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ON A NECESSARY AND SUFFICIENT CONDITION FOR
FINITE DIMENSIONALITY OF ESTIMATION ALGEBRAS*

LUEN-FAI TAM?, WING SHING WONG$, AND STEPHEN S.-T. YAU

Abstract. Ever since the technique of the Kalman-Bucy filter was popularized, there has been an intense
interest in finding new classes of finite dimensional recursive filters. In the late seventies, the concept of the
estimation algebra of a filtering system was introduced. It has proven to be an invaluable tool in the study
of nonlinear filtering problems. In this paper, a simple algebraic necessary and sufficient condition is
established for an estimation algebra of a special class of filtering systems to be finite-dimensional. Also
presented is a rigorous proof of the Wei-Norman program which allows one to construct finite-dimensional
recursive filters from finite dimensional estimation algebras.
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1. Introduction. The idea of using estimation algebras to construct finite-
dimensional nonlinear filters was first proposed in Brockett and Clark 1 and Brockett
[2]. The motivation came from the following Wei-Norman approach [3] of using Lie
algebraic ideas to solve time varying linear differential equations. Consider the equation

__d X(t)= A(t)X(t) E ai(t)AiX(t), X(O) Xo,(1.0)
dt i=1

where X and ai’s are n by n matrices and ai’s are scalar-valued functions. Let
B1,’’’, Bt be a basis of the Lie algebra generated by A1,’’ ", Am. Then the Wei-
Norman Theorem states that locally in t, X(t) has a representation of the form,

(1.1) X(t) =exp (bl(t)B1) exp (bl(t)B1)Xo,

where bi’s satisfy an ordinary differential equation of the form

dbi c,(b,,..., b,), b,(O) 0
dt

for all i. The function c’s in the above equation are determined by the structure
constants of the Lie algebra generated by the A’s.

The extension of Wei-Norman’s approach to the nonlinear filtering problem is
much more complicated. Instead of an ordinary differential equation, we have to solve
the Duncan-Mortensen-Zakai (DMZ) equation, which is a stochastic partial differen-
tial equation. By working on the robust form of the DMZ equation we can reduce the
complexity of the problem to that of solving a time varying partial differential equation.
Working independently, Steinberg [4] applied the Wei-Norman approach to solve
some partial differential equations that are roughly related to the linear filtering
problem. Wong in [5] constructed some new finite-dimensional estimation algebras
and used the Wei-Norman approach to synthesize finite-dimensional filters. However,
the systems considered in [5] are quite specific and the question whether the Wei-
Norman approach works for a general system with finite-dimensional estimation algebra
remains open.
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In this paper we examine the properties of finite-dimensional estimation algebras
and the Wei-Norman approach in detail. We consider here a class of filtering systems
having the property that the drift-term f of the state evolution equation is a gradient
vector field. In [6], the concept of f is introduced, which is defined as the matrix
whose i, j-element is (Of/Oxi)-(Of/Oxj). For this class of filtering systems, f is zero.
Conversely, if f 0, then by the Poincar6 Lemma, f is a gradient vector field. So, the
class of filtering systems considered here is characterized by the fact that f 0.

Motivated by the results in Wong [6] and [7], we investigate the algebraic problem
of characterizing and classifying finite-dimensional exact estimation algebras. In [6],
a sufficient condition of finite dimensionality is derived for certain filtering systems.
In [7], a necessary condition and some theorems of the structure of the estimation
algebra are demonstrated. In this paper, we derive a simple necessary and sufficient
condition for an exact estimation algebra to be finite-dimensional. As an important
consequence of these algebraic results, we prove that for a system with finite-
dimensional exact estimation algebras, the Wei-Norman approach always leads to
finite dimensional filters. The proof will be presented in 4. The necessary and sufficient
theorem presented here also leads us to prove some classification theorems of finite-
dimensional exact estimation algebras, which will be presented in a forthcoming paper.

