMZ equation (5) on the time interval
[τi−1, τi], with yt in (5) replaced by yτi−1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρi
∂t

(x, t) +
∂

∂t
(h�S−1)�yτi−1

ρi(x, t)

= exp(−h�S−1yτi−1
)

[
L− 1

2
h�S−1h

]
· [exp(h�S−1yτi−1

)ρi(x, t)
]

ρ1(x, 0) = σ0(x)

or

ρi(x, τi−1) = ρi−1(x, τi−1), i = 2, . . . , k − 1.

(6)

Intuitively, we have ρi glued in time to yield an approximation
to ρ in (5), i.e.,

ρ(x, t) ≈
k∑

i=1

χ[τi−1,τi](t)ρi(x, t) (7)

where χ[a,b](t) is the indicator function on the interval [a, b],
i.e., χ[a,b](t) = 1, if t ∈ [a, b] or 0, otherwise. After a similar
exponential transformation (4) back, the observation disappears
in the evolution equation, but just in the initial update. This is
the key ingredient of the algorithm in [48], so is in ours.

Proposition 1: (Prop. 2.1, [28]) For each τi−1 ≤ t < τi, i =
1, 2, . . . , k, ρi(x, t) satisfies (5) with yt = yτi−1

if and only if

ui(x, t) = exp
[
h�(x, t)S−1(t)yτi−1

]
ρi(x, t) (8)

satisfies the FKE

∂ui
∂t

(x, t) =

(
L− 1

2
h�S−1h

)
ui(x, t) (9)
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Algorithm 1: On-Line Algorithm.
1: Initialization: given Ω, T,�t, y0 = 0, σ0(x),

Let k = T
�t

, and {0 = τ0 < τ1 < τ2 < · · · < τk = T}.
Let u1(x, 0) = σ0(x), and normalize it as
u1(x, 0) =

u1(x,0)∫
Ω

u1(x,0)dx
.

2: Given u1(x, 0), we obtain u1(x, τ1) by Algorithm 2.
3: At time instant t = τ1, when the new observation yτ1 is

available, we obtain
u2(x, τ1) = exp[hT (x, τ1)S

−1(τ1)yτ1 ]u1(x, τ1),
then normalize it as u2(x, τ1) =

u2(x,τ1)∫
Ω

u2(x,τ1)dx
.

4: for i = 2 to k do
5: ui(x, τi−1) =

exp[hT (x, τi−1)S
−1(τi−1)(yτi−1

− yτi−2
)]ui−1(x, τi−1),

where ui−1(x, τi−1) is from Algorithm 2.
6: end for

Algorithm 2: Off-Line Algorithm.
1: Initialization: given u1(x, τ0) in Algorithm 1.
2: for i = 1 to k do
3: Solve the FKE (9) to get ui(x, t).
4: Let t = τi in ui(x, t), then get ui(x, τi).

Normalize ui(x, τi) =
ui(x,τi)∫

Ω
ui(x,τi)dx

.

Obtain ρi(x, τi) by (8) and the normalized ui(x, τi).
Normalize ρi(x, τi) =

ρi(x,τi)∫
Ω

ρi(x,τi)dx
.

5: end for

where L is defined in (3), while the initial data is updated as
follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1(x, 0) = σ0(x)

or

ui(x, τi−1) = exp
[
h�(x, τi−1)S

−1(τi−1)(yτi−1
− yτi−2

)
]

· ui−1(x, τi−1), i ≥ 2.
(10)

The on- and off-line algorithm for NLF problems are de-
scribed in Algorithms 1 and 2, respectively.

B. Legendre Galerkin Spectral Approximation

Let us first introduce some basic notations and properties of
classical univariate Legendre polynomials. Define L2([−1, 1])
be the Lebesgue space, equipped with the inner product 〈f, g〉 =∫ 1

−1 f(x)g(x)dx, for any f, g ∈ L2([−1, 1]), and the induced
norm is ||f ||2 = 〈f, f〉. The well-known Legendre polynomial
of degreen denoted asLn(x), is given by the recurrence formula
as follow:

L0(x) = 1

L1(x) = x

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x) (11)

for n = 1, 2, . . . , x ∈ [−1, 1]. Let us denote

SN := span{L0(x), L1(x), . . . , LN (x)}
VN := {v ∈ SN : v(±1) = 0}.

It is clear to see that VN ⊂ SN .
One of the useful facts of Legendre polynomials is that they

are mutually orthogonal with respect to the weight function
w(x) = 1 and x ∈ [−1, 1], i.e.,

〈Lk(x), Lj(x)〉 =
{

2
2k+1 , if j = k

0, otherwise.
(12)

For the multivariate case, i.e., the domain Id = [−1, 1]d,
d ≥ 2. Similarly,L2(Id) denotes the square integrable functions
on Id, equipped with the inner product 〈u, v〉 = ∫

Id uvd�x, with
�x = (x1, . . . , xd) ∈ Id ⊂ Rd and the induced norm ||u||2 =
〈u, u〉, for any u, v ∈ L2(Id). Let us denote Sd

N the space of
multivariate Legendre polynomials of degree up toN . The tensor
product of the Legendre polynomials

L�k(�x) := Lk1
(x1) · · ·Lkd

(xd) (13)

for �k = (k1, . . . , kd), ki ∈ Z+, 1 ≤ i ≤ d are considered as the
orthogonal base in L2(Id). Let PN be the orthogonal projection
operator fromL2(Id) uponSd

N , i.e., PN : L2(Id) → Sd
N , so that

PNu =
∑

|�k|1≤N

û�kL�k(�x)

û�k =
d∏

i=1

(ki +
1

2
)

