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Abstract: Nonlinear filtering is of great significance in industries. In this work, we develop a new
linear regression Kalman filter for discrete nonlinear filtering problems. Under the framework of
linear regression Kalman filter, the key step is minimizing the Kullback–Leibler divergence between
standard normal distribution and its Dirac mixture approximation formed by symmetric samples
so that we can obtain a set of samples which can capture the information of reference density. The
samples representing the conditional densities evolve in a deterministic way, and therefore we need
less samples compared with particle filter, as there is less variance in our method. The numerical
results show that the new algorithm is more efficient compared with the widely used extended
Kalman filter, unscented Kalman filter and particle filter.

Keywords: Kalman filter; Dirac mixture approximation; symmetric samples; Kullback–Leibler
divergence

1. Introduction

We aim to seek the optimal estimate of the state based on noisy observations in
nonlinear filtering problems, which have a long history that can be traced back to the 1960s.
In 1960, Kalman proposed the famous Kalman filter (KF) [1] and one year later, Kalman
and Bucy proposed the Kalman–Bucy filter [2]. However, we need to assume that the
filtering system is linear and Gaussian in KF. For general nonlinear filtering problems, we
usually cannot obtain the optimal estimates. Therefore, approximations are required in
order to derive suboptimal but still efficient estimators.

One direction is to approximate the nonlinear system. For instance, we approximate
the original system by linear system using first-order Taylor expansions in the extended
Kalman filter (EKF) [3]. Second-order variants of EKF can be found in [4]. In [5], the state
is extended and then the nonlinear system is approximated by bilinear system using
Carleman approach. Obviously, in these methods, the continuity of the system is required,
and the estimations are sensitive to the specific point used for the expansion.

Instead, we can approximate the conditional density function rather than the system,
since the optimal estimate is completely determined by the conditional density. For ex-
ample, in particle filter (PF) [6] and its variants, we use the empirical distribution of some
particles to approximate the real conditional distribution. For continuous filtering systems,
the posterior density function satisfies the Duncan–Mortensen–Zakai equation [7–9] and
there are many works aiming to solve this equation such as the direct method [10] and
Yau–Yau method [11–13].

If we approximate the conditional density by single Gaussian distribution, and use
KF formulas in updating step, then we can obtain a class of the so-called Nonlinear
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Kalman Filters [4]. However, we still need linearization in case of nonlinear systems, and
one suitable way to perform such linearization is statistical linearization in the form of
statistical linear regression [14]. In this sample-based approach, we represent the related
densities by a set of random or deterministic selected samples. The class of Nonlinear
Kalman Filters which make use of statistical linear regression are called Linear Regression
Kalman Filters (LRKFs) [14]. For more details about LRKF, readers are referred to the
work in [15]. The unscented Kalman filter (UKF) [16] is the most commonly used LRKF,
which use a fixed number of deterministic sigma-points to capture the information of the
conditional densities. Intuitively, the LRKF can be viewed as a hybrid of PF and KF, where
the particles are obtained in a deterministic way. There are some heuristic algorithms that
combine PF and KF directly in many practical applications such as target tracking [17,18].

The key problem in LRKF is how to select the points, which can be determined by
minimizing some distance between original density and its Dirac mixture density formed
by these points. In this paper, we propose a new LRKF which uses Kullback–Leibler (K-L)
divergence as the measure. Motivated by the work [19] and considering the symmetry of
Gaussian distribution, we approximate the standard normal density by the Dirac mixture
density formed by any given number of symmetric points. Now, we only need to solve a
optimization problem. There are many PFs based on MCMC sampling in recent decades.
However, only a few papers have improved particle sampling by variational inference, as
it is difficult to calculate the K-L divergence between discrete densities. With the rise of
a large number of generative models in machine learning, more and more approximate
algorithms related to variational inference are produced, and Stein variational gradient de-
cent (SVGD) is an important one [20,21]. SVGD drives the discrete particles to approximate
the continuous posterior density function by kernel functions, so that the K-L divergence
between the continuous density and its Dirac mixture approximation by discrete points is
minimized by using gradient descent. We then obtain the points which can approximate
non-standard Gaussian density functions by Mahalanobis transformation [22]. At last, us-
ing the framework of LRKF, we can obtain the estimation result. Inheriting the advantages
of LRKF, we can handle discontinuous filtering systems by the proposed algorithm and we
do not need to compute the Jacobian matrix.