2. Basic concepts. The filtering problem considered here is based on the following
signal observation model:

dx( t) =f(x(t)) at + g(x( t)) dr(t) x(O) Xo,
(2.0)

dy( t) h(x( t)) dt + dw( t) y(O) O,
in which x, v, y, and w, are, respectively, n, [p, .[m, and " valued processes, and v
and w have components which are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth, and that g is an orthogonal matrix. We
will refer to x(t) as the state of the system at time and y(t) as the observation at
time t.

Let p(t, x) denote the conditional probability density of the state given the
observation {y(s): 0<_-s <= t}. It is well known (see [8], for example) that p(t, x) is given
by normalizing a function, or(t, x), which satisfies the following Duncan-Mortensen-
Zakai equation:

(2.1) dcr( t, x) Loo’( t, x) dt + E Lo’( t, x) dyi( t), or(O, x) cro,
i=1

where

102 O
Lo - Oxi f--- 2 hZ

i=1 i=1 OXi i----10Xi 2 i----1

and for 1,..., m, Li is the zero degree differential operator of multiplication by
hi. tro is the probability density of the initial point, x0.

Equation (2.1) is a stochastic partial differential equation. In real applications,
we are interested in constructing robust state estimators from observed sample paths
with some property of robustness. Davis in [9] studied this problem and proposed
some robust algorithms. In our case, his basic idea reduces to defining a new unnormal-
ized density

:(t, x) exp 2 hi(x)yi(t) tr(t, x).
i=1

If p is a vector, we use the notation Pi to represent the ith component of p.
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It is easy to show that ((t, x) satisfies the following time varying partial differential
equation

(2.2)
a(t, x)

dt
Loj(t, x)+ , yi(t)[Lo, Li],(t, x)+

1
Z y(t)[[Lo, Li], Li]j(t, x),

i=1 2 i=1

(0, x) ro

where [.,. is the Lie bracket as described by the following definition.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

[X, Y], is defined by

[X, Y] X( Y)- Y(X),

for any C function r.
The objective of constructing a robust finite-dimensional filter to (2.0) is equivalent

to finding a smooth manifold M and complete C vector fields /L, on M and C
functions , on M x x and w’s on ’, such that :(t, x) can be represented in the
form:

dz(t)
(2.3a) d---t--,L=l txi(z(t))wi(y(t)), z(O) M,

(2.3b) (t, x) ,(z(t), t, x).

Following 10], we say that system (2.0) has a robust universal finite-dimensional filter
if for each initial probability density ro there exists a zo, such that (2.3a) and (2.3b)
hold if z(0)= zo, and/xi, wi are independent of

In 5, we will use the Wei-Norman approach to construct a finite-dimensional
filter for (2.0). Before we can achieve that, we need to introduce the concept of the
estimation algebra of (2.0) and examine its algebraic structure.

DEFINITION. The estimation algebra E of a filtering problem (2.0), is defined to
be the Lie algebra generated by {Lo, L,. ., L,,}, or, E=(Lo, L,. ., L,,).A.. If in
addition there exists a potential function 4 such that f (04) )/ (Ox) for all 1 _-<i=< n,
then the estimation algebra is called exact.

From now on, unless stated otherwise, we assume the estimation algebra of (2.0)
is exact. We use Vp to denote the column vector

OX OXn

Hence, V4 =f.
In the case where n 1, all estimation algebras are automatically exact. Note also,

all exact estimation algebras are characterized by the fact that f 0.
Define

and

0

OX

rl __+ f2 + h.
i=10.i i=1 ’=
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Then,

Lo= Di-r
i=1

Recall that f (0b)/(Oxi). Hence,

(2.4) 7 A4) + 17l + 2 h.
i=1

We need the following basic results for later discussion.
THEOREM 1. (Ocone). Let E be afinite-dimensional estimation algebra. Ifafunetion

is in E, then is a polynomial of degree 2.
Ocone’s theorem ([11], see [12] for an extension) says that hl,’",h in a

finite-dimensional estimation algebra are polynomials of degree 2.
LEMMA 1. Let be a C function on ". Suppose El() is a polynomial of degree

at most k where E i= xO/(Ox). en=p(xl,’’’, x,)+ff(0,..., 0, X+l,’"" ,x,)
where p is a polynomial of degree k in x,

Proof
(x, x, ., x,) (0, ., O, x+, ., x,)

(x,...,,x,,x,.,...,x

x (tx, , cx, x+, , x,) +-

+x tXl tx, x+ x) dt

;01 ()(x ,..., x, x+ ,..., x) t.