∫
Id

u(�x)L�k(�x)d�x
(14)

for all u ∈ L2(Id), where |�k|1 :=
∑d

i=1 ki.
Throughout this article, we focus on the general bounded

domain defined as Ω ⊂ Rd and adopt the standard notations
W r,p for Sobolev spaces with norm || · ||W r,p and the seminorm
| · |W r,p (see [1]). Specially, we set W r,p

0 (Ω) = {u ∈W r,p :
u|∂Ω = 0}. If p = 2, we denote W r,2 and W r,2

0 as Hr and Hr
0 ,

respectively. For any r ∈ Z+, we have

Hr :=
{
u : Dαu ∈ L2(Ω), ∀α ∈ Zd

+, 0 ≤ |α|1 ≤ r
}

where α = (α1, . . . , αd), αi ∈ Z+, i = 1, . . . , d, and |α|1 =∑d
i=1 αi, and Dαu := ∂αu

∂x
α1
1 ···∂xαd

d

. It is clear that H0(Ω) =

L2(Ω). Actually, the Sobolev space Hr(Ω) is equipped with
the seminorm and norm defined as

|u|2Hα(Ω) := 〈Dαu,Dαu〉 , 0 ≤ |α|1 ≤ r

||u||2Hr(Ω) :=
r∑

|α|1=0

|u|2Hα(Ω) (15)

where u ∈ Hr(Ω). The index r can be viewed as the indicator
of the regularity of the functions.

In addition, we consider the operators of orthogonal projection
for the inner product of the Sololev spacesH1(Id) andH1

0 (I
d).

Define the space V d
N := {v ∈ Sd

N : v|∂(Id) = 0}. Analogously,
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define P 1,0
N : H1

0 (I
d) → V d

N , such that [P 1,0
N u, φ] = [u, φ], for

any φ ∈ V d
N , where [u, v] =

∫
Id ∇u · ∇vd�x denotes the inner

product of H1
0 (I

d). In the bounded domain, this norm is equiv-
alent to the usual H1

0 (I
d) norm, due to the Poincaré inequality.

The following lemma is important for deriving a posterior
error estimate. It can be found in the reference book [9].

Lemma 1: For all u ∈ Hr(Id), r ≥ 0, we have

||u− PNu||Hl(Id) � Nσ(l)−r||u||Hr(Id) (16)

for 0 ≤ l ≤ r, where

σ(l) =

{
0, if l = 0,

2l − 1
2 , if l > 0

and � represents less than or equal to with a generic constant c
in front.

Moreover, if u ∈ Hr(Id)
⋂
H1

0 (I
d) with r ≥ 1, set UN :=

P 1,0
N u, then the following estimates hold:

||u− UN ||Hμ(Id) � Nμ−r||u||Hr(Id) (17)

for μ = 0, 1.
It is clear to see that the projection onto V d

N has a faster
convergence rate than that onto Sd

N , if the function u vanishes
on the boundary ∂(Id).

III. LEGENDRE GALERKIN SPECTRAL METHOD IN

NLF PROBLEMS

Recall the brief description of on- and off-line algorithm in the
introduction, the off-line computation is to numerically solve the
FKE (9) on each interval [τi, τi+1], 0 = τ0 < τ1 < · · · < τk =
T . Without loss of generality, we denote the bounded domain
as [−1, 1]d × [0, τ ] after appropriate scaling in spatial domain
Ω. Therefore, we shall use LSM to solve the following initial-
boundary value problem (I-BVP):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
(�x, t) =

1

2

d∑
i,j=1

∂2

∂xi∂xj

[
(GQG�)iju

]− d∑
i=1

∂(fiu)

∂xi

− 1

2
h�S−1hu, (�x, t) ∈ Ω× [0, τ ]

u(�x, t)|∂Ω = 0, t ∈ [0, τ ]

u(�x, 0) = u0(�x), �x ∈ Ω.
(18)

Remark 1: If without any special explanations, the notation
of �x in (18) and in the sequel has the same meaning as x ∈
Rd in Section II-A, which represents the state xt of the signal
observation system (1) after ignoring the subscript t.

The well-posedness of (18) is quite standard, since it is a
linear parabolic PDE in bounded domain. In the remaining of
this section, we shall investigate the convergence rate of the
LSM in solving (18). The weak formulation is to find uN (·, ·) :

Ω× [0, τ) → R, i.e., uN (·, t) ∈ V d
N , for any t ∈ [0, τ ] such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
∂tu

N , φ
〉
=

1

2

d∑
i,j=1

〈
∂2

∂xi∂xj

[
(GQG�)ijuN

]
, φ

〉

−
d∑

i=1

〈
∂(fiu

N )

∂xi
, φ

〉
− 1

2

〈
h�S−1huN , φ

〉
uN (�x, 0) = PNu0(�x)

(19)
for all φ ∈ V d

N . The Dirichlet boundary condition is satisfied
by uN naturally, due to the definition of V d

N . In the following
theorem, we shall investigate the convergence rate with respect
to N .

Theorem 1: We assume that on Ω× [0, τ ]

1) | 12
∑d

i,j=1
∂2

∂xi∂xj
(GQG�)ij −

∑d
i=1

∂fi
∂xi

| ≤M1

2) |h�S−1h| ≤M2

3) ‖[ 12
∑d

j=1
∂

∂xj
(GQG�)ij − fi]

d
i=1‖2 ≤M3

4) ||K||∞ ≤ ∞ such that KK� = GQG�

where || ◦ ||2 = (◦21 + · · ·+ ◦2d)
1
2 , and || ◦ ||∞ =

maxij{◦ij}. If u ∈ L2([0, τ ];Hr(Ω)), for some r > 1, is
the solution to (18), then

||u− uN ||2(t) ≤ c∗N1−r, t ∈ [0, τ ] (20)

where c∗ depends only on τ, d, ||K||∞,Mi, i = 1, 2, 3, and∫ t

0 ||u||2Hr(Ω)(s)ds.

