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ABSTRACT
In this paper, we shall discuss the convergence of the continuous-discrete feedback particle filter (FPF) pro-
posed in Yang et al. (2014). The FPF is an interacting system ofN particles where the interaction is designed
such that the empirical distribution of the particles approximates the posterior distribution by an inno-
vation error-based feedback control structure. Under some assumptions, it is proved that, for a class of
functions φ and ∀p ≥ 2, the estimate of φ(Xtn) by FPF converges to its optimal estimate E[φ(Xtn) | Ftn ] in
Lp sense, as the number of particles goes to infinity and the numerical approximation error of computing
the control inputU goes to zero. Furthermore, the bound of the estimation error is also delicately analyzed.
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1. Introduction

The aim of the stochastic filtering is to obtain a good esti-
mate of the state in the stochastic dynamic system recursively
in time, based on the noisy observations of the state. There
are three properties that the estimate is required to have (Bain
& Dan, 2009):

• Causal: The state at time t to be estimated should use the
observations up to time t.

• Optimal: The estimate should minimize the mean squared
error (MSE).

• Real-time: At arbitrary time t, the estimate should be
obtained on the spot, while the observation data keep coming
in.

It is well known that the conditional expectation of the
state at time t based on the observations till t is the optimal
estimate (Jazwinski, 1970).

The study of the stochastic filtering problems has a long
history which can be dated back to 1940s, when Wiener and
Kolmogorov firstly investigated in the pioneering work (Kol-
mogorov, 1941; Wiener, 1950). The next major development
in stochastic filtering was the introduction of the Kalman
filter (KF) for linear Gaussian systems proposed in 1960
Kalman (1960). Subsequently, Kalman and Bucy proposed the
continuous version of the KF, the so-called Kalman-Bucy filter
(Kalman & Bucy, 1961). The KF is optimal and can be easily
computed, enabling it to gain widespread success since 1960s.

CONTACT Stephen S.-T. Yau yau@uic.edu Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China. Yanqi Lake
Beijing Institute of Mathematical Sciences and Applications, Huairou, 101400, People’s Republic of China
† X. Luo is the co-first author.

For example, it was used by NASA to get the Apollo missions
off the ground and to the moon (Cipra, 1993). However, the
KF only works for linear Gaussian systems, which urges math-
ematicians and engineers to pursue a computationally efficient,
recursive optimal solution applicable to the general nonlinear
filtering (NLF) problems.

There have been a lot of works that aim to solve the NLF
problems, such as the extended Kalman filter (EKF) (Jazwin-
ski, 1970), ensemble Kalman filter (Evensen, 2003), unscented
Kalman filter (Julier et al., 2000), particle filter (PF) (Gordon
et al., 1993), Yau-Yau algorithm (Luo & Yau, 2013a, 2013b; Yau
& Yau, 2008), estimation algebra method (Shi & Yau, 2017),
direct method (Chen et al., 2019) and so on. As for the systems
with unknown nonlinear functions arising in the control and
filtering problems, we can first estimate the unknown functions
(Li et al., 2020; Li, Yang et al., 2020), and then estimate the state
(Parlos et al., 2001). In PF, one use a large number of indepen-
dent random particles to approximate the apriori probability,
and update the posterior by the latest observation. The parti-
cles are properly located, weighted and propagated recursively
by the Bayes’ rule. However, the PF suffers from several draw-
backs, such as ‘particle degeneracy’ and ‘curse of dimensional-
ity’. Therefore, there have been various variants of PF, and the
interested readers can refer to the survey paper (Chen, 2003).

Recently, Yang et al. proposed a novel PF, named Feedback
Particle Filter (FPF) (Yang et al., 2014, 2013). The importance
sampling step and resampling step in traditional PF are avoided
by a feedback control-based approach. The numerical efficiency
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of FPF has been examined by many works, such as Bern-
torp (2015), Radhakrishnan andMeyn (2019) and Yang (2014).
Despite the success of the experiments, the convergence result
of FPF for general nonlinear systems remains open. As far as
we know, there are only some convergence results of FPF for
linear Gaussian systems (Taghvaei & Mehta, 2018a, 2018b). To
fill in the blank and take the consideration that, in most real
applications, the observations often arrive and are processed at
discrete time instant, we shall investigate the convergence of FPF
for systems with continuous state and discrete observation, i.e.
continuous-discrete FPF.

The central problem considered in this paper is that, under
what conditions and for which functions φ, does the estimate of
φ(Xt) by FPF converge to its optimal estimate E[φ(Xtn) | Ftn]?
The main contribution of this work is that we prove the con-
vergence of the FPF in the Lp-sense for ∀p ≥ 2, under certain
conditions, and give an explicit error bound. More specifically,
we study theLp-error between the estimate ofφ(Xtn) by FPF and
its optimal estimate E[φ(Xtn) | Ft] for certain class of function
φ. The estimate error of FPF are introduced in two aspects. The
one is the finite number of particles and the other one is the
numerical approximation error of computing the optimal con-
trol input U (or {K, u}) in (6). We prove that, the estimate error
converges to zero as the number of the particle tends to infinity
and the numerical approximation error of computing the opti-
mal control input U vanishes. It needs to be stressed that there
are two keymechanisms which help us to complete the proof.

(1) In the updating step, by the use ofMarkov transition kernel
κ2n which is dependent on the observations, we give the key
evolution equation (38) for conditional distribution from
πn | n−1 to πn | n, and this equation plays an important role
in the proof of the main theorem.

(2) We make a slight modification to the standard FPF, and
call it modified FPF in this paper. The modification is
that, in prediction step, the particles are sampled from
1
N
∑N

i=1 κ1(dxtn | X̃i
tn−1) instead of κ1(dxtn |Xi

tn−1) in the
standard FPF, which can be seen in Figure 3. This is stan-
dard and is used by nearly all existing theoretical analysis
for PF, see Crisan and Doucet (2002), Hu et al. (2008) and
Hu et al. (2011).

Notations: |�| is the Euclidean norm of �. Some important
notations are summarized in Table 1, after all of them have been
introduced in the subsequent sections.

The organization of the paper is as follows. We introduce
some preliminary results of FPF in Section 2. The theoretical
FPFwith the optimal control inputU and the standard FPFwith
the numerical approximation U have also been stated there. In
order to complete the proof of the convergence of the standard
FPF, we have made a slight modification to the standard FPF,
motivated by the theoretical analysis of PF in the literature. The
modified FPF and its convergence result have been stated in
Section 3, while the detailed proof is in Section 4. A benchmark
numerical simulation has been included to show the efficiencies
of FPF andmodified FPF in Section 5. In addition, we also inves-
tigate the MSE versus the number of particles of this particular
numerical experiment. The conclusion have been drawn in the
end.

2. Preliminary

The continuous-discrete time NLF system considered in this
paper is

dXt = a(Xt) dt + dBt , (1)

Yn = h(Xtn) + Wn, (2)

where Xt ∈ R
d×1 is the state at time t, Bt is an d-dimensional

standard Brownian motion process independent of X0, π0 | 0 is
the distribution of the initial stateX0,Yn ∈ R

m×1 is the observa-
tion arriving at discrete time t = tn = n�t (�t > 0), andWn is
the white noise independent of {Xt}. Here, we assume that a(x)
is a global Lipschitz function such that (1) has a pathwise unique
solution for each initial X0 (Bain & Dan, 2009), and h(x) ∈ C2.
The probability space we considered is denoted as (�,F ,P).

Let us denote the observation history as Ft � σ({Yn : tn ≤
t}), and denote pX as the conditional density function of the
state Xt based on Ft . More specifically, for any measurable set
A ∈ F , ∫

A
pX(x, t) dx = P(Xt ∈ A | Ft), (3)

where pX(x, 0) = π0 | 0 is the density function of the initial state
X0. And pX can be approximated by the empirical distribution of
the particles generated by the FPFproposed inYang et al. (2014).

2.1 Theoretical feedback particle filter

The continuous-discrete FPF proposed in Yang et al. (2014) is
a controlled system where the state evolves in two alternating
steps for n = 1, 2, 3, . . ..

(1) Prediction: given N particles Xi
tn−1 ∈ R

d, i = 1, 2, . . . ,N
(they are sampled i.i.d. from pX(x, 0) at time t = 0), the
particles evolve according to (1) in the time interval t ∈
[tn−1, tn):

dXi
t = a(Xi

t) dt + dBit , (4)

with initial value Xi
tn−1 , where X

i
t ∈ R

d is the state for the
i-th particle at time t and {Bit} are mutually independent
standard Wiener processes. We denote the left limit as:

Xi
t−n

:= lim
t↗tn

Xi
t . (5)

(2) Updating: let Sin(0) := Xi
t−n
, i = 1, . . . ,N, Sin(λ) evolves

according to the following equation

dSin
dλ

(λ) = K(Sin(λ), λ)Yn + u(Sin(λ), λ)︸ ︷︷ ︸
optimal Ui

n(λ)

, (6)

with initial condition Sin(0) for i = 1, 2, . . . ,N, and the
pseudo-time λ ∈ [0, 1]. The control inputUi

n(λ) (or {K, u})
is designed such that the empirical distribution of the
ensemble {Sin(1)}Ni=1 approximates the posterior distribu-
tion. The initial condition for the next interval is assigned
as Xi

tn = Sin(1) for i = 1, 2, . . . ,N.