The first contribution of this work is that we introduce K–L divergence to measure
the distance of the continuous density and its Dirac mixture approximation formed by any
given number of symmetric samples. Besides, we use SVGD to solve the corresponding
optimization problem motivated by frequently uses of variational inference in machine
learning. It can be seen from the numerical simulations that our algorithm shows great
efficiency compared with classical EKF, UKF, and PF.

Notations: |·| represents the Euclidean norm. δ(·) denotes the Dirac delta function, i.e.,

δ(x) =

{
+ ∞ x = 0,

0 x 6= 0,

which is also constrained to satisfy the identity∫ ∞

−∞
δ(x) = 1.

N (x; m, P) denotes the Gaussian density function with mean m and positive definite
covariance P, i.e.,

N (x; m, P) =
1√

(2π)ndet P
exp

(
−1

2
(x−m)TP−1(x−m)

)
,

where n is the dimension of x and det P is the determinant of P.
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This paper is organized as follows. In Section 2, we review the basic filtering problem
and some preliminary results. In Section 3, we give one new LRKF. In Section 4, a numerical
example is implemented to show the efficiency of the new algorithm.

2. Preliminaries

The discrete time filtering system considered here is as follows:

xk = ak(xk−1, wk), (1)

yk = hk(xk, vk), (2)

where xk ∈ Rn is the state of the stochastic nonlinear dynamic system (1) at discrete time
instant k, yk ∈ Rm is the noisy measurement (or observation) generated according to the
model (2), and {wk ∈ Rq, k = 0, 1, · · · } and {vk ∈ Rr, k = 1, · · · } are Gaussian white
noise processes with wk ∼ N (wk; 0, Qk) and vk ∼ N (vk; 0, Rk). Here we need to assume
that {wk, k = 0, 1, · · · }, {vk, k = 1, · · · } and the initial state x0 are independent of each
other. The density function of the initial state x0 is p(x0). Yk denotes the history of the
observations up to time instant k, i.e.,

Yk := {y1, · · · , yk}. (3)

We aim to seek the optimal estimate of state xk based on the observation history Yk in the
sense of minimum mean square error.

Definition 1 (Minimum mean square error estimate ([3])). Let x̂ be an estimate of random
variable x. Then the minimum mean square error estimate of x is

arg min
x̂

E[(x− x̂)T(x− x̂)].

Jazwinski proved that the minimum mean square error estimate of state xk based on
Yk is its conditional expectation in the following theorem.

Theorem 1 (Theorem 5.3 in [3]). Let the estimate of xk be a functional on Yk. Then, the minimum
mean square error estimate of state xk is its conditional mean E[xk|Yk].

Obviously, if we can obtain the conditional density of xk based on Yk, i.e., p(xk|Yk),
then we can simply compute E[xk|Yk]. The evolution of the conditional density function
p(xk|Yk) is given in the following theorem.

Theorem 2 ([19]). Consider the filtering problem (1)–(2) from time step k− 1 to step k. The evolu-
tion of the conditional density function p(xk|Yk) contains iterative two steps:

• In the prediction step, employing the system model (1) and the Chapman–Kolomogorov
equation, we can obtain

p(xk|Yk−1) =
∫

p(xk|xk−1) · p(xk−1|Yk−1)

=
∫∫

δ(xk − ak(xk−1, wk)) · p(xk−1|Yk−1) · p(wk)dxk−1dwk,
(4)

where
p(wk) = N (wk; 0, Qk).

• In the updating step, when the latest measurement yk arrives, using Bayes’ rule, we have

p(xk|Yk) =
p(yk|xk) · p(xk|Yk−1)

p(yk|Yk−1)
, (5)
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where the likelihood function p(yk|xk) is obtained according to

p(yk|xk) =
∫

δ(yk − hk(xk, vk)) · p(vk)dvk, (6)

with
p(vk) = N (vk; 0, Rk).

The initial value of the conditional density function is p(x0|Y0) = p(x0). Then accord-
ing to Theorem 2, we have the evolution framework of p(xk|Yk) which is shown in the
following Figure 1.

Figure 1. The evolutions of the posterior density functions.

Unfortunately, we cannot obtain the conditional density function analytically in most
cases, although we have the recursive evolution equations of conditional density functions.
Therefore, we cannot get the optimal estimate E[xk|Yk], and we need to resort to some
approximation techniques.