Proof: DenoteUN := P 0,1
N u as in Lemma 1. For all φ ∈ V d

N ,
we have

0 = 〈∂t(u− UN ), φ〉

⇒ 〈∂tUN , φ〉 (3.18)
=

1

2

d∑
i,j=1

〈
∂2

∂xi∂xj

[
(GQG�)iju

]
, φ

〉

−
d∑

i=1

〈
∂(fiu)

∂xi
, φ

〉

− 1

2

〈
h�S−1hu, φ

〉
. (21)

Combine with (19) by linearity, it yields that〈
∂t(u

N − UN ), φ
〉

=
1

2

d∑
i,j=1

〈
∂2

∂xi∂xj

[
(GQG�)ij(uN − u)

]
, φ

〉

−
d∑

i=1

〈
∂[fi(u

N − u)]

∂xi
, φ

〉

− 1

2

〈
h�S−1h(uN − u), φ

〉
(22)

for all φ ∈ V d
N . Let us denote 
N := uN − UN , and

choose φ = 
N , then by the integration by parts, we
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have

∂t||
N ||2

(3.22)
=

〈
2
N ,

⎡⎣1
2

d∑
i,j=1

∂2

∂xi∂xj
(GQG�)ij

−
d∑

i=1

∂fi
∂xi

− 1

2
h�S−1h

]

N

〉

+

d∑
i=1

〈
2
N ,

⎡⎣1
2

d∑
j=1

∂

∂xi
(GQG�)ij − fi

⎤⎦ ∂
N
∂xi

〉

−
d∑

i=1

〈
d∑

j=1

(GQG�)ij
∂
N
∂xj

,
∂
N
∂xi

〉

+

〈
2
N ,

⎡⎣1
2

d∑
i,j=1

∂2

∂xi∂xj
(GQG�)ij

−
d∑

i=1

∂fi
∂xi

− 1

2
h�S−1h

]
(UN − u)

〉

+
d∑

i=1

〈
2
N

⎡⎣1
2

d∑
j=1

∂

∂xi
(GQG�)ij − fi

⎤⎦ ∂(UN − u)

∂xi

〉

−
d∑

i=1

〈
d∑

j=1

(GQG�)ij
∂(UN − u)

∂xj
,
∂
N
∂xi

〉
:= I1 + I2 + I3 + I4 + I5 + I6. (23)

In the sequel, we estimate I1 − I6 one-by-one

I1 ≤
∣∣∣∣∣∣
〈
2
N ,

⎡⎣1
2

d∑
i,j=1

∂2

∂xi∂xj
(GQG�)ij

−
d∑

i=1

∂fi
∂xi

− 1

2
h�S−1h

]

N

〉∣∣∣∣∣
≤
∫
Ω

2|
N |2
∣∣∣∣∣∣12

d∑
i,j=1

∂2

∂xi∂xj
(GQG�)ij

−
d∑

i=1

∂fi
∂xi

− 1

2
h�S−1h

∣∣∣∣∣ d�x
≤ (2M1 +M2)||
N ||2 (24)

by Assumptions 1) and 2). In I2, it yields that

I2 =
d∑

i=1

〈
2
N ,

⎡⎣1
2

d∑
j=1

∂

∂xj
(GQG�)ij − fi

⎤⎦ ∂
N
∂xi

〉

=
d∑

i=1

∫
Ω

⎡⎣1
2

d∑
j=1

∂

∂xj
(GQG�)ij − fi

⎤⎦ ∂
2N
∂xi

d�x

= −
∫
Ω


2N

⎡⎣1
2

d∑
i,j=1

∂2

∂xi∂xj
(GQG�)ij −

d∑
i=1

∂fi
∂xi

⎤⎦ d�x

where the last equality follows by integration by parts. By
Assumption 1), it can be controlled by ||
N ||

I2 ≤
∫
Ω


2N

∣∣∣∣∣∣12
d∑

i,j=1

∂2

∂xi∂xj
(GQG�)ij −

d∑
i=1

∂fi
∂xi

∣∣∣∣∣∣ d�x
≤M1||
N ||2. (25)

In addition, we have

I3 = −
d∑

i=1

〈
d∑

j=1

(GQG�)ij
∂
N
∂xj

,
∂
N
∂xi

〉

= −
∫
Ω

(∇
N )�GQG�∇
Nd�x

= −
∫
Ω

(K�∇
N )�(K�∇
N )d�x = −||K�∇
N ||2.
(26)

With the similar argument as in I1, we have

I4 ≤
(
M1 +

M2

2

)∫
Ω

2|
N ||UN − u|d�x

≤
(
M1 +

M2

2

)
(||
N ||2 + ||UN − u||2)

(27)

by Assumptions 1), 2), and Cauchy–Schwartz inequality

I5 ≤M3

∫
Ω

2|
N ||∇(UN − u)|d�x

≤M3(||
N ||2 + ||∇(UN − u)||2) (28)

by Assumption 3) and Cauchy–Schwartz inequality. As for I6,
we proceed similarly

I6 =

∣∣∣∣∫
Ω

(∇
N )�(GQG�)∇(UN − u)d�x

∣∣∣∣
≤ ||K�∇
N ||2 + ||K�∇(UN − u)||2

≤ ||K�∇
N ||2 + ||K||2∞||∇(UN − u)||2
(29)

by Cauchy–Schwartz inequality and Assumption 4). Substitut-
ing (24)–(29) back into (23), we have