Since () is a polynomial of degree k, we see that Io()x
(tx,..., tx, x+,..., x) dt is also a polynomial of degree k.

LMMa 2. Let be a C function on . Suppose +2 is a sum ofpolynomials
of degree two and a C function on N which depends only on x+,..., x variables.
enfor any (a+ a) -, (x x, a+ a) is a polynomial ofdegree
two in x,. x variables.

Proo Let (x,. ., x) (x,...., x, a+,. ., a). Then

,()(x,..., x)+2(x,..., x) E,()(x,. ., x, a,+,..., a)

+ 2(x, , x, a+, , a)

is a polynomial of degree two in x,..., x variables. It is well known that can be
written in the following form

(x,. , x) =polynomial of degree two+ axxx
ij

where a are C functions on N. Clearly E()=polynomial of degree two+
(E(a)+3a)xxx and ()+2 polynomial of degree two+
(a +5a)xxx. This implies (ao +5a)xxx is a polynomial

of degree two. It follows that for each NjN k, we have (a)+ 5a0 =0. Observe
that E,(xa)= 5xa +xE(a) 0. In view of Lemma 1, we know that xa is a
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polynomial of degree zero, i.e., x Caijk--" constant. Since aik is a function on E we
conclude that the constant is actually zero. So (Xl,’’’,Xl, al+l,’’’,an)--
(Xl, Xl) is a polynomial of degree two in xl,..., X variables.

3. Structure theorems. The following theorem plays a fundamental role in the
classification of exact estimation algebra. It is similar to Theorem 1 in [7], although
assuming the estimation algebra is exact allows us to drop certain technical requirements
on f, g and h.

TtEOREM 2. Let E be afinite-dimensional exact estimation algebra. Then h , hm
are polynomials of degree at most one.

Proof By Theorem 1, each hj is a polynomial of degree at most two. Suppose hi
is of degree two, then by using the affine transformation Y Ax+ b, where A is
orthogonal, we may assume h is of the form

2 CiX "31- Cii "3l- CO,
i:1 i:/+1

where c, , c are nonzero real numbers, and 1_-< n. (If n, the second summation
vanishes.) Define f(Y) Af(x) and/i 0/0Yj-. If (Y) 4(x), it is easy to see that

Under the transformation, Lo is mapped into:

where

+
i=1 OXi i=l

and h is transformed into

(Y) h(x).

E is isomorphic to the Lie algebra enerated by Lo and h. Note that the degree of h
in x is the same as the degree of h in Y. Without causing any confusion, from now
on, we drop the tilde notation.

Since h is not of degree one, then l 1. We shall produce a contradiction. Let
Xo=h, and define X for il recursively by X=[[Lo, X_],Xo]. Since Lo
(= D-W), it is easy to see that

2 2X =4 ci x + ci
i=1 i=/+1

and for j > 1

Xi
i=1

By the invertibility of the Vandermonde matrix, it follows after some relabeling, if
necessary, that

1 22 XiP:- i:l
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is an element in E. Let Yo be the zero degree differential operator defined by multiplica-
tion by p. Define

Y1 Lo, Yo] Y xiDi + l/ 2,
i=1

1 Or/ 1
Y2 Zo, Y1 O2i + - xi O2i + - El r 1,

i= i= Oil i=1

and

Then,

1
Y3 Y2 Y1] 2 Y. D2 - E r/

i=1

2Y2-Y3=sE,(r/)+l2

By Lemma 1, we know that E/(r/)+2r/is a sum of polynomial of degree two and
a C function which depends on Xl+l,’" ", xn variables. By Lemma 2, it follows that
r/is a polynomial of degree two in Xl, "., xl, with coefficients which are C functions
in xl+l,""", xn only. Recall that