2974 X. CHEN ET AL.

And the evolution structure of the continuous-discrete FPF
is shown in Figure 1 (Yang et al., 2014).

Let us denote the conditional distribution of the particle Xi
t

given Ft as pXi , i.e.∫
A
pXi(x, t) dx = P(Xi

t ∈ A | Ft), ∀ A ∈ F . (7)

Similarly, we denote the conditional distribution of the particle
Sin(λ) given Ftn as pSin , i.e.∫

A
pSin(x, λ) dx = P(Sin(λ) ∈ A | Ftn), ∀ A ∈ F . (8)

The goal of FPF is to choose the optimal control input Ui
n(λ)

in (6) such that pXi canwell approximate pX in (3). Nowwe need
to review the evolution of the conditional density pX before we
give the optimal control.

Given the initial density pX(x, 0) and the increasing filtration
Ft , the evolution of the posterior pX(x, t) is obtained by two
alternative steps: prediction and updating, which is shown in
the following proposition.

Proposition 2.1 (Proposition 4.2.1 in Yang (2014)): Con-
sider the filtering problem (1)–(2) over time interval [tn−1, tn].
For t ∈ [tn−1, tn), pX(x, t) satisfies the following Fokker-Planck
equation (Jazwinski, 1970):

∂pX
∂t

(x, t) = L †pX(x, t), (9)

whereL †pX = −∇ · (pXa) + 1
2
�pX is the forward generator of

the diffusion process Xt,� denotes the Laplacian in R
d, and∇· is

the divergence operator. Then we have

pX(x, t−n ) := lim
t↗tn

pX(x, t).

Note pX(x, t−n ) is the apriori distribution of Xtn given Ftn−1 .
At the discrete time instant t = tn when the observation is

made, the posterior density is updated using Bayes’ rule:

pX(x, tn) = pX(x, t−n )

· exp
[
−1
2
(Yn − h(x))T(Yn − h(x))

]
/Cn, (10)

where Cn is the normalization constant.
The two Equations (9)–(10) define the mapping of pX from

tn−1 to tn.

Apparently, pXi(x, t) satisfies the same evolution equation (9)
for t ∈ [tn−1, tn) according to (1) and (4), and we list the evolu-
tion equations of pX(x, t) and pXi(x, t) in Figure 2.

Recall that our aim is to approximate pX by pXi . Now it
is known that they have the same initial value at t = 0 and
they satisfy the same evolution equation in the prediction step.
Obviously, if they satisfy the same evolution equation in the
updating step, then we have pX = pXi . According to Figure 2,
we know that the evolution equation of pXi in the updating
step is equivalent to the evolution equation of pSin(x, λ) which
is determined by the control input {K, u}. Therefore the func-
tions {K(x, λ), u(x, λ)} (or say the control input Ui

n(λ)) in (6)
are said to be optimal if pX = pXi . That is, given pX(x, t−n ) =
pSin(x, 0) ( = pXi(x, t−n )), our goal is to choose {K, u} in (6) such
that pX(x, tn) = pSin(x, 1) ( = pXi(x, tn)). The optimal {K, u} are
given in Yang (2014).

Theorem 2.1 (Theorem 4.2.3, Yang (2014)): Let ρn be the
solution of the following equation:

∂ρn

∂λ
(x, λ) = ρn(x, λ)

[
(h(x) − ĥ(λ))TYn − 1

2
|h(x)|2 + 1

2
|̂h|2
]
,

(11)
where ρn(x, 0) = pX(x, t−n ), ĥ(λ) := ∫

Rd ρn(x, λ)h(x) dx, and
|̂h|2 := ∫

Rd ρn(x, λ) |h(x)|2 dx.
For each fixed λ ∈ [0, 1], let ηj be the solution of:

∇ · (ρn∇ηj) = −(hj − ĥj)ρn,
∫
Rd

ηj(x, λ)ρn(x, λ) dx = 0,

(12)
for j = 1, . . . ,m. Then the optimal gain function is

K = [∇ηT1 ,∇ηT2 , . . . ,∇ηTm]. (13)

Figure 1. An illustration of the two-step evolution structure in the continuous-discrete time FPF.

Figure 2. Evolutions of the conditional density functions pX (x, t) and pXi (x, t).
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The optimal function u is obtained as

u(x, λ) = −1
2
K(x, λ)(h(x) + ĥ) + 1

2

(x, λ), (14)

where 
 = ∇ϕ, ϕ is a scalar function, and it is a solution to

∇ · (ρn∇ϕ) = −(g − ĝ)ρn,
∫
Rd

ϕ(x, λ)ρn(x, λ) dx = 0,

(15)
where g := ∑m

j=1 ∇ηj · ∇hTj and ĝ := ∫
Rd ρn(x, λ)g(x) dx =∣∣∣ĥ∣∣∣2 − |̂h|2. Substituting the optimal {K, u} in (13) and (14)

into (6), we have

dSin
dλ

(λ) = K(Sin(λ), λ)

[
Yn − h(Sin(λ)) + ĥ

2

]
+ 1

2

(Sin(λ), λ).

(16)
If Sin(λ) evolves according to (16) with the optimal control input
{K, u} obtained by (13)–(15), then pX(x, tn) = pSin(x, 1) ( =
pXi(x, tn)), provided that pX(x, t−n ) = pSin(x, 0) ( = pXi(x, t−n )).

Proof: The complete proof can be found in Yang (2014) and the
idea of the proof can be found in Appendix 1. �

In summary, the particles in the theoretical FPF evolve
according to (4) in prediction step and (16) in updating step,
with {K, u} obtained from (13)–(15).

Apparently, we have pX(x, t) = pXi(x, t) with the optimal
control input. Since we are concerned about the apriori and pos-
terior distributions, and for the conciseness of the notations in
the proof, let

πn | n−1(x) := pX(x, t−n ), πn | n(x) := pX(x, tn), ∀ n ≥ 1.
(17)

Then we have

pSin(x, 0) = πn | n−1(x), pSin(x, 1) = πn | n(x), (18)

since pX(x, t) = pXi(x, t).
We shall use πN

n | n−1 and πN
n | n to denote the empirical distri-

butions formed by the N particles:

πN
n | n−1 :=

1
N

N∑
i=1

δXi
t−n

= 1
N

N∑
i=1

δSin(0),

πN
n | n := 1

N

N∑
i=1

δXi
tn

= 1
N

N∑
i=1

δSin(1), (19)

where δ is the Dirac delta measure.

2.2 Standard feedback particle filter

In this subsection, we shall analyze the FPF with the numeri-
cal errors introduced by the approximations of (12)–(15). In the
theoretical FPF, the optimal control in (12)–(15) are assumed to
be obtained exactly, without any approximation. However, it is
known that the approximations of the solutions are inevitable,
since the closed-form solutions of the boundary value prob-
lems (12) and (15) can only be obtained in certain special cases,

say the linear Gaussian system in Proposition A.2. For general
nonlinear system, various numerical approximations of U can
be found in the paper (Berntorp, 2018).

The FPF with numerical approximations of {K, u} (or
{K,
, ĥ}) is named standard FPF which is described in
Yang (2014). Let us use X̌i

tn to denote the particles obtained in
standard FPF, which is listed as follows: For n = 1, 2, 3, . . ..

(1) Prediction: given N particles X̌i
tn−1 ∈ R

d, i = 1, 2, . . . ,N
(they are sampled i.i.d. from π0 | 0 at time t = 0), the parti-
cles evolve according to (1) at time interval t ∈ [tn−1, tn):

dX̌i
t = a(X̌i

t) dt + dBit (20)

with initial value X̌i
tn−1 , where X̌

i
t ∈ R

d is the state for the
i-th particle at time t and {Bit} are mutually independent
standard Wiener processes. We denote the left limit as:

X̌i
t−n

:= lim
t↗tn

X̌i
t . (21)

(2) Updating: let Šin(0) := X̌i
t−n
, i = 1, . . . ,N, Šin(λ) evolve

according to the following equation

dŠin
dλ

(λ) = K̃(Šin(λ), λ)

[
Yn − h(Šin(λ)) + ¯̂h

2

]

+ 1
2

̃(Šin(λ), λ), (22)

with initial condition Šin(0) for i = 1, 2, . . . ,N when λ ∈
[0, 1], where K̃, 
̃, ¯̂h are numerical approximations of
K, 
, ĥ, and they are computed as follows:

K ≈ K̃(Šn) := 1
N

N∑
i=1

Šin(λ)
(
h
(
Šin(λ)

)
− ¯̂h

(
Šin(λ)

))T
,

(23)


 ≈ 
̃(Šn) := 1
N

N∑
i=1

Šin(λ)
(
g
(
Šin(λ)

)
− ¯̂g

(
Šin(λ)

))T
,

(24)

where ¯̂g =
∣∣∣ ¯̂h∣∣∣2 − ¯̂|h|2, and

ĥ ≈ ¯̂h(Šn) := 1
N

N∑
i=1

h(Šin(λ)),

|̂h|2 ≈ ¯̂|h|2(Šn) := 1
N

N∑
i=1

h(Šin(λ))Th(Šin(λ)). (25)

Then N particles are updated according to X̌i
tn = Šin(1) for

i = 1, 2, . . . ,N.