∂t||
N ||2 ≤
(
4M1 +

3M2

2
+M3

)
||
N ||2

+

(
M1 +

M2

2

)
||UN − u||2

+
(
M3 + ||K||2∞

) ||∇(UN − u)||2. (30)

Therefore, we obtain that

∂t||
N ||2 −
(
4M1 +

3M2

2
+M3

)
||
N ||2

≤
(
M1 +

M2

2

)
||UN − u||2

+
(
M3 + ||K||2∞

) ||∇(UN − u)||2

≤ Ĉ(||UN − u||2 + ||∇(UN − u)||2) = Ĉ||UN − u||2H1(Ω)

(31)
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where Ĉ = max{M1 +
M2

2 ,M3 + ||K||2∞}. By Gronwall’s in-
equality, (31) yields that

∂

∂t

[
e−

∫ t
0 (4M1+

3M2
2 +M3)ds||
N ||2(t)

]
≤ Ĉe−

∫ t
0 (4M1+

3M2
2 +M3)ds||UN − u||2H1(Ω)(t)

≤ Ĉ||UN − u||2H1(Ω)(t) (32)

where the last inequality is based on the fact that

e−
∫ t
0 (4M1+

3M2
2 +M3)ds ≤ 1, for any t ∈ [0, τ ]. Integrating over

[0, t] on both sides of (32), we obtain

e−
∫ t
0 (4M1+

3M2
2 +M3)ds||
N ||2(t)− ||
N ||2(0)

≤
∫ t

0

Ĉ||UN − u||2H1(Ω)(s)ds. (33)

That is

||
N ||2(t) ≤ e(4M1+
3M2

2 +M3)t

·
(
||
N ||2(0) +

∫ t

0

Ĉ||UN − u||2H1(Ω)(s)ds

)
≤ C̃

∫ t

0

||UN − u||2H1(Ω)(s)ds
(2.17)

≤ CN1−r

(34)
where the generic constant C in front depends on τ , d, ||K||∞,
Mi, i = 1, 2, 3, and the norm of L2([0, τ ];Hr(Ω)), but not N .
By the triangular inequality and Lemma 1 again, we have

||u− uN ||2(t) ≤ ||
N ||2 + ||u− UN ||2 ≤ c∗N1−r (35)

where c∗ is a constant depending on τ , d, ||K||∞, Mis in
Assumption 1)–3), and

∫ t

0 ||u||2Hr(Ω)(s)ds. �
Remark 2: The convergence rate of LSM to FKE is twice

faster than the HSM in [29], under the suitable conditions.
Remark 3: In fact, the Legendre Galerkin spectral method,

proposed for NLF problems in this article, is defined in a com-
pact domain, say [−1, 1]d after scaling and translating. Thus,
Assumption 1)–4) can be satisfied, say if f, h, and G are con-
tinuous. In bounded domain, the boundedness conditions are
easier to be satisfied than those in unbounded one, due to the
compactness.

IV. NUMERICS

A. Detailed Formulation

Lemma 2: (Lemma 2.1, [38]) Let us define the univariate
generalized Legendre polynomials as

ψk(x) := ak(Lk(x)− Lk+2(x))

ak =
1√

4k + 6 (36)

for x ∈ [−1, 1], Lks are the Legendre polynomials defined in
Section II. Let us denote

bj,k := 〈ψk(x), ψj(x)〉

cj,k :=
〈
ψ

′
k(x), ψ

′
j(x)

〉
dj,k :=

〈
ψk(x), ψ

′
j(x)

〉
. (37)

Given an integer N ≥ 2, and for 0 ≤ j, k ≤ N − 2, we have

bj,k = bk,j =

⎧⎪⎪⎨⎪⎪⎩
akaj

(
2

2j+1 + 2
2j+5

)
, if k = j

akaj
2

2k+1 , if k = j + 2

0, otherwise

(38)

cj,k =

{
1, if j = k

0, otherwise
(39)

and

dj,k = −dk,j =

⎧⎪⎨⎪⎩
−2ajaj+1, if k = j + 1

2aj−1aj , if k = j − 1

0, otherwise.

(40)

Consequently, the linear space spanned by the multivariate gen-
eralized Legendre polynomials is

V d
N = span

{
Ψ�k(�x) = ψk1

(x1)ψk2
(x2) · · ·ψkd

(xd) :

�x = (x1, . . . , xd) ∈ Id, �k = (k1, . . . , kd)

0 ≤ kj ≤ N − 2, j = 1, 2, . . . , d} (41)

which is the one defined in Section II.
It is clear that (9) is independent of the observation path

{yτi}ki=1, and the transformation between ui and ρi is one-to-
one. It is also not hard to see that (9) could be numerically solved
beforehand. Let us denote the second elliptic operator in (9)
as A(t) for short. Under some conditions, {A(t)}t∈[0,T ] forms
a family of strong elliptic operators. Furthermore, the opera-
tor A(t) : D(A(t)) ⊂ L2(Rd) −→ L2(Rd) is the infinitesimal
generator of the two-parameter semigroup A(t, τ), for t > τ .
In particular, we obtain a sequence of two-parameter semigroup
{A(t, τi−1)}ki=1, for τi−1 ≤ t < τi.

However, as we motivated in Section I, the state is generally
defined in some bounded domain Ω ∈ Rd. Thus, we shall solve
the I-BVP problem (18) in each time interval [τi−1, τi] after
proper scaling in spatial domain Ω, which is essentially the off-
line part of our algorithm.