(3.0)
i=1

Let q C be any C function with compact support. Multiply (3.0) with 2 and
integrate the equation over

i=1

(3.1)

By the Schwaz inequality

Putting (3.2) into (3.1), we get

(3.3) lv6l- h-. 620,

which is trne for all e C. Take any nonzero C function 0 with compact support.
Define to be 0 followed by a translation in x,..., x variables direction. Observe
that 5u" IVff[ is independent of the translation selected. On the other hand, since W is
quadratic in x,.., x variables and h is of degree four in x, Xl, m h2

/=1 i
becomes very positive when one of the x,..., x tends to infinity while the other
variables remain fixed. We can choose translation in directions, x,..., x, in such a
way that

)
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is arbitrarily large while -IV Ifl[ 2 is bounded This of course contradicts the inequality
(3.3). [3

The argument above actually proves the following theorem.
THEOREM 3. Let F(x1, Xn) be a C function on [". Suppose that there exists

apath C : and 6>0 such that lim,_. c(t)[I-- and lim,_, supn(c(t) F=-,
where B C(t)) {x " III x c (t)II < ). Then there is no C function on " satisfy-
ing the equation

Add + IV bl 2 F.

COROLLARY. Let F(Xl,""", x,) be a polynomial on . Suppose that there exists
a polynomial path C " - such that limt+ C(t)II limt- F C(t) -.
Then there is no C function tp on satisfying the equation

A+ IV d/I 2 F.

Proof It suffices to prove that limt+oosupn(c(t))F(xl,’’ .,x,)=-oo, where
B(C(t)) {x IIx- c(t)ll < } for some 6 > 0. Let C(t) (Cl(t),..., C,(t)),
where

k k-1Cl(t) all + al2t +" + alkt + bl
k -1C2(t) a21 + a22 tk +" q- a2k q- b2

C.( t) anl tk q- an2 tk-1 +" q- ank + b..
Since F is a polynomial, we have

(Fo C)(t) T1 ta -i- ]/2td-l’+" q- ]/d+l,

where yl,"" ", Yd+l are polynomials in aij and bi for <= n and 1 <=j-<_ k. yl must be
negative since limt_.oo (F C)(t) -oo. By continuity, we know that there exists a 6 > 0,
and a sphere center at (bl,’", b,) with radius 6, B(b), such that for any point
(b’1, b,) in it, the following bounds hold

yl(a,j; b,..., b’) =<1/2Yl(a,:i; b,,..., b,)<O
y2(ai/, b’l, b’,)- y2(ai/, bl b,)l <= 1

lTa+l(ai b’ b’,, ,)- Yd+l(a,; bl, ", b.)l < 1.

It follows that for > 0,

sup F(Xl," ", xn)
(c(t))

ksup F(alltk+ +alk+b,’’" a,1 +’’’+a,k+b’,)
b’ B(b)

sup {Tl(aij; b’l, ", b’n)td + T2(aij; bl," ", bn)td-1 +"
b’eB(b)

+ Td+l(aij’, b’,, b’,,)}

<-yl(ai; bl, b,)td +(l + y2(ao, bl, b.))td 1+...

+(1 + Yd+l(aij; bl, "’, b,)).

As yl(aij; bl," ", bn) is negative, the right-hand side tends to - as tends to . The
assertion follows immediately
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The following result provides a simple characterization of when the dimension of
an estimation algebra is finite.

THEOREM 4. Suppose E is an exact estimation algebra. Then, E isfinite-dimensional
Tif and only if V hi Jr is a constant for l<-i<m and all j=O, 1,..., where Jr

(O2q)/(Oxi Oxj), denote the Hessian matrix of
Proof The sufficiency of the condition follows from the main theorem of [2]. For

completeness reason, we provide the proof here. Assume the condition in Theorem 4
holds. Note that E is generated by Lo, L1,’’’, L,,. Recall that for i= 1,..., m we
define

where D denotes the vector

Lm+i=[Lo, L,]=VhrD,

(D1, ,D,) T.
Define F to be the linear space generated by first and zero degree differential

Tj Tjoperators of the form 7hi JnD and 7hi JnT.q, for 1, , m, j --0, 1, Clearly,
Lm+l, Lzm are elements in F. Using our stated assumption, it is also straightforward
to check that

(i) [X, Y] constant if X, Y F,
(ii) [Lo, X]F if XF,
(iii) [hi, X] constant for i= 1,..., m and X in F.
Conditions (i), (ii), and (iii) imply that

dim E -< dim span { Lo, hi, ", hm, 1 } + dim F.