2.1. Nonlinear Kalman Filtering Based on Statistical Linearization

One important approximative Bayesian estimation technique is used in the class of
Nonlinear Kalman Filter. These filters assume that both p(xk|Yk−1) and p(xk|Yk) are well
approximated by Gaussian distributions. The detailed procedures are listed as follows [19].

1. Initialization: The initial density of x0 is approximated by Gaussian:

p(x0) ≈ N (x0; x̂0|0, P0|0) (7)

with the initial mean
x̂0|0 :=

∫
x0 p(x0)dx0 (8)

and initial covariance

P0|0 :=
∫ (

x0 − x̂0|0

)(
x0 − x̂0|0

)T
p(x0)dx0. (9)

2. Prediction: The apriori density function is approximated by

p(xk|Yk−1) ≈ N (xk; x̂k|k−1, Pk|k−1), (10)

with predicted state mean

x̂k|k−1 :=
∫

xk p(xk|Yk−1)dxk

=
∫∫

ak(xk−1, wk) · p(xk−1|Yk−1) · p(wk)dxk−1dwk

(11)

and predicted state covariance matrix

Pk|k−1 :=
∫
(xk − x̂k|k−1)(xk − x̂k|k−1)

T p(xk|Yk−1)dxk

=
∫∫

(ak(xk−1, wk)− x̂k|k−1)(ak(xk−1, wk)− x̂k|k−1)
T

· p(xk−1|Yk−1) · p(wk)dxk−1dwk,

(12)

respectively.



Symmetry 2021, 13, 2139 5 of 13

3. Updating: The Bayesian filter step (5) can be reformulated in form of the joint density
p(xk, yk|Yk−1) according to

p(xk|Yk) =
p(xk, yk|Yk−1)

p(yk|Yk−1)
. (13)

Here, this joint density is approximated by Gaussian

p(xk|Yk) ≈

N

[ xk
yk

]
;
[

x̂k|k−1
ŷk

]
,

 Pk|k−1 Px,y
k(

Px,y
k

)T
Py

k


p(yk|Yk−1)

= N
(

xk; x̂k|k, Pk|k

)
, (14)

then according to Theorem A2 in Appendix A, posterior state mean

x̂k|k = x̂k|k−1 + Px,y
k ·

(
Py

k

)−1
· (yk − ŷk), (15)

and posterior state covariance matrix

Pk|k = Pk|k−1 − Px,y
k ·

(
Py

k

)−1
·
(

Px,y
k

)T
, (16)

where the measurement mean

ŷk =
∫

yk · p(yk|Yk−1)dyk

=
∫∫

hk(xk, vk) · p(xk|Yk−1) · p(vk)dxk dvk,
(17)

the measurement covariance matrix

Py
k =

∫
(yk − ŷk) · (yk − ŷk)

T · p(yk|Yk−1)dyk

=
∫∫

(hk(xk, vk)− ŷk) · (hk(xk, vk)− ŷk)
T · p(xk|Yk−1) · p(vk)dxk dvk,

(18)

as well as the cross-covariance matrix of predicted state and measurement

Px,y
k =

∫∫ (
xk − x̂k|k−1

)
· (yk − ŷk)

T · p(xk, yk|Yk−1)dxk dyk

=
∫∫ (

xk − x̂k|k−1

)
· (hk(xk, vk)− ŷk)

T · p(xk|Yk−1) · p(vk)dxk dvk.
(19)

However, we cannot obtain the closed form integrals in the above equations in gen-
eral cases.

2.2. The Linear Regression Kalman Filter

If the state densities in the integrals of the Nonlinear Kalman Filter can be replaced by
proper Dirac mixture densities formed by some samples, then we can easily compute these
integrals. That is, the statistical linearization is turned into an approximate statistical linear
regression, and this is exactly what the LRKF does.

The Dirac mixture approximation of an arbitrary density p(sk) of sk ∈ RN by L
samples is

p(sk) ≈ p̃L(sk) :=
L

∑
i=1

αk,i · δ(sk − sk,i) (20)
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with samples {sk,1, · · · , sk,L} and positive scalar weights {αk,1, · · · , αk,L}, for which

L

∑
i=1

αk,i = 1. (21)

Therefore, the information of the density p(sk) is approximately encoded in the
L(N + 1) Dirac mixture parameters, which can be determined by minimizing certain
distance between p(sk) and p̃L(sk).