The off-line part of computation is first to take the initial
conditions of (18) at t = τi as a set of complete orthonormal
bases in L2(Id) with vanishing boundary condition, where Id

is the support of the orthonormal bases in L2, and then to seek
the approximate weak solution of (18) in V d

N expressed by

uN (�x, t) ≈
∑

0≤|�k|1≤N−2

q�k(t)Ψ�k(�x), t ∈ [τi−1, τi)

where Ψ�k(�x) ∈ V d
N are the generalized Legendre polynomials

defined in Lemma 2, q�k(t) ∈ RN−1 are the coefficients, and
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|�k|1 =
∑d

j=1 kj , kjs are integers with 0 ≤ kj ≤ N − 2. For the
simplicity of notation, we ignore the superscript of uN (�x, t) as
u(�x, t) in the sequel.

Remark 4: The construction of the polynomial bases with
vanishing boundary condition from Legendre polynomials is not
unique. However, the ones constructed in Lemma 2 are easy to
implement.

The on-line computation in our algorithm is consisted of two
parts at each time step τi−1, i = 1, . . . , k.

1) Project the initial condition ui(�x, τi−1) ∈ L2(Id) at t =
τi−1 onto the bases {Ψ�k(�x)}0≤|�k|1≤N−2, i.e.,

ui(�x, τi−1) =
∑

0≤|�k|1≤N−2

qi�kΨ�k(�x).

Hence, the solution to (9) at t = τi can be expressed as

ui(�x, τi) = A(τi, τi−1)ui(�x, τi−1)

=
∑

0≤|�k|1≤N−2

qi�k
[A(τi, τi−1)Ψ�k(�x)

] (42)

where {A(τi, τi−1)Ψ�k(�x)}0≤|�k|1≤N−2 have been calcu-
lated off-line.

2) Update the initial condition of (9) at τi with new obser-
vation yτi . Let us specify the observation updates for
each time step. For 0 ≤ t ≤ τ1, the initial condition is
u1(�x, 0) = σ0(�x). At time t = τ1, when the observation
yτ1 is available

u2(�x, τ1)

(2.8)
= exp[h�(�x, τ1)S−1(τ1)yτ1 ]ρ2(�x, τ1)

(2.8),(2.6)
= exp[h�(�x, τ1)S−1(τ1)yτ1 ]u1(�x, τ1)(43)

with the fact that y0 = 0. Here

u1(�x, τ1) =
∑

0≤|�k|1≤N−2

q1�k
[A(τ1, 0)Ψ�k(�x)

]
where {q1�k}0≤|�k|1≤N−2 is computed in the previous time
step, and {A(τ1, 0)Ψ�k(�x)}0≤|�k|1≤N−2 are prepared by
off-line computations. Hence, we obtain the initial condi-
tionu2(�x, τ1)of (9) for the next time interval τ1 ≤ t ≤ τ2.
Recursively, the initial condition of (9) for τi−1 ≤ t < τi
is

ui(�x, τi−1)

= exp[h�(�x, τi−1)S
−1(τi−1)(yτi−1

− yτi−2
)]

· ui−1(�x, τi−1) (44)

for i = 2, 3, . . . , k, where ui−1(�x, τi−1) =∑
0≤|�k|1≤N−2 q

i−2
�k

[A(τi−1, τi−2)Ψ�k(�x)].
At each time step τi−1, i = 1, . . . , k, as a PDF, the solution of

FKE must satisfy the following constraint:

lim
�x→∞

ui(�x, τi−1) = 0, for i = 1, . . . , k (45)

(45) is called the vanishing boundary condition. Any
discretization-based method requires a compact domain for

implementation, due to which the vanishing boundary condition
is imposed on a conservatively chosen large enough domain.

Remark 5: For any PDF p(�x, t), the normality constraint
denoted by

∫
Rd p(�x, t) = 1 must hold at any time t. In the

implementation of our algorithm to NLF problems, however, the
normality condition at each temporal step can not be maintained,
since the solution of FKE is numerically approximated by the
LSM with the states at a large enough but bounded domain. As
shown in the Algorithms 1–3, what is adopted to alleviate the
normality constraint is to normalize the approximate solution of
FKE at each time instance, especially see step 3 in Algorithm 1.

Remark 6: Compared with the time-invariant case, the price
to pay is that the time-varying case requires more storage ca-
pacity. Since {A(τi+1, τi)Ψ�k(�x)}0≤|�k|1≤N−2 differs at each τi,
i = 1, . . . , k, and all of them need to be stored. In general, the
longer simulation time is, the more storage it requires in the
time-varying case. While the storage of the data is independent
of the simulation time in the time-invariant case. Nevertheless,
it would not affect the off-line virtue of our algorithm.

B. Numerical Experiments

In this section, we shall apply our algorithm to both time-
invariant and time-varying case. The numerical simulations
support our main theorem. In our implementation, we adopt the
LSM with {Ψ�k} to get the approximate solution of (9) in V d

N in
Lemma 2.

To compare the performance of different methods, we intro-
duce the mean of the squared estimation error (MSE), and the
MSE for one realization is defined as follows:

MSExl
=

1

k + 1

k∑
i=0

(xl(τi)− x̂l(τi))
2 (46)

where xl(τi) is the lth component of the real state �x at the instant
τi and x̂l(τi) is the estimation of xl(τi), for l = 1, . . . , d.