Remark 2.1: The difference of Šin and Sn are mainly due to the
numerical approximations of {K,
, ĥ} from (23)–(25). Sn is the
exact solution of (16), while Šn is obtained by (22), with {K,
, ĥ}
from (23)–(25).
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2.3 Markov transition Kernel

Before we start the error analysis, we need to introduce the
Markov kernel, which is a main tool in our proof. The sys-
tem (1)–(2) will be represented in a sightly different frame-
work. The d-dimensional state Xt is a Markov process with
initial stateX0 obeying the distributionπ0 | 0(dx0). The dynamic
Equation (1) describing the state evolution over time can be
modeled by a Markov transition kernel 1 κ1(dxtn+1 | xtn) (Hu
et al., 2008), so that

P(Xtn+1 ∈ A |Xtn = xtn) =
∫
A

κ1(dxtn+1 | xtn) (26)

for all A ∈ B(Rd), where B(Rd) is the Borel algebra on R
d.

Similarly, for Šin(λ), which evolves according to (22) with
approximated {K̃, 
̃, ¯̂h}, we can define the following Markov
transition kernel κ̃2n:

P(Šin(1) ∈ A | Šin(0) = sn0,Yn) =
∫
A

κ̃2n(dšn1 | sn0,Yn). (27)

Meanwhile, we need to define the Markov transition kernel for
Sin(λ) which evolves according to (16) with exact {K, 
, ĥ}:

P(Sin(1) ∈ A | Sin(0) = sn0,Yn) =
∫
A

κ2n(dsn1 | sn0,Yn). (28)

It is obvious that κ̃2n and κ2n are Markov transition kernels
depending on Yn.

Based on theMarkov transition kernels defined above, we list
the standard FPF in Algorithm 1.

Algorithm 1 Standard Continuous-Discrete Time FPF Yang
(2014)
1: INITIALIZATION
2: Set n = 0
3: for i = 1 to N do
4: Sample X̌i

0 ∼ π0 | 0
5: n = n + 1
1: ITERATION 1: Prediction
2: for i = 1 to N do
3: Sample X̌i

t−n
∼ κ1(dxtn | X̌i

tn−1) by (20)

1: ITERATION 2: Updating
2: Set λ = 0
3: for i = 1 to N do
4: Set Šin(0) = X̌i

t−n
5: for i = 1 to N do
6: Calculate the gain function K̃ by (23)
7: Calculate the function 
̃ by (24)
8: Calculate ĥ by (25)
9: Sample Šin(1) ∼ κ̃2n(dšn1 | Šin(0),Yn) by (22)
10: for i = 1 to N do
11: Set X̌i

tn = Šin(1)
12: n = n + 1
13: goto ITERATION 1

For convenience, we assume that κ1, κ̃2n and κ2n have densi-
ties with respect to a Lebesgue measure (Hu et al., 2008), i.e.

κ1(dxtn+1 | xtn) = κ1(xtn+1 | xtn) dxtn+1 ,

κ̃2n(ds1 | s0,Yn) = κ̃2n(s1 | s0,Yn) ds1,

κ2n(ds1 | s0,Yn) = κ2n(s1 | s0,Yn) ds1. (29)

According to the law of total probability, we have the following
evolution of the real conditional density (Hu et al., 2008):

πn | n−1(dxtn) =
∫
Rd

πn−1 | n−1(dxtn−1)κ1(dxtn | xtn−1). (30)

Now we use the Markov transition kernel to give the evolu-
tion equation between πn | n and πn | n−1. Recalling that Xt−n and
Sin(0)have conditional densityπn | n−1 andρn(x, 0), respectively.
If ρn(x, 0) = πn | n−1, then we have ρn(x, 1) = πn | n for Sn(1)
and Xtn , by Theorem 2.1. It follows that

πn | n(dxtn) =
∫
Rd

P(Sin(0) ∈ dz |Ftn)

× P(Sin(1) ∈ dxtn | Sin(0) = z,Yn)

=
∫
Rd

P(Sin(0) ∈ dz |Ftn−1)

× P(Sin(1) ∈ dxtn | Sin(0) = z,Yn)

=
∫
Rd

πn | n−1(dz)κ2n(dxtn | z,Yn), (31)

where the second equality in (31) follows from the fact that

P(Sin(0) ∈ dz |Ftn) = P(Sin(0) ∈ dz |Ftn−1). (32)

This is because, by the construction of Sin(0), it can be known
that Sin(0) depends on {Yk, 1 ≤ k ≤ n − 1} and {Bis, s ≤ tn}.
Therefore, we have (32) by (2), since Wn is independent of
{Yk, 1 ≤ k ≤ n − 1} and {Bis, s ≤ tn}, i.e. Wn is independent of
Sin(0).

3. The convergence analysis of modified FPF

In this section, we shall analyze the error between the con-
ditional density function π and its numerical approximation
formed by FPF.

3.1 Modified FPF

Similar to the treatments in Crisan and Doucet (2002) and Hu
et al. (2011), we need to make a slight modification to the stan-
dard FPF in Algorithm 1 for the technical treatment in the proof
in Section 4.

Instead of sampling from X̌i
t−n

∼ κ1(dxtn | X̌i
tn−1) in the stan-

dard FPF, we sample

X̃i
t−n

∼ 1
N

N∑
i=1

κ1

(
dxtn | X̃i

tn−1

)
, (33)

where X̃i
t denotes the i-th particle in modified FPF. The proce-

dures of modified FPF are described in Algorithm 2.
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Algorithm 2Modified Continuous-Discrete Time FPF
1: INITIALIZATION
2: Set n = 0
3: for i = 1 to N do
4: Sample X̃i

0 ∼ π0 | 0
5: n = n + 1
1: ITERATION 1: Prediction
2: for i = 1 to N do
3: Sample X̃i

t−n
∼

1
N
∑N

i=1 κ1(dxtn |X̃i
tn−1)

1: ITERATION 2: Updating
2: Set λ = 0
3: for i = 1 to N do
4: Set S̃in(0) = X̃i

t−n
5: for i = 1 to N do
6: Calculate the gain function K̃ by (23)
7: Calculate the function 
̃ by (24)
8: Calculate ĥ by (25)
9: Sample

S̃in(1) ∼ κ̃2n(ds̃n1|S̃in(0),Yn) (34)

10: for i = 1 to N do
11: Set X̃i

tn = S̃in(1)
12: n = n + 1
13: goto ITERATION 1

We use π̃N to denote the empirical distribution formed by
the N particles of the modified FPF, i.e.

π̃N
n | n := 1

N

N∑
i=1

δX̃i
tn

= 1
N

N∑
i=1

δS̃in(1),

π̃N
n | n−1 :=

1
N

N∑
i=1

δX̃i
t−n

= 1
N

N∑
i=1

δS̃in(0). (35)

To help the readers understand the paper better, we list theoreti-
cal FPF, standard FPF andmodified FPF in Figure 3. It is shown
that the difference between theoretical FPF and standard FPF
is that there are numerical approximations of {K, u} in updating
step of FPF. The only difference between standard FPF andmod-
ified FPF is that they have different Markov transition kernel in
prediction step.

Notations: Given a measure ν, a function φ and a Markov
transition kernel κ , denote

(ν,φ) �
∫
Rd

φ(x)ν(dx), κφ(x) �
∫
Rd

κ(dz | x)φ(z). (36)

Hence, we have E[φ(Xtn) | Ftn] = (πn | n,φ), and

(πn | n−1,φ) = (πn−1 | n−1, κ1φ), (37)

(πn | n,φ) = (πn | n−1, κ2nφ), (38)

by (30) and (31), respectively.
Besides, we clarify and restate the three types of particles

considered in this paper:

(1) {Xi
t , Sin} denote the particles in theoretical FPF proposed

in Yang et al. (2014), and the optimal control input U
is exact without any approximation in the updating step.
Their empirical distributions are πN

n | n−1 and πN
n | n;

(2) {X̌i
t , Šin} denote the particles in standard FPF (Algorithm 1)

proposed in Yang et al. (2014), and there are numeri-
cal approximations of the optimal control input U in the
updating step;

(3) {X̃i
t , S̃in}denote the particles inmodifiedFPF (Algorithm2),

and it differs from the standard FPF in the prediction step.