2.3. The Smart Sampling Kalman Filter

One of the LRKFs is the smart sampling Kalman Filter proposed in [15]. As the
goal in LRKF is to approximate Gaussian densities p(xk|Yk−1) and p(xk|Yk) by Dirac
mixture densities, They first consider to approximate an N-dimensional standard normal
distribution N (s; 0, I) by Dirac mixture approximation using equal weights and symmetric
samples in the following manner:

N (s; 0, I) ≈ 1
2L

L

∑
i=1

δ(s− si) + δ(s + si), even number of samples;

N (s; 0, I) ≈ 1
2L + 1

(
δ(s) +

L

∑
i=1

δ(s− si) + δ(s + si)

)
, odd number of samples.

(22)

Then, given a non-standard Gaussian distribution

N (z; mz, Pz), (23)

we can use the Mahalanobis transformation [22] to obtain the Dirac mixture approximation.
More explicitly, by transforming the samples si in (22) according to

zi =
√

Pz · si + mz, ∀ 1 ≤ i ≤ L,

zi = −
√

Pz · si−L + mz, ∀ L + 1 ≤ i ≤ 2L,
(24)

where
√

Pz is the square root of Pz using Cholesky decomposition, we have the Dirac
mixture approximation of (23) as follows:

N (z; mz, Pz) ≈
1

2L

2L

∑
i=1

δ(z− zi), even number of samples;

N (z; mz, Pz) ≈
1

2L + 1

(
δ(z−mz) +

2L

∑
i=1

δ(z− zi)

)
, odd number of samples.

(25)

Moreover, this transformation can be also understood from the property of Gaussian
random variables listed in Theorem A1.

By approximating the approximated a priori density N (xk; x̂k|k−1, Pk|k−1) in (10) and
posterior densityN (xk; x̂k|k, Pk|k) in (14) using (24) and (25), we can get the desired filtering
result under the framework of LRKF. Now the key is how to determine the samples
{s1, · · · , sL} in (22) so that they approximate a multivariate standard normal distribution
in an optimal way. In [19], a combination of the Localized Cumulative Distribution and the
modified Cramér–von Mises distance is adapted.

3. The New Linear Regression Kalman Filter

Apparently, in the framework of LRKF, we need to approach the goal through the
formulation of an optimization problem with respect to the appropriate chosen distance
metric between original density and its Dirac mixture approximation. Instead of the
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distance measure adapted in [19], we can minimize the K–L divergence between the
multivariate standard normal distribution N (s; 0, In) , pN(s) and its approximation

p̃N(s) :=
1

2L

(
L

∑
i=1

δ(s− si) + δ(s + si)

)
, (26)

formed by samples
S := {s1, . . . , sL}.

3.1. Kullback–Leibler Divergence and Stein Variational Gradient Descent

K–L divergence, DKL, is used to measure how one probability distribution is different
from the reference probability distribution. Based on definition, it is known that, the K–L
divergence between the Dirac mixture approximation density p̃N(s) defined in (26) and
standard normal distribution pN(s) is

DKL( p̃N‖pN) =
∫ ∞

−∞
p̃N(s) log

(
p̃N(s)
pN(s)

)
ds. (27)

The new algorithm requires that the initial particles {s1, . . . , sL} are calculated in
advance. Therefore we can divided the new algorithm into two parts. The first part is
pre-calculation which is implemented off-line, while we use LRKF to get the estimates of
the states in the on-line part. In the first part, particle sampling is regarded as a variational
inference problem. SVGD is used to capture and store the most important statistical locus
of the target distribution.

For all our experiments, we use kernel K(x, x
′
) = exp (− 1

h‖x− x
′‖2

2) , and take the
bandwidth to be h = med2/ log(2L), where “med” is the median of the pairwise distance
between the current points {xi}2L

i=0. We must point out that the different kernel functions
may lead to different numerical results, here we choose this kernel to approximate the
Gaussian distribution better. Details of the SVGD can be found in the references [20,21].

The procedures of this off-line algorithm is listed in Algorithm 1.

Algorithm 1 Off-Line Computation

1: Input: A target distribution with density function p(x) = N (s; 0, In) and a set of initial
particles

{
s0

i
}2L

i=1 ∼ N (0, 1).
2: for 0 ≤ l < M do
3: Let

sl+1
i ← sl

i + εl φ̂(s),

where φ̂(s) = 1
L ∑L

j=1[K(sl
j, s)∇sl

j
log p(sl

j) +∇sl
j
K(sl

j, s)] and εl = 10−4 × ( 1
l+1 )

0.55 is

the step size at l-th iteration.
4: end for
5: set si = sM

i , ∀ 1 ≤ i ≤ L and si+L = −sM
i , ∀ 1 ≤ i ≤ L.