The off-line part of our algorithm is to numerically solve the
FKE, i.e., to obtain the weak solution of FKE by generalized
Legendre polynomials. By taking the approximation to the weak
solution of (19) as

uN (�x, t) ≈
∑

0≤|�k|1≤N−2

a�k(t)Ψ�k(�x)

where a�k(t) ∈ RN−1, �k = (k1, . . . , kd) are the coefficients. Let
us denote

Φ(x) := [ψ0(x), ψ1(x), . . . , ψN−2(x)]

and

DΦ(x) :=

[
dψ0(x)

dx
,
dψ1(x)

dx
, . . . ,

dψN−2(x)

dx

]
where ψi(x) is the univariate basis in L(R1). Correspondingly,
we have

uN (�x, t) ≈ (⊗d
i=1Φ(xi)

)
a(t)

where a(t) ∈ R(N−1)d , ⊗d
i=1Φ(xi) := Φ(x1)⊗ · · · ⊗ Φ(xd),

and ⊗ is Kronecker product. The notations are defined as
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following:

[⊗d
k=1 Φ(xk)]i := ⊗i−1

k=1Φ(xk)⊗DΦ(xi)⊗d
k=i+1 Φ(xk)

(47)[⊗d
k=1

(
Φ(xk)

�Φ(xk)
)]

j

:= ⊗j−1
k=1(Φ(xk)

�Φ(xk))⊗ (Φ(xj)
�Φ(xj))

⊗d
k=j+1 (Φ(xk)

�Φ(xk)) (48)

and[⊗d
k=1

(
Φ(xk)

�Φ(xk)
)]

ij

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗i−1
k=1 (Φ(xk)

�Φ(xk))⊗ (DΦ(xi)
�Φ(xi))

⊗j−1
k=i+1 (Φ(xk)

�Φ(xk))⊗ (Φ(xj)
�Φ(xj))

⊗d
k=j+1 (Φ(xk)

�Φ(xk)), i < j

⊗i−1
k=1 (Φ(xk)

�Φ(xk))⊗ (DΦ(xi)
�DΦ(xi))

⊗d
k=i+1 (Φ(xk)

�Φ(xk)), i = j

⊗j−1
k=1 (Φ(xk)

�Φ(xk))⊗ (DΦ(xj)
�Φ(xj))

⊗i−1
k=j+1 (Φ(xk)

�Φ(xk))⊗ (Φ(xi)
�Φ(xi))

⊗d
k=i+1 (Φ(xk)

�Φ(xk)), i > j
(49)

for any i, j = 1, . . . , d, respectively.
Recall that at each temporal interval, by takingφ(�x) = Ψ�k(�x)

the weak solution of FKE (19) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈⊗d
k=1Φ(xk),⊗d

k=1Φ(xk)
�〉 d

dt
a(t)

= −1

2

∑d

i,j=1

〈
(GQG�)ij [⊗d

k=1Φ(xk)]i,

([⊗d
k=1Φ(xk)]j)

�〉 a(t)
− 1

2

∑d

i,j=1

〈
∂(GQG�)ij

∂xi
⊗d

k=1 Φ(xk),

([⊗d
k=1Φ(xk)]j)

�〉 a(t)
+
∑d

i=1

〈
fi ⊗d

k=1 Φ(xk), ([⊗d
k=1Φ(xk)]i)

�〉 a(t)
− 1

2

〈
h�S−1h⊗d

k=1 Φ(xk),⊗d
k=1Φ(xk)

�〉 a(t)
:= (II1 + II2 + II3 + II4)a(t)

uN (�x, 0) = ⊗d
k=1Φ(xk)a(0)

(50)
where a(0) ∈ R(N−1)d is obtained from u0(�x) ≈
⊗d

i=1Φ(xi)a(0).
In order to speed up our Galerkin spectral method to

FKE by using generalized Legendre polynomials shown in
Lemma 2, it is necessary to scale the general bounded
domain Ω into Id, i.e., for any rectangular domain �x =
(x1, . . . , xd) ∈ Ω := [M1, N1]× · · · × [Md, Nd] ⊂ Rd, taking
x̃i =

2
Ni−Mi

xi +
Mi+Ni

Mi−Ni
, i = 1, . . . , d, then it is obtained that

x̃ = (x̃1, . . . , x̃d) ∈ Id = [−1, 1]d. Correspondingly, we set
Φ̃(x̃) := Φ(x̃), and DΦ̃(x̃) := DΦ(x̃), for any x̃ ∈ [−1, 1].

Therefore, (50) leads to an ordinary differential equation
(ODE) of a(t) as follows:∏d

k=1(Nk −Mk)

2d
(⊗d

i=1B
) da(t)

dt
= R(t)a(t), t ∈ [0, τ ].

(51)
The left side of (51) is obtained from〈⊗d

i=1Φ(xi),⊗d
i=1Φ(xi)

�〉
=

∏d
k=1(Nk −Mk)

2d

∫
Id

⊗d
i=1

(
Φ̃(x̃i)

�Φ̃(x̃i)
)
dx̃

=

∏d
k=1(Nk −Mk)

2d
⊗d

i=1 B

(52)

where the last equality is based on the fact of Lemma 2, and
B = (bkj) is defined in (38).
R(t) in the right side of (51) consists of the following several

parts:

II1 = − 1

2

∏d
k=1(Nk −Mk)

2d

d∑
i,j=1

2

Ni −Mi

2

Nj −Mj{∫
Id

(G̃QG̃�)ij
[
⊗d

k=1

(
Φ̃(x̃k)

�Φ̃(x̃k)
)]

ij
dx̃

}
(53)

II2 = −1

2

∏d
k=1(Nk −Mk)

2d

d∑
i,j=1

2

Ni −Mi

2

Nj −Mj{∫
Id

∂(G̃QG̃�)ij
∂x̃i

[
⊗d

k=1

(
Φ̃(x̃k)

�Φ̃(x̃k)
)]

j
dx̃

}
(54)

II3 =

∏d
k=1(Nk −Mk)

2d

d∑
i=1

2

Ni −Mi

×
{∫

Id

f̃i(x̃)
[
⊗d

k=1

(
Φ̃(x̃k)

�Φ̃(x̃k)
)]

i
dx̃

}
(55)

and

II4 = − 1

2

∏d
k=1(Nk −Mk)

2d

×
[∫

Id

h̃�S−1h̃⊗d
k=1

(
Φ̃(x̃k)

�Φ̃(x̃k)
)
dx̃

]
.