By our stated assumption,

Fc span {O/Ox,, Oq/Ox,, O/Oxl, ", O/Ox,}.

It follows that dimension of E is finite.
To prove the necessary condition, assume E is finite-dimensional and the condition

in Theorem 4 does not hold. Without loss of generality, we may assume there is a
k>0, such that Vhlr VhTj, VhfJk k+ is not.. are constant vectors, but v hT1J,
(Notice that Vhl is a constant vector by Theorem 2.) Let c=Vh. Hence, cTx, cTvrl,

TI-Ivr/ all have degrees at most 1. (If k=0, only the first term iscTjnv’q, c --n
present.) It follows that

(3.4a) A,2i+ =--1 D O, k + 1’Lo lhl 2 cTJn

(3.4b) 2i _1 Tjirl_lvAd Lohl 2i
C / 1, k + 1.

T kLet br= c Jr" There exists an orthogonal matrix, Q, such that

bTQ- (dl, 0, 0,-.., 0)--- dr.

Define an orthogonal transformation on the state space by Y QTx. Under this new
T kcoordinate, cTx is mapped to cro, "q(x) is mapped to r/(QY), and c Jr is mapped

to d T. So we may assume b d. Equation (3.4) implies that D1 and bTV7 dl(O’q/Oxl)
are both in E. By Ocone’s Theorem, (Orl)/(OXl) is a polynomial with degree at most
2. By the assumption that V h Trk+l is not a coristant vector, it follows that the degree
of (Orl)/(OXl) is exactly 2. So,

rl xlq + r,
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where q is a polynomial with degree 2, r is independent of xl. Depending on the
degree of q in xl, we have three possible cases.

(i) Degree 2 case. Clearly, r/-Y,i= h2 can be arbitrarily negative on some
polynomial path as the path tends to infinity.

2(ii) Degree 1 case. It follows that rt i=2 aixix + 13xl + r, where ai’s are con-
stants, at least one of them nonzero,/3 and r are independent of xl Clearly, r/- i= h 2i
can be arbitrarily negative on some polynomial path as the path tends to infinity.

(iii) Degree 0 ease. Since q is independent of x, 7 sx + t, where s and are
independent of Xl. If i= h2i is independent of xl then r/-Yi= h,2 can be arbitrarily
negative. If 2

i=1 hi is dependent on x, it must be of degree 2 in xl. Again, r/-i=1 h,2
can be arbitrarily negative on some polynomial path as the path tends to infinity.

In all three cases, there is a contradiction to the Corollary of Theorem 3.
TIfE is finite-dimensional, then V hi J, is a constant for 1 _-< -<_ n and allj 0, 1, .

It is easy to show by inductive argument that the following theorem holds.
THEOREM 5. Suppose E is an exact finite-dimensional estimation algebra. Then it

has a basis consisting ofone second degree differential operator Lo, first degree differential
operator(s) with constant coefficients, and zero degree differential operator(s) affine in
x. Moreover, ifX and Y are in E with degree less than or equal to 1, then IX, Y] is a
constant.

Theorem 6 follows from Theorem 5.
THEOREM 6. An exact finite-dimensional estimation algebra is solvable.

4. The Wei-Norman approach. In this section we will use the structural results of
previous sections to derive finite-dimensional filters by the Wei-Norman-Brockett
approach. To do this, the first step we have to establish is a representation analogous
to (1.1).