The notations are listed in Table 1 and the connections
between these three types of particles are clearly shown in
Figure 3.

3.2 Error analysis

In this part, we shall analyze the estimation error of themodified
FPF. For a class of functions φ and arbitrary p ≥ 2, the Lp-error
between the estimate of φ(Xtn) by modified FPF and its optimal
estimate E[φ(Xtn) | Ftn] will be analyzed. More explicitly, we
shall give an error bound of E[|(π̃N

n | n,φ) − (πn | n,φ)|p], which
is composed of two parts: the one is caused by finite N parti-
cles, and the other one is from the numerical approximations of
{K, u} (or {K,
, ĥ}) in updating step. We declare that, the error
caused by Euler scheme used in Algorithm 2 is not taken into
consideration in this paper. We shall put some mild restrictions
on the function φ(x):

Assumption 3.1: The functionφ(x)has bounded p-thmoment
for p ≥ 2, i.e. ∀n ≥ 1,

E

[∫
|φ(x)|pπk | k(dx)

]
< ∞, 0 ≤ k ≤ n, (39)

i.e.

E

[∣∣φ(Xtk)
∣∣p] < ∞, 0 ≤ k ≤ n. (40)

The class of functions φ satisfying Assumption 3.1 will be
denoted by Lpn. For any φ(x) ∈ Lpn, we define

‖φ‖n,p � max
k=0,1,2,...,n

{1,E1/p [(πk | k, |φ|p)]}
Table 1. Notations.

Variable Notation Equation

State of the hidden process Xt (1)
Particles in theoretical FPF Xi

t−n
= Sin(0) (4)

Xitn = Sin(1) (6)
Particles in standard FPF X̌ i

t−n
= Šin(0) (20)

X̌ itn = Šin(1) (22)
Particles in modified FPF X̃ i

t−n
= S̃in(0) (33)

X̃ itn = S̃in(1) (34)
Conditional densities πn | n−1(·) = ρn(·, 0) (A6),(17)

πn | n(·) = ρn(·, 1) (A7),(17)
Empirical distribution of Xitn πN

n | n−1,π
N
n | n (19)

Empirical distribution of X̃ itn π̃N
n | n−1, π̃

N
n | n (35)

Markov transition kernel κ1, κ2n (26),(28)
κ̃2n (27)
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Figure 3. Framework of the FPF.

= max
k=0,1,2,...,n

{1,E1/p
[∣∣φ(Xtk)

∣∣p]}, (41)

which is introduced in Hu et al. (2008).

Assumption 3.2: Given p ≥ 2, φ and φp are Lipschitz func-
tions, i.e. for all x, y ∈ R

d,∣∣φ(x) − φ(y)
∣∣ ≤ Cφ

∣∣x − y
∣∣ ,∣∣φp(x) − φp(y)

∣∣ ≤ Cφ,p
∣∣x − y

∣∣ , (42)

where Cφ and Cφ,p are Lipschitz constants.

Remark 3.1: One sufficient condition for Assumption 3.2 to
hold is that the function φ is bounded and Lipschitz, say the
trigonometry functions sin(x), cos(x), the inverse trigonomet-
ric functions arctan(x), arccot(x), and 1/(x2 + 1).

Now we need to analyze the error caused by the approxima-
tions of K,
 and ĥ in (16). It has been declared that S̃in(λ) is the
solution of (22) with the initial value S̃in(0), and we denote the
solution of (16) with initial value S̃in(0) as S̄in(λ), i.e.

dS̄in
dλ

(λ) = K(S̄in(λ), λ)

[
Yn − h(S̄in(λ)) + ĥ

2

]

+ 1
2

(S̄in(λ), λ)

� fn(S̄in(λ), λ),

S̄in(0) = S̃in(0), (43)

and

dS̃in
dλ

(λ) = K̃(S̃in(λ), λ)

[
Yn − h(S̃in(λ)) + ¯̂h

2

]

+ 1
2

̃(S̃in(λ), λ)

� f̃n(S̃in(λ), λ), (44)

with S̃in(0) = S̃in(0), where K̃, 
̃, and ¯̂h are the approximations
of K, 
 and ĥ, respectively. It is clear that the error between
S̃in(1) and S̄in(1) is caused by the numerical approximations of
{K,
, ĥ} from Figure 3. The bound of the error is given in
Theorem 3.1 under the following assumption.

Assumption 3.3: fn(S, λ) is Lipschitz with respect to (w.r.t.) S,
and the error between fn(S̃in(λ), λ) and its numerical approxi-
mation f̃n(S̃in(λ), λ) is bounded, i.e. for λ ∈ [0, 1], there exist γ̃1n
and γ̃2n, which are functions w.r.t. Yn, such that

• ∣∣fn(S1, λ) − fn(S2, λ)
∣∣ ≤ γ̃1n |S1 − S2|, for all S1, S2 ∈ R

d.

•
∣∣∣fn(S̃in(λ), λ) − f̃n(S̃in(λ), λ)

∣∣∣ ≤ γ̃2n.

Remark 3.2: (i) The first inequality in Assumption 3.3 holds,
if K, Kh and 
 are Lipschitz functions, and ĥ is bounded,
since

fn(S̄in(λ), λ) − fn(S̃in(λ), λ)

=
[
K(S̄in(λ), λ) − K(S̃in(λ), λ)

]
Yn
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− 1
2

[
K(S̄in(λ), λ)h(S̄in(λ)) − K(S̃in(λ), λ)h(S̃in(λ))

]
− 1

2

[
K(S̄in(λ), λ) − K(S̃in(λ), λ)

]
ĥ

+ 1
2

[

(S̄in(λ), λ) − 
(S̃in(λ), λ)

]
.

(ii) The second inequality is satisfied, if K, 
, ĥ can be well
numerically approximated by K̃, 
̃ and ¯̂h, since

fn(S̃in(λ), λ) − f̃n(S̃in(λ), λ)

=
[
K(S̃in(λ), λ) − K̃(S̃in(λ), λ)

]
·
[
Yn − 1

2

(
h(S̃in(λ)) + ĥ

)]
− 1

2
K̃(S̃in(λ), λ)

[
ĥ − ¯̂h

]
+ 1

2

[

(S̃in(λ), λ) − 
̃(S̃in(λ), λ)

]
.

Now we can give an error bound between S̄in(1) and S̃in(1).

Theorem 3.1: If Assumption 3.3 is satisfied, then for any p ≥ 2,
we have ∣∣∣S̄in(1) − S̃in(1)

∣∣∣p ≤ γ̃n,p, (45)

where S̄in(1) and S̃in(1) are the solutions to (43) and (44),
respectively,

γ̃n,p :=
[
γ̃2n

γ̃1n

(
eγ̃1n − 1

)]p
, (46)

with γ̃1n and γ̃2n are defined in Assumption 3.3.

Proof: According to (43)–(44), we have

d(S̄in − S̃in)
dλ

= fn(S̄in(λ), λ) − fn(S̃in(λ), λ) + fn(S̃in(λ), λ)

− f̃n(S̃in(λ), λ). (47)

Multiplying both sides of (47) by 2(S̄in − S̃in)T , we get

d
(∣∣∣S̄in − S̃in

∣∣∣2)
dλ

= 2(S̄in − S̃in)
T d(S̄

i
n − S̃in)
dλ

= 2(S̄in − S̃in)
T
(
fn(S̄in(λ), λ) − fn(S̃in(λ), λ)

)
+ 2(S̄in − S̃in)

T
(
fn(S̃in(λ), λ) − f̃n(S̃in(λ), λ)

)
� I1 + I2. (48)

The first term on the right-hand side of (48) can be easily
estimated as

|I1|≤2
∣∣∣S̄in − S̃in

∣∣∣ · ∣∣∣fn(S̄in(λ), λ) − fn(S̃in(λ), λ)

∣∣∣
= 2γ̃1n

∣∣∣S̄in − S̃in
∣∣∣2 (49)

by Cauchy–Schwarz inequality and Assumption 3.3, respec-
tively. Meanwhile, the second term can be controlled by

|I2| ≤ 2
∣∣∣S̄in − S̃in

∣∣∣ · ∣∣∣fn(S̃in(λ), λ) − f̃n(S̃in(λ), λ)

∣∣∣
≤2
∣∣∣S̄in − S̃in

∣∣∣ · γ̃2n (50)

by Assumption 3.3. Substituting (49) and (50) back to (48), then
we can estimate the norm’s p-th power as

d
(∣∣∣S̄in − S̃in

∣∣∣p)
dλ

=
d
(∣∣∣S̄in − S̃in

∣∣∣2)p/2

dλ

= p
2

(∣∣∣S̄in − S̃in
∣∣∣2)p/2−1

·
d
(∣∣∣S̄in − S̃in

∣∣∣2)
dλ

≤ pγ̃1n
∣∣∣S̄in − S̃in

∣∣∣p + pγ̃2n
∣∣∣S̄in − S̃in

∣∣∣p−1
. (51)

Integrating (51) with respect to λ from 0 to 1, one has∣∣∣S̄in(1) − S̃in(1)
∣∣∣p ≤

∫ 1

0

[
pγ̃1n

∣∣∣S̄in(λ) − S̃in(λ)

∣∣∣p
+ pγ̃2n

∣∣∣S̄in(λ) − S̃in(λ)

∣∣∣p−1
]
dλ,

with S̄in(0) = S̃in(0). By Lemma A.1 in Appendix 3, it yields that∣∣∣S̄in(1) − S̃in(1)
∣∣∣p ≤

{(
1/p
) ∫ 1

0
pγ̃2n

× exp
[
1
p

∫ t

s
pγ̃1n dr

]
ds
} 1

1−(p−1)/p

=
[
γ̃2n

γ̃1n

(
eγ̃1n − 1

)]p
.