(56)

Thus, we obtain that

R(t) :=

4∑
i=1

IIi. (57)

Remark 7: (51) is an ODE about a(t), and t ∈ [0, τ ]. Ac-
tually, it can be defined in any temporal interval [s, l], for any
0 ≤ s ≤ l, and s, l ∈ R. Correspondingly, R(t) in (57) can be
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Algorithm 3: Off-Line Part of LSM in 2-D Signal System.
1: Initialization: given u1(�x, τ0) in Algorithm 1, then projecting

u1(�x, τ0) into V 2
N as u1(�x, τ0) = (Φ1 ⊗ Φ2)

Ta(τ0),
we obtain a(τ0).

2: for i = 1 to k do
3: Calculate R(τi−1) in (57).
4: Obtain a(τi−1) by updating the initial condition of (9) at τi

with new arriving observation yτi shown in Algorithm 1.
Specifically, projecting ui(�x, τi−1) into

V 2
N by ui(�x, τi−1) = (Φ1 ⊗ Φ2)

T a(τi−1),
we obtain a(τi−1).

5: Calculate
N1−M1

2
N2−M2

2
B ⊗B da(t)

dt
= R(τi−1)a(τi−1),

t ∈ [τi−1, τi].
6: Obtain a(τi) by letting t = τi.
7: Obtain ui(�x, τi) = (Φ1 ⊗ Φ2)

T a(τi).
8: Normalize ui(�x, τi) =

ui(�x,τi)∫
Ω

ui(�x,τi)dx
.

9: Obtain ρi(�x, τi) by (8) and the normalized ui(�x, τi).
10: Normalize ρi(�x, τi) =

ρi(�x,τi)∫
Ω

ρi(�x,τi)d�x
.

11: end for

solved for any t ∈ [τi−1, τi], i = 1, 2, . . . k in our algorithm.
Actually, we use Gaussian quadratures to numerically compute
IIi, i = 1, . . . 4.

Remark 8: The off-line computation in our algorithm is to
numerically solve the FKE (9), recursively in each time interval
with different initial conditions. In this case, at each time interval
[τi−1, τi], i = 1, . . . , k, if the solution of FKE was projected
into space V d

N , i.e., the vector of unknowns a(t) at each time
step can be naturally considered as a d-dimensional array, like
as A(i1, . . . id), 0 ≤ il ≤ nl, 1 ≤ l ≤ d. For simplicity, we as-
sume that all mode sizes nk are equal to N − 2. The formal
number of unknowns in this case behaves as (N − 1)d and is
subject to the curse of dimensionality. In the following section,
when we utilized the Galerkin spectral method with gener-
alized Legendre polynomials to numerically solve FKE, the
curse of dimensionality also exists in the implementation of our
algorithm.

C. Numerical Simulation for 2-D NLF Problems

We shall take d = 2 to illustrate the feasibility of our algo-
rithm. By comparing with both EKF and PF methods, the exper-
imental results show that our algorithm can achieve the real-time
performance and good accuracy. We summarize the off-line part
for 2-D NLF problem in Algorithm 3 below.

1) Time-Invariant System: Let us consider the 2-D cubic
sensor problem in the spacial region of [−1.4, 1.4]× [−1.4, 1.4]⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t) = [−0.4x1(t) + 0.1x2(t)] dt+ dv1(t)

dx2(t) = −0.6x2(t)dt+ dv2(t)

dy1(t) = x31(t)dt+ dw1(t)

dy2(t) = x32(t)dt+ dw2(t)

(58)

TABLE I
PERFORMANCE OF DIFFERENT METHODS IN CUBIC SENSOR PROBLEMS

where x(t) = [x1(t), x2(t)]
� ∈ R2, y(t) = [y1(t), y2(t)]

� ∈
R2, and v(t) = [v1(t), v2(t)]

�,w(t) = [w1(t), w2(t)]
� are both

2-D Brownian motion processes with E[dv(t)dv(t)�] = I2dt,
E[dw(t)dw(t)�] = I2dt, where I2 is the 2-D identity matrix.
In this simulation, the total experimental time is T = 50, and
the time discretization dt = 0.01. The initial state x0 is sampled
from N ((0.1, 0.12), 0.1I2).

The corresponding FKE (9) in this case is

∂u

∂t
=

(
L− 1

2
h�S−1h

)
u

=
1

2

(
∂2u

∂x21
+
∂2u

∂x22

)
+ u− (−0.4x1 + 0.1x2)

∂u

∂x1

− (−0.6x2)
∂u

∂x2
− 1

2

[
x1(t)

6 + x2(t)
6
]
u. (59)

Furthermore, we assume the initial distribution is u0(x) =
exp(− 1

2 |x|2). This assumption is not crucial at all. The non-
Gaussian ones, for instance u0(x) = exp(− 1

2 |x|4), gives the
similar results. Meanwhile, the updated initial data are

ui(x, τi) = exp
{
(x31, x

3
2)