6: Output: A set of particles {si}2L
i=1 that approximates the target distribution.

3.2. On-Line Filtering Algorithm

With the ready off-line data S = {s1, . . . , sL}, we can obtain the estimate x̂k|k of state
xk by the following procedures [19].

1. when k = 0, x̂0|0 and P0|0 are the initial mean and covariance of initial density p(x0),
respectively. The initial particles are generated according to

xe
0,i :=x̂0|0 +

√
P0|0 · si, for 1 ≤ i ≤ L,

xe
0,i :=x̂0|0 −

√
P0|0 · si, for L + 1 ≤ i ≤ 2L.

(28)
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2. For k ≥ 1, given
{

xe
k−1,i, 1 ≤ i ≤ 2L

}
, x̂k−1,k−1 and Pk−1,k−1, let

wk,i :=
√

Qk · si, for 1 ≤ i ≤ L,

wk,i :=−
√

Qk · si, for L + 1 ≤ i ≤ 2L.
(29)

then we have

x̂k|k−1 =
1

2L

2L

∑
i=1

ak(xe
k−1,i, wk,i),

Pk|k−1 =
1

2L

2L

∑
i=1

(ak(xe
k−1,i, wk,i)− x̂k|k−1)(ak(xe

k−1,i, wk,i)− x̂k|k−1)
T,

xp
k,i :=x̂k|k−1 +

√
Pk|k−1 · si, for 1 ≤ i ≤ L,

xp
k,i :=x̂k|k−1 −

√
Pk|k−1 · si, for L + 1 ≤ i ≤ 2L.

(30)

3. when the measurement yk arrives, let

vk,i :=
√

Rk · si, for 1 ≤ i ≤ L,

vk,i :=−
√

Rk · si, for L + 1 ≤ i ≤ 2L.
(31)

and compute

x̂k|k =x̂k|k−1 + Px,y
k ·

(
Py

k

)−1
· (yk − ŷk),

Pk|k =Pk|k−1 − Px,y
k ·

(
Py

k

)−1
·
(

Px,y
k

)T
(32)

with

ŷk =
1

2L

2L

∑
i=1

hk

(
xp

k,i, vk,i

)
,

Py
k =

1
2L

2L

∑
i=1

(
hk

(
xp

k,i, vk,i

)
− ŷk

)
·
(

hk

(
xp

k,i, vk,i

)
− ŷk

)T
,

Px,y
k =

(
xp

k,i − x̂k|k−1

)
·
(

hk

(
xp

k,i, vk,i

)
− ŷk

)T

(33)

The particles are updated according to

xe
k,i :=x̂k|k +

√
Pk|k · si, for 1 ≤ i ≤ L,

xe
k,i :=x̂k|k −

√
Pk|k · si, for L + 1 ≤ i ≤ 2L.

(34)

The on-line procedures are summarized in Algorithm 2.
Combining Algorithms 1 and 2, we obtain the new LRKF (NLRKF).
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Algorithm 2 On-Line Computation

1: Initialization: Given the total time step K, the density p(x0) of the initial state, and the
off-line data S := {s1, . . . , sL}.

2: Compute x̂0|0 and P0|0 according to (8) and (9), respectively.
3: Compute the initial particles {xe

0,i}
2L
i=1 according to (28).

4: for i = 1, · · · , K do
5: Compute {wk,i}2L

i=1 according to (29).
6: Compute x̂k|k−1, Pk|k−1 and {xp

k,i}
2L
i=1 according to (30).

7: Compute {vk,i}2L
i=1 according to (31).

8: Compute ŷk, Py
k and Px,y

k according to (33).
9: Compute x̂k|k and Pk|k according to (32).

10: Compute {xe
k,i}

2L
i=1 according to (34).

11: end for

4. Experiments
4.1. Settings

We run our simulations on CPU clusters with Intel Core i9-9880H(2.3CGz/L3 16M)
equipped with 16 GB memory.

The total time step is K. We run the simulations for 100 times and assume that the
x̂i

k is the estimation result of real state xi
k at time step k in the i-th experiment. In order to

measure the performances of the numerical algorithms over time, we define the Root Mean
Square Error (RMSE) and the mean error at time step k as follows:

RMSEk :=
1

100

100

∑
i=1

√√√√ 1
k + 1

k

∑
j=0

(
x̂i

j − xi
j

)2
,

Mean Errork :=
1

100

100

∑
i=1

∣∣∣xi
k − x̂i

k

∣∣∣.
(35)

Mean Errork is the average estimation error at time k while RMSEk is the accumulated
average estimation error till to time k.