�

According to Assumption 3.3, it is known that γ̃n,p is a
function w.r.t. Yn. Therefore we define

γn,p � max
{
E
[
γ̃k,p
]
, k = 0, 1, 2, . . . , n

}
, (52)

where γ̃k,p is defined in (46). Furthermore, we assume that γn,p
is bounded.

Assumption 3.4: γn,p is bounded by a positive constant, i.e.

γn,p ≤ �, for ∀ n ≥ 0, (53)

where � is a positive constant.

Remark 3.3: It is known from Remark 3.2 that γn,p indicates

howwell {K,
, ĥ} can be approximated by {K̃, 
̃, ¯̂h}. If {K,
, ĥ}
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in (16) can be exactly computed without any approximation,
then γn,p = 0.

Since ‖φ‖n,p ≥ 1 according to (41), we can easily see that

γn,p ≤ �‖φ‖n,p. (54)

Under the assumptions above, we state the main result of this
paper here.

Theorem 3.2 (Main Theorem): Under Assumptions 3.1–3.4,
for any φ ∈ Lpn, for p ≥ 2, there exist constants An | n, Bn | n and
Cn | n, independent of N and γn,p, such that

E

[∣∣∣(π̃N
n | n,φ) − (πn | n,φ)

∣∣∣p]
≤ An | n

‖φ‖pn,p
Np/2 + Bn | nγn,p + Cn | n(γn,p)1/p, (55)

where π̃N
n | n defined in (35) is the empirical conditional density

formed by the N particles of modified FPF in Algorithm 2, πn | n
defined in (17) is the conditional posterior density of the state,
‖φ‖n,p is defined in (41), and γn,p is defined in (52).

Theorem 3.2 tells us that the error between the optimal esti-
mate (πn | n,φ) and the numerical estimate (π̃N

n | n,φ) by FPF can
be divided into two parts. The first part is due to the fact that
we can only use finite N particles in FPF, and this part of error
will tend to zero as the number of particles N goes to infinity at
the rate of O(N−1/2). The second part is due to the numerical
approximations of K, 
, ĥ in (23)–(25) in the updating step. It
is clear that if γn,p goes to zero, i.e. the approximation errors of
K, 
, ĥ go to zero, then this part of error will tend to zero.

Corollary 3.1: If (1)–(2) is a linear Gaussian system, under
Assumptions 3.1–3.4, then for any φ ∈ Lpn, for p ≥ 2, there exists
constant An | n, independent of N and γn,p, such that

E

[∣∣∣(π̃N
n | n,φ) − (πn | n,φ)

∣∣∣p] ≤ An | n
‖φ‖pn,p
Np/2 . (56)

We refer the interested readers to see the details in
Appendix 2.

Furthermore, by the Borel-Cantelli lemma, we have a
corollary as follows.

Corollary 3.2: Under Assumptions 3.1–3.4, for any φ ∈ Lpn,

lim
N→∞,γn,p→0

(π̃N
n | n,φ) = (πn | n,φ), a.s. (57)

4. Proof of themain Theorem

In this section we shall give the proof of Theorem 3.2. The proof
is by induction as in Crisan and Doucet (2002). Some technical
lemmas are listed in Appendix 3.
1. Initialization

Let {X̃i
0}Ni=1 be independent random variables with the same

distribution π0 | 0 (see Algorithm 2), then by (35) and (36) we
have:

π̃N
0 | 0 = 1

N

N∑
i=1

δX̃i
0

=⇒ (π̃N
0 | 0,φ) = 1

N

N∑
i=1

φ(X̃i
0).

Consequently, we have

E

[∣∣∣(π̃N
0 | 0,φ) − (π0 | 0,φ)

∣∣∣p]
= 1

Np E

⎡⎣∣∣∣∣∣
N∑
i=1

(
φ(X̃i

0) − E[φ(X̃i
0)]
)∣∣∣∣∣
p⎤⎦

(A12)≤ C(p)
Np

N∑
i=1

E

[∣∣φ(X̃i
0) − E[φ(X̃i

0)]
∣∣p]

+ C(p)
Np

( N∑
i=1

E

[∣∣φ(X̃i
0) − E[φ(X̃i

0)]
∣∣2])p/2

(A13)≤ 2pC(p)
Np−1 E

[|φ(X̃i
0)|p

]
+ 2pC(p)

Np/2 E
p/2 [|φ(X̃i

0)|2
]

(A14)≤ 2p+1C(p)
Np/2 E

[|φ(X̃i
0)|p

]
� A0 | 0

‖φ‖p0,p
Np/2 + B0 | 0γ0,p + C0 | 0(γ0,p)1/p, (58)

where A0 | 0 = 2p+1C(p),B0 | 0 = C0 | 0 = 0, and C(p) is a con-
stant that depends only on p.

With the similar argument as in (58), we deduce that

E

[∣∣∣(π̃N
0 | 0, |φ|p) − (π0 | 0, |φ|p)

∣∣∣]
= 1

N
E

[∣∣∣∣∣
N∑
i=1

(|φ(X̃i
0)|p − E[|φ(X̃i

0)|p]
)∣∣∣∣∣
]

≤ 2E[|φ(X̃i
0)|p].

Note that X̃i
0 have the same distribution for all i, so the expecta-

tion does not depend on i. Hence, one has

E

[∣∣∣(π̃N
0 | 0, |φ|p)

∣∣∣] ≤ E

[∣∣∣(π̃N
0 | 0, |φ|p) − (π0 | 0, |φ|p)

∣∣∣]
+ E

[∣∣(π0 | 0, |φ|p)∣∣]
≤ 3E[|φ(X̃i

0)|p] � M0 | 0‖φ‖p0,p,
whereM0 | 0 = 3, i.e.

E

[∣∣∣(π̃N
0 | 0, |φ|p)

∣∣∣] ≤ M0 | 0‖φ‖p0,p. (59)

2. Prediction
Based on (58) and (59), by induction, we assume that for

n−1, for n ≥ 1, there exist the generic nonnegative constants
An−1 | n−1, Bn−1 | n−1, Cn−1 | n−1, and Mn−1 | n−1, independent
of N and γn−1,p, such that

E

[∣∣∣(π̃N
n−1 | n−1,φ) − (πn−1 | n−1,φ)

∣∣∣p]
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≤ An−1 | n−1
‖φ‖pn−1,p

Np/2

+ (
Bn−1 | n−1γn−1,p + Cn−1 | n−1(γn−1,p)

1/p) (60)

and

E

[∣∣∣(π̃N
n−1 | n−1, |φ|p)

∣∣∣] ≤ Mn−1 | n−1‖φ‖pn−1,p (61)

hold for all φ ∈ Lpn.
2.1 We look at E[|(π̃N

n | n−1,φ) − (πn | n−1,φ)|p].
Let Gn−1 be the σ -algebra generated by {X̃i

tn−1 , i = 1, . . .N},
i.e.

Gn−1 � σ {X̃i
tn−1 , i = 1, . . .N}. (62)

Notice that

I � (π̃N
n | n−1,φ) − (πn | n−1,φ)

= (π̃N
n | n−1,φ) − (π̃N

n−1 | n−1, κ1φ)

+ (π̃N
n−1 | n−1, κ1φ) − (πn | n−1,φ)

� I1 + I2. (63)

In the sequel, we shall estimate E[|I1|p] and E[|I2|p], respec-
tively.

As for I1, according to Algorithm 2, we know that X̃i
t−n

∼

(1/N)
∑N

i=1 κ1(dxtn | X̃i
tn−1) = π̃N

n−1 | n−1κ1(dxtn).
2 It can be

easily checked that

(π̃N
n−1 | n−1, κ1φ) =

∫
Rd

κ1φ(x)π̃N
n−1 | n−1 dx

=
∫
Rd

∫
Rd

κ1(dz | x)φ(z)π̃N
n−1 | n−1(dx)

= 1
N

N∑
i=1

∫
Rd

κ1(dz | X̃i
tn−1

)φ(z),

and

E

[
φ(X̃i

t−n
)

∣∣∣Gn−1

]
= 1

N

N∑
i=1

∫
Rd

κ1(dz | X̃i
tn−1

)φ(z).