�dy(t)
}
ui−1(x, τi)

where i = 1, . . . , Nt, and Nt := T/dt = 5000.
We compare our algorithm with EKF and PF with 100 parti-

cles. As shown in Figs. 1 and 2, which are the one realization of
the statesx1,x2, respectively, of the 20 Monte Carlo simulations,
we see that our algorithm tracks the states better than PF, while
the EKF completely fails on the experiments. The CPU times and
the averaged MSE over 20 Monte Carlo simulations for different
methods are displayed in Table I. When the total number of the
generalized Legendre polynomials is taken to be N = 152, the
on-line CPU time of our algorithm is only 1.43 s; consequently,
the update time is less than 3× 10−4. Whereas the number is
increased to N = 202, it costs our algorithm about 3.86 s to
complete the simulation, i.e., the update time is around7× 10−4.
In conclusion, the LSM can be performed in real time, on
account of the observation data coming in every 0.01s. The
PF, which based on the Monte Carlo method to approximate
the conditional distribution of the states, is much more time
consuming and the MSE of both states are not satisfactory. EKF
cannot even yield a reasonable estimation, due to the nonlinearity
of the system. Theoretically, as the number of the generalized
Legendre polynomials increases, the approximation error of uN

to uwould decrease, thus the MSE of the states in our algorithm
should decrease. However, as we can see that the MSE of x1
by our algorithm with N = 202 is 5.2% higher than that with
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Fig. 1. State estimation results of different methods in cubic sensor
with N = 152. (a) State x1 with N = 152. (b) State x2 with N = 152.

N = 152. This result indicates that the proper, not larger number
of the generalized Legendre polynomials should be chosen in the
implementation of our algorithm.

2) Time-Varying System: We consider the following time-
varying almost linear sensor problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = [−0.4x1(t) + 0.1x2(t)] dt

+ (1 + 0.1 cos(20πt))dv1(t)

dx2(t) = −0.6x2(t)dt+ [0.9 + 0.2 cos(18πt)]dv2(t)

dy1(t) = x1(t) [1 + 0.2 cos(x2(t))] dt+ dw1(t)

dy2(t) = x2(t) [1 + 0.2 cos(x1(t))] dt+ dw2(t)

(60)

where x(t) = [x1(t), x2(t)]
�, y(t) = [y1(t), y2(t)]

� ∈ R2, and
v(t) = [v1(t), v2(t)]

�, w(t) = [w1(t), w2(t)]
� are both 2-D

Brownian motion processes with E[dv(t)dv(t)�] = Q(t)dt,
E[dw(t)dw(t)�] = S(t)dt. Let Q(t) and S(t) are the identity

Fig. 2. State estimation results of different methods in cubic sensor
with N = 202. (a) State x1 with N = 202. (b) State x2 with N = 202.

matrices in this simulation, and assume the initial state is sam-
pled by the Gaussian distribution of N ((0.1, 0.12), 0.1I2).

The corresponding FKE (9) in this time-varying case is

∂u

∂t
=

(
L− 1

2
h�S−1h

)
u

=
1

2
[1 + 0.1 cos(20πt)]2

∂2u

∂x21

+
1

2
[0.9 + 0.2 cos(18πt)]2

∂2u

∂x22

+ u− [−0.4x1 + 0.1x2]
∂u

∂x1
− (−0.6x2)

∂u

∂x2

− 1

2
x1(t)

2[1 + 0.2 cos(x2(t))]
2u

− 1

2
x2(t)

2[1 + 0.2 cos(x1(t))]
2u.
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Fig. 3. State estimation results of different methods in time-varying
almost linear sensor with N = 52. (a) State x1 with N = 52. (b) State
x2 with N = 52.

We assume the initial distribution ofx0 isu0(x) = exp(− 1
2 |x|4)

and at each time step, the updated initial data are

ui(x, τi)

= exp
{
(x1[1 + 0.2 cos(x2)], x2[1 + 0.2 cos(x1)])

� dy(t)
}

· ui−1(x, τi).

The total simulation time is T = 50 s, and the update time step
is dt = 0.01 s.

In Figs. 3 and 4, both of them are the one realization of the
states x1, x2, respectively, in the 20 Monte Carlo simulations.
They illustrate that our algorithm tracks the states better than
the PF with 100 particles. The MSEs of our algorithm are about
0.64 and 0.52 on state x1 and x2, respectively, when the number
of basis is N = 52. While the number increases to N = 102,
the MSEs of our algorithm become relatively smaller, which are
about 0.63 and 0.49 on state x1 and x2, respectively. The MSEs
of x1 by our algorithm withN = 52 andN = 102 also illustrate
the proper number of the generalized Legendre polynomials
should be chosen in the application of our algorithm. Whereas
Table II is shown, in view that for the almost linear filtering

Fig. 4. State estimation results of different methods in time-varying
almost linear sensor with N = 102. (a) State x1 with N = 102. (b) State
x2 with N = 102.

TABLE II
PERFORMANCE OF DIFFERENT METHODS IN TIME-VARYING

ALMOST LINEAR PROBLEM

systems, the EKF can be thought as the almost optimal filter, a
benchmark. From the MSEs in Table II, we see that our algorithm
in accuracy is nearly as well as that of EKF. As to the efficiency,
the on-line CPU times of our algorithm is only 0.52 and 0.93s
for N = 52 and 102, respectively.

V. CONCLUSION

In this article, we explored the LSM to numerically solve the
forward Kolmogorov equation (FKE) by adopting the general-
ized Legendre polynomial, which takes the vanishing boundary
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condition into consideration in the spectral methods. Further-
more, the convergence rate of LSM to FKE is twice faster
than the HSM in [29], under the suitable conditions. Equally
importantly, our algorithm outperforms the EKF and PF in terms
of estimation accuracy and efficiency in the numerical experi-
ments of NLF problems. The experimental results illustrated
the feasibility and efficiency of our proposed algorithm in NLF
problems no matter in time-invariant or time-varying case. The
complexity analysis of our approach and its application in much
higher dimensional nonlinear systems are one of our future
research topics.
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