4.2. Numerical Example

We consider the classic cubic sensor here and the model is as follows:

xk = xk−1 + wk, (36)

yk = x3
k + vk, (37)

where xk ∈ R, yk ∈ R, wk ∼ N (0, 0.01), vk ∼ N (0, 0.01), and k = 1, 2, · · · , K with K = 500.
The continuous and continuous-discrete cubic sensor problems have been investigated
in [5,11,12], and it has been proved that there cannot exist a recursive finite-dimensional
filter driven by the observations for continuous cubic sensor system [23].

We compare our NLRKF with classical EKF, UKF, and PF. We first use 10 symmetric
points (or particles) for our NLRKF and 50 particles for PF. The performance in one
experiment is shown in Figure 2. Apparently, EKF totally fails to track the real state and
other algorithms can track the real state well with different accuracies.

To further explore the performance of different algorithms based on 100 experiments,
we plot the evolutions of mean error and RMSE over time in Figures 3 and 4. As can be
seen from these two figures, NLRKF with 20 particles performs best, followed by NLRKF
with 10 particles and 6 particles. UKF is better than PF.
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Figure 2. Estimation results in one experiment. The horizontal axis is time step k and the vertical axis
is xk for real state and x̂k|k for filtering algorithms.

Figure 3. Mean Errors of different filtering algorithms. The horizontal axis is time step k and the
vertical axis is Mean Errork defined in (35).

Figure 4. RMSE of different filtering algorithms. The horizontal axis is time step k and the vertical
axis is RMSEk defined in (35).

The total estimation error RMSE500 and costing times of different methods based on
100 experiments are listed in Table 1, in which NNLRKF represents the number of particles
or points used in NLRKF and NPF is the number of particles used in PF. We can know that
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NLRKFs with 20, 10, and 6 particles are the three best performing algorithms considering
both RMSE and costing times. We also display the connection of RMSE and number of
particles in Figure 5. UKF and EKF are independent of the number of particles, so the two
lines are horizontal. The NLRKF surpasses other methods with just 6 particles.

Table 1. The RMSE500 and costing times of different filtering algorithms based on 100 experiments.

Method RMSE500 Costing Time (s)

EKF 2.3076 0.0206
UKF 0.7840 0.1390

NLRKF (NNLRKF = 4) 1.2212 0.0406
NLRKF (NNLRKF = 6) 0.6529 0.0729

NLRKF (NNLRKF = 10) 0.5959 0.0879
NLRKF (NNLRKF = 20) 0.5663 0.1218

PF (NPF = 10) 3.1242 0.1163
PF (NPF = 50) 1.3175 0.1892
PF (NPF = 100) 0.8034 0.2672

Figure 5. RMSE500 of filtering algorithms w.r.t. the number of particles or samples.

5. Conclusions

In this paper, we proposed a new LRKF using K–L divergence and symmetric samples.
The numerical simulation results show that our algorithm is accurate and efficient. How-
ever, the proposed algorithm requires the explicit model of the filtering system. Besides,
this algorithm is under the framework of nonlinear Kalman filter, i.e., we approximate the
conditional density by single Gaussian density. The approximation can lead to large errors
when the conditional density is highly non-Gaussian. How to remove this framework and
deterministically propagate the points are our future works.
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Appendix A. Properties of Gaussian Random Variables

It was noted that the density function of Gaussian random variable is characterized
by two parameters, the mean and covariance. We list some properties of Gaussian random
variables here.

Theorem A1 (Theorem 2.11 in [3]). Let the p-dimensional Gaussian random vector z ∼
N (mz, Pz). Let η = Cz + c0, where C ∈ Rq×p is a constant matrix, c0 ∈ Rq is a constant
vector, and η ∈ Rq is a vector. Then η ∼ N (Cmz + c0, CPzCT).

Theorem A2 (Theorem 2.13 in [3]). Let x and y be jointly normally distributed according to[
x
y

]
∼ N

([
mx
my

]
,
[

Pxx Pxy
Pyx Pyy

])
. (A1)

Then, the conditional density of x given y is normal with mean

mx + PxyP−1
y (y−my) (A2)

and covariance matrix
Px − PxyP−1

y Pyx. (A3)
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