Then we have

E

[
φ(X̃i

t−n
)

∣∣∣Gn−1

]
= (π̃N

n−1 | n−1, κ1φ). (64)

It follows that

I1 = 1
N

N∑
i=1

[
φ(X̃i

t−n
) − E[φ(X̃i

t−n
)

∣∣∣Gn−1]
]
. (65)

Then similarly as argued in (58), we have

E
[ |I1|p∣∣Gn−1

]
= 1

Np E

⎡⎣∣∣∣∣∣
N∑
i=1

[
φ(X̃i

t−n
) − E

[
φ(X̃i

t−n
)

∣∣∣Gn−1

]]∣∣∣∣∣
p
∣∣∣∣∣∣Gn−1

⎤⎦
(A12)−−(A14)≤ 2pC(p)

Np−1 (π̃N
n−1 | n−1, κ1|φ|p)

+ 2pC(p)
Np/2 (π̃N

n−1 | n−1, κ1|φ|p)

≤ 2p+1C(p)
Np/2 (π̃N

n−1 | n−1, κ1|φ|p), (66)

where C(p) is a constant that depends only on p.
It can be easily checked that

E
[
(πk | k, κ1|φ|p)] = E

[
κ1|φ|p(Xtk)

] = E
[|φ|p(Xtk+1)

]
, (67)

then it follows that

‖(κ1|φ|p)1/p‖pn−1,p

(41)= max
k=0,1,2,...,n−1

{1,E [(πk | k, κ1|φ|p)]}
= max

k=1,2,...,n
{1,E [(πk | k, |φ|p)]} ≤ ‖φ‖pn,p. (68)

Now we obtain the estimate of E[|I1|p] by the tower property of
the conditional expectation

E
[|I1|p] = E

[
E[ |I1|p

∣∣Gn−1]
]

(66)(61)≤ 2p+1C(p)
Np/2 Mn−1 | n−1‖(κ1|φ|p)1/p‖pn−1,p

(68)≤ 2p+1C(p)Mn−1 | n−1
‖φ‖pn,p
Np/2 . (69)

As for I2,

E
[|I2|p] (37)= E

[∣∣∣(π̃N
n−1 | n−1, κ1φ) − (πn−1 | n−1, κ1φ)

∣∣∣p]
(60)≤ An−1 | n−1

‖κ1φ‖pn−1,p

Np/2

+ (
Bn−1 | n−1γn−1,p + Cn−1 | n−1(γn−1,p)

1/p)
≤ An−1 | n−1

‖φ‖pn,p
Np/2 + Bn−1 | n−1γn−1,p

+ Cn−1 | n−1(γn−1,p)
1/p, (70)

where the last inequality is due to the fact that

‖κ1φ‖pn−1,p
(41)= max

k=0,1,2,...,n−1
{1,E [(πk | k, |κ1φ|p)]}

≤ max
k=1,2,...,n

{1,E [|φ(Xtk+1)|p
]} ≤ ‖φ‖pn,p, (71)

since

E
[
(πk | k, |κ1φ|p)] =

∫
Rd

P(Xtk ∈ dx)
∣∣∣∣∫

Rd
κ1( dz | x)φ(z)

∣∣∣∣p
≤
∫
Rd

P(Xtk ∈ dx)
∫
Rd

κ1(dz | x)|φ(z)|p

= E
[|φ(Xtk+1)|p

]
,

where the first equality is due to the tower property of the
conditional expectation.

Combining (63), (69) and (70), we have

E

[∣∣∣(π̃N
n | n−1,φ) − (πn | n−1,φ)

∣∣∣p]
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≤2p−1 (
E
[|I1|p]+ E

[|I2|p])
(69),(70)≤ 2p−1(2p+1C(p)Mn−1 | n−1 + An−1 | n−1)

‖φ‖pn,p
Np/2

+ 2p−1Bn−1 | n−1γn−1,p + 2p−1Cn−1 | n−1(γn−1,p)
1/p

:= An | n−1
‖φ‖pn,p
Np/2 + Bn | n−1γn−1,p + Cn | n−1(γn−1,p)

1/p,

(72)

by Minkowski inequality and Jensen’s inequality, where

An | n−1 = 2p−1(2p+1C(p)Mn−1 | n−1 + An−1 | n−1),

Bn | n−1 = 2p−1Bn−1 | n−1, Cn | n−1 = 2p−1Cn−1 | n−1.

2.2 We analyze E[|(π̃N
n | n−1, |φ|p)|].

Similarly as in (63), we have

(π̃N
n | n−1, |φ|p) − (πn | n−1, |φ|p)
= (π̃N

n | n−1, |φ|p) − (π̃N
n−1 | n−1, κ1|φ|p)

+ (π̃N
n−1 | n−1, κ1|φ|p) − (πn | n−1, |φ|p) � Ĩ1 + Ĩ2. (73)

As for Ĩ1, we have

Ĩ1 = (π̃N
n | n−1, |φ|p) − (π̃N

n−1 | n−1, κ1|φ|p)

= 1
N

N∑
i=1

[
|φ(X̃i

t−n
)|p − E

[
|φ(X̃i

t−n
)|p
∣∣∣Gn−1

]]
.

Taking conditional expectation of |Ĩ1| with respect to Gn−1, one
has

E
[ ∣∣Ĩ1∣∣∣∣Gn−1

] ≤ 2
N

N∑
i=1

E

[
|φ(X̃i

t−n
)|p
∣∣∣Gn−1]

]
(64)= 2(π̃N

n−1 | n−1, κ1|φ|p).

Consequently, we have

E
[|Ĩ1|] = E

[
E
[ |Ĩ1|∣∣Gn−1

]] (61),(68)≤ 2Mn−1 | n−1‖φ‖pn,p, (74)

by tower property.
As for Ĩ2, one obtain that

E
[|Ĩ2|] (37),(73)= E

[∣∣∣(π̃N
n−1 | n−1, κ1|φ|p) − (πn−1 | n−1, κ1|φ|p)

∣∣∣]
(41),(61)≤ (

Mn−1 | n−1 + 1
) ‖(κ1|φ|p)1/p‖pn−1,p

(68)≤ (
Mn−1 | n−1 + 1

) ‖φ‖pn,p. (75)

Therefore, we have

E

[∣∣∣(π̃N
n | n−1, |φ|p)

∣∣∣]
(37)≤ E

[∣∣∣(π̃N
n | n−1, |φ|p) − (πn | n−1, |φ|p)

∣∣∣]
+ E

[∣∣(πn−1 | n−1, κ1|φ|p)∣∣]≤Mn | n−1‖φ‖pn,p, (76)

whereMn | n−1 := 3Mn−1 | n−1 + 2, and the last inequality is due
to (61), (71), and (73)–(75).

3. Updating
In this step we analyze E[|(π̃N

n | n,φ) − (πn | n,φ)|p] and
E[|(π̃N

n | n, |φ|p)|] from the apriori estimation (72) and (76).
3.1 We analyze E[|(π̃N

n | n,φ) − (πn | n,φ)|p].
By (38) we have

� � (π̃N
n | n,φ) − (πn | n,φ)

= (π̃N
n | n,φ) − 1

N

N∑
i=1

E

[
φ(S̃in(1))

∣∣∣Gn0]

+ 1
N

N∑
i=1

E

[
φ(S̃in(1))

∣∣∣Gn0]− 1
N

N∑
i=1

E
[
φ(S̄in(1))

∣∣Gn0]
+ 1

N

N∑
i=1

E
[
φ(S̄in(1))

∣∣Gn0]− (π̃N
n | n−1, κ2nφ)

+ (π̃N
n | n−1, κ2nφ) − (πn | n−1, κ2nφ)

� �1 + �2 + �3 + �4, (77)

where Gn0 := σ({S̃in(0)},Yn), apparently Gn ⊂ Gn0 with Gn
defined in (62). S̄in(1) denotes the solution of (43) at λ = 1 with
initial value S̃in(0) for every i. It can be seen that both S̃in(1) and
S̄in(1) are measurable w.r.t. Gn0 by (43) and (44).

As for �1, we have

�1 = 1
N

N∑
i=1

(
φ(S̃in(1)) − E

[
φ(S̃in(1))

∣∣∣Gn0]) = 0, (78)

where the last equation is due to the fact that S̃in(1), 1 ≤ i ≤ N
are measurable w.r.t. Gn0.