Consider the filtering system as defined by (2.0). In the following discussion it is
not necessary to assume that the estimation algebra of (2.0) is exact. However, we will
retain all the notation introduced earlier. In particular, notice that (2.2) still holds. We
assume that the estimation algebra is finite dimensional and has a basis consisting of
Eo Lo, differential operators, El,’’’, Ep, (for some p) of the form

where ao’s are constants and /3i’s are polynomial in x, and zero degree differential
operators, Ep+,..., Eq, (for some q>p) affine in x. Moreover, we assume for
1 =< i, j_-< p, [Ei, Ej] is a constant and that all zero degree differential operators in the
estimation algebra are spanned by Ep+l,’’’, Eq.2

It follows from Theorem 5 that if the estimation algebra of (2.0) is exact and
finite-dimensional then it possesses such a basis. However, the exactness is not always
necessary. For example, in [6] sufficient conditions are provided for nonexact systems
to possess finite-dimensional estimation algebras.

It is clear that by the assumption on the basis that for 1 <= i, j_-< q,

Ei, Ej constant.

For p+ l <=i, j<=q,

and for 1 =< i-< q the degree of [Eo, Ei] as a differential operator is not greater than one.

20llr earlier definition of L still holds. Notice that the Li’s may not form a basis of the estimation algebra.
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2 ’SSince [[Lo, Zi cixi+ d], Yi= cix+ d] Yi= ci, if ci and d are constants, the
constant function is in the estimation algebra. Without loss of generality, we assume
that Eq is the constant function 1.

For a filtering system with such a basis, [[ Lo, Li], Li] constant for all 1, , m.
Hence, 1/2 =a [[Lo, L], L]yZ(t), denoted by u(t), is a function of independent of x.
Equation (2.2) becomes

(4.0)
d(t,x)

dt
Lo(t,x)+ 2 [Lo, Li](t,x)yi(t)+u(t)(t,x).

i=l

DEFINITION. Suppose X is a differential operator, ’0 is in the domain of X, r is
a continuous function, and R(t)=0 r(s)ds. We denote by eR(t)Xo the solution at
time t.of the following equation"

d(t)
dt

-r(t)X(t), st(O) sro,

if it is well defined.
For 1<_-i<=q, etE’(X) can be expressed in the form k(t,x, r)(r)dr, for some

integrable kernel k. Hence, we can extend the definition of etE’(x) to etE’(t, x), where

" is also a function of t.
PROPOSITION 1. If is a C function in x, then for all 0 <-_ s, the following Baker-

Campbell-Hausdorff type relations hold:
(1) For l<-i<q,

e’Eo Eo+ s aiE + s2ti e SEi,
i=l

where aij s and t S are constants.
(2) For l<-i<-p, l<-j<q, or l_<-i<q, l<-j<-_p,

eSE’Ej= (Ej + syji)eSE’,
where yji’s are constants in x.

(3) Forp+l<=i,j<=q, ori=q, l<-j<=q, orj=p, l<-i<-_q,

e,Ej EjeS,.
Proof If Ei is a zero degree differential operator, es, is simply exp (sEi). If it is

a first degree differential operator, we may assume it is of the form: j= aoDj +.
Define a to be column nth-dimensional vector whose jth component is aj. Then, it
is well known that

e’(x) exp 4(x) 4(x + s) + li(x + i(s r)) dr ’(x + so)

(4.1)

( Io )exp 4(x) &(x + semi) + ,(x + ar) dr (x + so,i).

Assume first that 4 and " are analytic functions. Let " be an arbitrary analytic
function in x. From our discussion, it is clear that e’eg is well defined for all real s
and 1 =< _-< q. Moreover, for any fixedx, eEoe-is analytic in s. Hence, the classical
Baker-Campbell-Hausdorff formula holds from the Taylor series expansion. That is"

eE’Eoe-E’ Eo + s[Ei, Eo] +- [Ei, [E,, Eo]]
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Now let e sE,’. By using the previously stated properties of the basis, it is easy
to see that (1) holds under the analytic assumption.