As for �2, we have

�2 = 1
N

N∑
i=1

E

[
φ(S̃in(1))

∣∣∣Gn0]− 1
N

N∑
i=1

E
[
φ(S̄in(1))

∣∣Gn0]
= 1

N

N∑
i=1

(
φ(S̃in(1)) − φ(S̄in(1))

)
. (79)

To estimate E[|�|p] at the end, we take the conditional expec-
tation of |�2|p first. Since both S̃in(1) and S̄in(1) are measurable
w.r.t. Gn0, we have

E
[ |�2|p

∣∣Gn0] =
∣∣∣∣∣ 1N

N∑
i=1

(
φ(S̃in(1)) − φ(S̄in(1))

)∣∣∣∣∣
p

≤ 1
N

N∑
i=1

Cp
φ

∣∣∣S̄in(1) − S̃in(1)
∣∣∣p , (80)

where the inequality is due to Jensen’s inequality and Assump-
tion 3.2. By the tower property of the conditional expectation,
we have

E[|�2|p] = E
[
E
[ |�2|p

∣∣Gn0]]
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(45)≤ 1
N

N∑
i=1

E

[
Cp

φ

∣∣∣S̄in(1) − S̃in(1)
∣∣∣p]

(52)≤ Cp
φγn,p. (81)

As for �3, let us look at the second term in �3 first,

(π̃N
n | n−1, κ2nφ) = 1

N

N∑
i=1

κ2nφ(S̃in(0))

= 1
N

N∑
i=1

∫
Rd

κ2n(ds|S̃in(0),Yn)φ(s)

(82)= 1
N

N∑
i=1

∫
Rd

δs=S̄in(1)φ(s) ds

= 1
N

N∑
i=1

φ(S̄in(1)). (82)

Thus, we have

�3 = 1
N

N∑
i=1

E
[
φ(S̄in(1))

∣∣Gn0]− (π̃N
n | n−1, κ2nφ)

(82)= 1
N

N∑
i=1

E
[
φ(S̄in(1))

∣∣Gn0]− 1
N

N∑
i=1

φ(S̄in(1)) = 0,

(83)

where the last equality holds due to S̄in(1) is Gn0- measurable.
As for �4, one has

E[|�4|p] = E[|(π̃N
n | n−1, κ2nφ) − (πn | n−1, κ2nφ)|p]

(72)≤ An | n−1C̄n
‖φ‖pn,p
Np/2 + Bn | n−1γn−1,p

+ Cn | n−1(γn−1,p)
1/p, (84)

where C̄n = max{1/Ck, 1 ≤ k ≤ n}, and Ck is the normaliza-
tion constant in (10). This is because(

πk | k, |κ2nφ|p)
(10)≤ (

πk | k−1, κ2n |φ|p) /Ck

(18)=
∫
Rd

P(Sik(0) ∈ dx | Ftk−1)

·
∫
Rd

P(Sik(1) ∈ dz|Sik(0) = x,Yk) |φ(z)|p /Ck

=
∫
Rd

∫
Rd

P(Sik(0) ∈ dx | Ftk−1)

× P(Sik(1) ∈ dz | Sik(0) = x,Yk) · |φ(z)|p /Ck

(32)=
∫
Rd

∫
Rd

P(Sik(0) ∈ dx | Ftk)

× P(Sik(1) = dz | Sik(0) = x,Ftk) · |φ(z)|p /Ck

=
∫
Rd

P(Sik(1) = dz |Ftk) |φ(z)|p /Ck = (
πk | k, |φ|p) /Ck,

(85)

where the first and last equalities follow from Theorem 2.1.
Similarly as in (72),

E

[∣∣∣(π̃N
n | n,φ) − (πn | n,φ)

∣∣∣p]
(77),(78),(83)= E

[|�2 + �4|p
] ≤ 2p−1 (

E
[|�2|p

]+ E
[|�4|p

])
(81),(84)≤ 2p−1

(
An | n−1C̄n

‖φ‖pn,p
Np/2 + (Cp

φ + Bn | n−1)γn,p

+ Cn | n−1(γn,p)
1/p)

� An | n
‖φ‖pn,p
Np/2 + Bn | nγn,p + Cn | n(γn,p)1/p, (86)

where An | n = 2p−1An | n−1C̄n, Bn | n = 2p−1(Cp
φ + Bn | n−1),

Cn | n = 2p−1Cn | n−1.
3.2 As for the E[|(π̃N

n | n, |φ|p)|], firstly we can get

�̃ � (π̃N
n | n, |φ|p) − (πn | n, |φ|p)

= (π̃N
n | n, |φ|p) − 1

N

N∑
i=1

E

[
|φ(S̃in(1))|p

∣∣∣Gn0]

+ 1
N

N∑
i=1

E

[
|φ(S̃in(1))|p

∣∣∣Gn0]

− 1
N

N∑
i=1

E
[ |φ(S̄in(1))|p

∣∣Gn0]
+ 1

N

N∑
i=1

E
[ |φ(S̄in(1))|p

∣∣Gn0]− (π̃N
n | n−1, κ2n|φ|p)

+ (π̃N
n | n−1, κ2n|φ|p) − (πn | n−1, κ2n|φ|p)

� �̃1 + �̃2 + �̃3 + �̃4. (87)

Using the similar procedures as for �1, �3 and �4, we can
obtain that

�̃1 = 0, �̃3 = 0, (88)

and

E

[∣∣∣�̃4

∣∣∣] (76),(85)≤ Mn | n−1C̄n‖φ‖pn,p. (89)

Now we only need to deal with �̃2.

E

[∣∣∣�̃2

∣∣∣] ≤ 1
N

N∑
i=1

E

[∣∣∣|φ(S̃in(1))|p − |φ(S̄in(1))|p
∣∣∣]

≤ 1
N

N∑
i=1

E

[
Cφ,p

∣∣∣S̄in(1) − S̃in(1)
∣∣∣]

≤Cφ,p(γn,p)
1/p, (90)

where the last inequality follows from Theorem 3.1.
It follows that

E

[∣∣∣�̃∣∣∣] (87),(88)≤ E

[∣∣∣�̃2

∣∣∣]+ E

[∣∣∣�̃4

∣∣∣]
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(89),(90)≤ Mn | n−1C̄n‖φ‖pn,p + Cφ,p(γn,p)
1/p

≤Mn | n−1C̄n‖φ‖pn,p + Cφ,p(�n)
1/p‖φ‖pn,p, (91)

where the last inequality is due to the fact that ‖φ‖pn,p ≥ 1 and
γn,p ≤ � by (41) and Assumption 3.4.

Therefore we have

E

[∣∣∣(π̃N
n | n, |φ|p)

∣∣∣] (87),(91)≤ E

[∣∣∣(π̃N
n | n, |φ|p) − (πn | n, |φ|p)

∣∣∣]
+ E

[∣∣(πn | n, |φ|p)∣∣] ≤ Mn | n‖φ‖pn,p,
where Mn | n = (Mn | n−1C̄n + Cφ,p(�)1/p) + 1, and the last
inequality is due to the fact that ‖φ‖pn,p is non-decreasing w.r.t.
n.

In summary, (55) holds for all n ≥ 0 by induction. �

5. Simulation

In this section, we verify our theoretic result by a benchmark
numerical experiment (Yang et al., 2014). Let us consider the
following linear continuous-discrete filtering system:{

dXt = AXt dt + dBt ,
Yn = HXtn + σWWn,

(92)

where A = −0.5, H = 3, σB = 1, σW = 2, {Bt} is the stan-
dard Brownian motion process, {Wn} is the standard Gaussian
white noise, and {Bt}, {Wn} are mutually independent. Discrete
observations are available at time tn = 0.5, 1.0, . . . , 10.

To compare the performance, we introduce the MSE based
on 500 realizations which is defined as follows:

MSE := 1
500

500∑
i=1

1
Nt + 1

Nt∑
n=0

(
X(i)
tn − X̂(i)

tn

)2
, (93)

whereX(i)
tn is the real state at instant tn in the i-th experiment and

X̂(i)
tn is the estimation of X(i)

tn , with 0 ≤ tn ≤ 10, 0 ≤ n ≤ Nt =
100.We use Euler’s method in time discretization with the same
time step of 0.05 s in both t and λ.

Here N is the number of particles. Firstly, we use N = 100
particles in FPF andmodified FPF. The estimation results of KF,
FPF and modified FPF in one trail is displayed in Figure 4. It
can be seen that both FPF and modified FPF have a well per-
formance as that of optimal KF. The average running times of
KF, FPF and modified FPF with 500 simulations are 0.0016,
0.0034 and 0.0031, respectively. Apparently, these three algo-
rithms can track the real state very fast and can be implemented
in a realtime manner (Luo & Yau, 2013a).

Furthermore, to investigate the performance of modified
FPF with different number of particles, we choose the num-
ber of particles ranging from 20 to 110. As suggested by our
theoretical result (56) with p = 2, the MSE of modified FPF is
bounded by O(1/N). We plot the MSE of modified FPF with
different number of particles in Figure 5. It is shown that, when
the number of particlesN is relatively small, the error is approx-
imately linear with 1/N. But we cannot reduce the error further
by increasing the number of particles, since theMSE has a lower
bound (Jazwinski, 1970).