Next, we relax the condition that b is analytic to that it is C. If Ei is a zero
degree differential operator, then clearly eSE, Eoe-Se,( is still analytic in s and (1) holds
as proven before. Hence, we assume that Ei=j=l Olijpj--i. (Recall~ that /3i is a
polynomial in x.) We can find a polynomial seq,uence, {bi}, so that bi converges to b
and the first and second order derivatives of 4’i converge to the respective first and
second order derivatives of b. Define f, to be (Ocb)/(Ox) and D, to be O/(Oxi)-f,.
Define -’j,i to be Z k=l aikDj,k q- fli. Finally, define

1 02

k=l k=l OXk k=l OXk

It is easy to show by (4.1) that there exist functions u and v such that:

eS,, ,oe-S,,

( 1 8,k(X)+l "2 1 of, sai)
k= k=l k=l

_12 k=li j2,k(X’J-SOli))(X)4r" k=li fj,k(X)N(S,X)-t-)(S, X),

and

esEi Eoe-sEi

1 Ofk(X)- k= OXk
+- f(x) -- OXk2 k=l k=l

7 f(x + sai)|_(x) + Y fk(x)u(s, x)+ v(s, x).
2 k=l ]-- k=l

It follows then, that

lim eS.,,,/,o e-s’’= e*<Eo
jo

Similarly,

lim o + s E, E,o + -f
,,

o
j-+oo

Hence, (1) holds in this case also. For the general case, for any given x, construct
sequences of analytic functions {’}, so that they converge to sr. It follows that (1) holds
in the general case as well. Statements (2), (3), and (4) can be proved similarly.

TrEOREM 7. If the estimation algebra of (2.0) has a basis as described earlier, then
its robust DMZ equation (4.0) has a solution for all >-_ 0 of the form"

(4.2) (t, x) e rq(t)tq e rl(t)E’ etEo’o,

where r’s satisfy an ordinary differential equation for all t. It follows then that a
universal finite-dimensional filter exists for (2.0).
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Proof Since Eo is elliptic, for any > 0, e’ero is C. By differentiating so(t, x) we
have

dSj( t, x)
dt

erqEq erEEo etEoo-o

dr drq+ dt er"eq er2E2E1 erlEl etEO’O+’" "+ dt Eq er,, ert etOo.

By applying Proposition 1,

e rqEq erEEo etEcro- e rqEq e Eo+ r aljE + r6 e r’ etEcro
j=l

Eo+ 2 riaijEj + o (t, X),
i=1 j=l

where o is a polynomial in rl,’", rq_ and constant in x and rq.
For 1 <- < p,

dri erqE eri+Ei+ Ei erE e ri-Ei etEo’odt

dri er+E’+(Ei + ri+yi+,i) e r’+ E.erqEq etEOO-odt

dri
d-- (E, + i):(t, x),

where K is a polynomial with degree 1 in r for i+l_-<j < q and constant in the
remaining r’s and x.

For p + 1 _-< _-< q,

dri r.E. E. drierqEq eri+tEi+lEi e e etEo’o--’- Ei( t, x).

Hence,

(4.3)
d(t,x)

dt
dri dri )Eo+q’ riaijEj+ -Ei+ -i+to ,(t,x).

i=1 j=l i=1 i=1

By substituting (4.3) into (4.0), it is clear that set is a solution to (4.0), if for 1 _<-j < q,

q--1

(4.4) dry_ y yi(t)eo Z riaij,dt i= i=l

and

drq_ q--1 P dri(4.)
dt ut + yi( t)eiq riaiq - i o,

i=1 i=1 i=1

where we represent [Lo, Li] as =1 eijEj
By the aforementioned property of i, it is clear that (4.4) and (4.5) have solutions

for all t.
To see that these results lead to a finite-dimensional filter for (2.0), notice that if

we let the r’s play the role of the zi’s in (2.3a), then (4.4) and (4.5) are of the form
(2.3a). By using (4.1), it is easy to check that (4.2) is of the form (2.3b).
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Remark. For the Benes systems, the fli’s are all linear. It is well known that
finite-dimensional filters exist in those cases [13].
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