Figure 4. The estimation results of different methods with N = 100.

Figure 5. The relationship between MSE and 1/N.

6. Conclusion

In this paper, we investigate the convergence of FPF. For some
technical reason, we modified the standard FPF in predicting
step, called modified FPF in our paper. Under some assump-
tions, we prove that, for a class of function φ, the estimate given
by the modified FPF converges to its optimal estimate as the
number of the particles tends to infinity and the approximation
errors of {K, 
, ĥ} go to zero. The estimate error is controlled
by two factors, the one is the number of particles, and the other
one is from the numerical error in computing the control input
in updating step. The theoretical results have also been verified
by a benchmark numerical experiment.

Notes

1. κ(·, ·) : (Rd,B(Rd)) → [0, 1] is aMarkov transition kernel onB(Rd)
if, for any x ∈ R

d, κ(· | x) is a probability measure and, for any A ∈
B(Rd), κ(A | ·) is a measurable function.
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2. According to the standard FPF, one samples from X̌i
t−n

∼κ1(dxtn |X̌i
tn−1).

Therefore, {X̌i
t−n

} have different distributions, for each i = 1, 2, . . . ,N,

but X̃i
t−n

∼
1
N
∑N

i=1 κ1(dxtn |X̃i
tn−1 ) in modified FPF are i.i.d..
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Appendices

Appendix 1. About Theorem 2.1
Let us take a logarithm of both sides of (10):

ln p∗(x, tn) = ln p∗(x, t−n ) +
[
h(x)T(Yn − 1

2
h(x))

]
− lnC′

n, (A1)

where C′
n is a constant that does not depend on x, and this constant can be

dropped to obtain the recursion for the unnormalized density q∗(t, x):

ln q∗(x, tn) = ln q∗(x, t−n ) +
[
h(x)T(Yn − 1

2
h(x))

]
, (A2)

where

p∗ (x, tn) = q∗ (x, tn)∫
q∗ (x′, tn

)
dx′

, p∗ (x, t−n ) = q∗ (x, t−n )∫
q∗ (x′, t−n

)
dx′

Let us define two homotopy functions ζn(x, λ) and ρ∗
n(x, λ) as follows:

ζn(x, λ) := ln q∗ (x, t−n )+ λh(x)T
(
Yn − 1

2
h(x)

)
,

ρ∗
n(x, λ) := exp (ζn(x, λ))∫

exp
(
ζn
(
x′, λ

))
dx′

(A3)

where λ ∈ [0, 1] is the pseudo-time parameter.
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By construction, it can be easily checked that, for λ = 0 and λ = 1:

ζn(x, 0) = ln q∗ (x, t−n ) , ζn(x, 1) = ln q∗ (x, tn)
ρ∗
n(x, 0) = p∗ (x, t−n ) , ρ∗

n(x, 1) = p∗ (x, tn) .
(A4)

And the evolution of ρ∗
n(x, λ) is described in the following proposition.

Proposition A.1 (Proposition 2 Yang et al. 2014): Consider the normal-
ized density function ρ∗

n(x, λ) as defined in (A3) with λ ∈ [0, 1]. Then its
evolution is given by the following partial differential equation: For λ ∈ [0, 1]

∂ρ∗
n

∂λ
(x, λ) = ρ∗

n(x, λ)

[
(h(x) − ĥ(λ))TYn − 1

2
|h(x)|2 + 1

2
|̂h|2

]
, (A5)

where ĥ(λ) := ∫
ρ∗
n(x, λ)h(x) dx, |h(·)|2 := h(·)Th(·) and |̂h|2 := ∫

ρ∗
n(x,

λ)|h(x)|2 dx.

Let us denote ρn(x, λ) the distribution of Sin(λ) in (6). More specifically,
we have

ρn(dx, 0) := P(Sin(0) ∈ dx |Ftn−1 ), (A6)

ρn(dx, 1) := P(Sin(1) ∈ dx |Ftn ). (A7)

And the evolution equation for ρn(x, λ) is given by the following Kol-
mogorov’s forward equation (Jazwinski, 1970):

∂ρn

∂λ
(x, λ) = −∇ · (ρnK)Yn − ∇ · (ρnu) . (A8)

If we can choose control input Ui
n(λ) in (6), such that ρn(x, λ) = ρ∗

n(x, λ),
then by (A4), we have

ρn(x, 0) = p∗ (x, t−n ) , ρn(x, 1) = p∗ (x, tn) . (A9)

Therefore the functions {u(x, λ),K(x, λ)} (or control inputUi
n(λ)) in (6) are

said to be optimal if ρn = ρ∗
n . That is, given ρn(·, 0) = ρ∗

n(·, 0), our goal is
to choose {u,K} in (6) such that the evolution equations of these distribu-
tions ρn(x, λ) and ρ∗(x, λ) coincide (see (A5) and (A8) and thus ρn(x, 1) =
p∗(x, tn). And the optimal {u,K} is given in the following Theorem 2.1.

Appendix 2. Linear gaussian case
If the filtering system (1)–(2) is linear and Gaussian, i.e.

dXt = AXt dt + dBt ,

Yn = HXtn + Wn, (A10)

where A ∈ R
d×d , H ∈ R

m×d, {Bt}, Wn and X0 are independent of each
other. The initial distribution pX(x, 0) is Gaussian withmean vectorμ0 and
covariance matrix�0. The following proposition in Yang et al. (2014) gives
the optimal control input {K,
} for the system (A10).

Proposition A.2 (Proposition 3 Yang et al. 2014): Consider the d-
dimensional linear system (A10). Suppose the homotopy density function ρn
in (11) is Gaussian, i.e.

ρn(x, λ) = 1

(2π)
d
2 |�λ| 12

exp
[
−1
2

(x − μλ)
T �−1

λ (x − μλ)

]
,

where x = (x1, . . . , xd)T , μλ = (μ1(λ), . . . ,μd(λ))T is the mean, �λ is the
covariance matrix, and |�λ| > 0 denotes the determinant. A solution of the
boundary value problem (12) and (15) is:

ηj(x, λ) =
d∑

k=1

[
�λHT

]
kj

(xk − μk(λ)) , j = 1, . . . ,m


(x, λ) = (0, . . . , 0),

where [�]kj is the (k, j)-th entry of the matrix �. Using K = [∇ηT1 , . . . ,∇ηTm],
we obtain K(x, λ) = �λHT.

Appendix 3. Some Technical Lemmas
Lemma A.1 (Gronwall’s inequality): Let u(t) be a nonlinear function that
satisfies the integral inequality

u(t) ≤ c +
∫ t

t0
(b1(s)u(s) + b2(s)uα(s)) ds, (A11)

where c ≥ 0, α ≥ 0, b1(t) and b2(t) are continuous nonnegative functions
for t ≥ t0. For 0 ≤ α < 1, we have

u(t) ≤
{
c1−α exp

[
(1 − α)

∫ t

t0
b1(s) ds

]

+(1 − α)

∫ t

t0
b2(s) exp

[
(1−α)

∫ t

s
b1(r) dr

]
ds
} 1

1−α

;

for α = 1,

u(t) ≤ c exp
{∫ t

t0
[b1(s) + b2(s)] ds

}
;

and for α > 1 with the additional hypothesis

c <

{
exp

[
(1 − α)

∫ t0+h

t0
b1(s) ds

]} 1
α−1

{
(α − 1)

∫ t0+h

t0
b2(s) ds

}− 1
α−1

we also get for t0 ≤ t ≤ t0 + h, for h> 0,

u(t) ≤ c
{
exp

[
(1 − α)

∫ t

t0
b1(s) ds

]
− c−1(α − 1)

∫ t

t0
b2(s)

× exp
[
(1 − α)

∫ t

s
b1(r) dr

]
ds
} 1

α−1
.

Lemma A.2 (Rosenthal type inequality Hu et al., 2011): Let p> 0, and
let {ξi, i = 1, . . . , n} be conditionally independent random variables given
σ−algebra G such that E[ξi |G] = 0 and E[|ξ |p|G] < ∞. Then

E

[∣∣∣∣∣
n∑

i=1
ξi

∣∣∣∣∣
p∣∣∣∣∣G

]
≤ C(p)

⎡⎣ n∑
i=1

E(|ξ |p|G) +
( n∑

i=1
E(|ξ |2|G)

)p/2
⎤⎦ ,

(A12)
where C(p) is a constant that depends only on p. This inequality holds in the
almost sure sense.

Lemma A.3 (Hu et al., 2008): If E[|ξ |p] < ∞, then

E
[|ξ − Eξ |p] ≤ 2pE

[|ξ |p] , (A13)

for any p ≥ 1.

Lemma A.4 (Hu et al., 2008): If 1 ≤ r1 ≤ r2 and E[|ξ |r2 ] < ∞, then

E
1/r1

[|ξ |r1] ≤ E
1/r2

[|ξ |r2] . (A14)
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