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In this article, we derive an optimal transportation particle filter
for linear time-varying systems with correlated noises. This method
can be regarded as the extension of the feedback particle filter with
an optimal transportation structure. However, the particles in our
method are evolved in a deterministic way, while we need to generate
random particles in a feedback particle filter. Consequently, we only
need a very few particles to obtain the satisfying results, and this
property is especially significant for high-dimensional problems. The
error analysis of our method and the feedback particle filter has been
carried out when the system is time invariant. Compared with the
feedback particle filter and the ensemble Kalman filter, our method

Manuscript received 18 August 2021; revised 9 December 2021 and 24
March 2022; released for publication 4 April 2022. Date of publication 12
April 2022; date of current version 6 December 2022.

DOI. No. 10.1109/TAES.2022.3166863

Refereeing of this contribution was handled by M. Efe.

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 11961141005, in part by the Tsinghua
University start-up fund , and in part by the Tsinghua University Education
Foundation fund under Grant 042202008. Professor Stephen Shing-Toung
Yau is grateful to the National Center for Theoretical Sciences (NCTS)
for providing an excellent research environment while part of this research
was done.

Authors’ addresses: Jiayi Kang, Yangtianze Tao, and Stephen Shing-Toung
Yau are with the Department of Mathematical Sciences, Tsinghua Univer-
sity, Beijing 100084, China, E-mail: (kangjy19@mails.tsinghua.edu.cn;
tytz19@mails.tsinghua.edu.cn; yau@uic.edu); Xiuqiong Chen is with the
School of Mathematics, Renmin University of China, Beijing 100872,
China, E-mail: (weizhicxq@163.com). (Corresponding author: Stephen
Shing-Toung Yau.)

0018-9251 © 2022 IEEE

shows great efficiency in numerical experiments, including both the
scalar and high-dimensional cases.

I. INTRODUCTION

Filtering has a long history, which can be traced back
to the work of Wiener in 1949. In 1960, Kalman published
a paper investigating a recursive solution to the discrete
linear filtering problem [1], which is known as the Kalman
filter (KF). A year later, Kalman and Bucy [2] proposed the
continuous version of the KF, which has been widely used
in various fields.

More generally, Crisan [3] and Davis [4] have studied a
special kind of filtering systems called correlated systems,
in which state noise and observation noise are correlated,
i.e., σW �= 0 in (2). The correlated system is more suitable to
model the real-life problems, as explained in a substantial
number of papers, such as [5]–[7].

LetYt be theσ -algebra generated by an observation pro-
cess {ys, 0 ≤ s ≤ t}, which is governed by some stochastic
differential equations (SDEs) associated with xt , and xt is
a hidden Markov process. Let p∗ be the posterior density
function, which is defined so that, for any measurable set
U ∈ R

n, ∫
U

p∗(x, t )dx = P(xt ∈ U |Yt ). (1)

In a word, the central problem of filtering is how to
obtain the posterior density p∗(x, t ), which is governed by
the so-called Kushner equation [8].

However, for the general filtering problems, it is not easy
to obtain the explicit posterior density. In real applications, it
seems that we often need to obtain some features of the pos-
terior distributions instead of completely solving them. With
the developments of Bayesian networks and Monte Carlo
methods, the particle filter (PF) [9] was proposed to avoid
solving Kushner equations and to simulate the distributions
directly. However, in the traditional PF framework, the PF
suffers from weight degeneracy, and the number of par-
ticles increases exponentially as the dimension increases.
The weight degeneracy problem can only be alleviated
by resampling steps under ten dimensions [8]. For higher
dimensional problems, the PF will fail due to requiring too
many particles.

An important breakthrough came from a feedback par-
ticle filter (FPF) [10], [11]. The FPF is based on a feedback
control structure, and the number of particles can be reduced
in this algorithm compared with the traditional PF [10]. In
FPF’s evolution, the weights of particles are not changed,
and there is no importance sampling required as in the
conventional PF. Therefore, a crucial distinction between
the PF and the FPF is that there is no resampling of particles
for the FPF. This property allows the FPF to be flexible with
regard to implementation and does not suffer from particle
degeneracy or sample impoverishment [10]. There are some
works that give detailed comparisons between PFs and the
FPF [12], [13]. The central problem of the FPF is how to
numerically estimate the control function, which is gov-
erned by a family of partial differential equations (PDEs)
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[10], [11]. However, there is no unified and simple numer-
ical method for general high-dimensional PDEs at present.
For more general nonlinear high-dimensional filtering prob-
lems, the FPF method is still facing the curse of the dimen-
sion problem. However, the stability and the convergence
of the algorithm are still important problems. The error
analysis of the FPF for a linear Gaussian system is given
in [14]. Furthermore, the error analysis of the FPF for the
general nonlinear system with continuous state and discrete
observation is given in [15]. The FPF for the correlated
scalar system was first proposed by Luo and Miao [16] in
2019.

It is unfortunate to see that the FPF does not perform
well in high-dimensional numerical simulations, which can
be checked through the experiments in Section V. In real
applications, for example, the weather prediction problem
[17], one needs to deal with the system of 1011 dimensions.
The high dimension of the state provides a significant com-
putational challenge even for the linear Gaussian cases.

Therefore, in this article, we mainly consider the fol-
lowing continuous linear filtering system:{

dxt = At xt dt + σW (t )dWt + σB(t )dBt

dyt = Ht xt dt + dWt
(2)

where xt ∈ R
n is the state and yt ∈ R

m is the observation.
The time t is in [0, S], S > 0. {Wt } and {Bt } are independent
Brownian motion processes with proper dimensions, and
their covariance matrices are E [dW T

t dWt ] = Q(t )dt and
E [dBT

t dBt ] = Indt . Here, {Wt }, {Bt }, and the initial state x0

are assumed to be independent of each other. At , Ht , σW (t ),
and σB(t ) are assumed to be C∞ functions of time, where
At , σB(t ) ∈ R

n×n. Ht ∈ R
m×n, and σW (t ) ∈ R

n×m.
The ensemble Kalman filter (EnKF) [17]–[20] is a clas-

sical algorithm, which is popular in high-dimensional appli-
cations. The advantage of the EnKF is that it requires fewer
computational resources than a KF that needs to store and
propagate the error covariance matrix. The computational
complexity and storage of the EnKF are O(n2).

Sampling from the high-dimensional distribution is time
consuming, and there are many works focusing on im-
proving the sampling methods in the FPF and the EnKF
[19]. Ignoring the difference in forms, many new sampling
methods and inference methods are directly related to an-
other important research field, optimal transportation (OT).
Different sampling methods can be regarded as different
dynamic evolution processes in the framework of OT. The
map of transportation used in this article is motivated by the
several methods that are used in uncertainty propagation
and Bayesian inference [21]–[25]. The error analysis of
the proposed algorithms is motivated by several methods
appeared in [15] and [26]–[28].

The challenges in the FPF can be summarized as
follows:

1) Sampling is time consuming in high-dimensional
cases.

2) The number of particles is huge in high-dimensional
cases.

The motivation of this article is twofold. First, with
the vigorous developments of generative models in deep
learning, a variety of sampling methods have been proposed
due to the unified OT framework. The FPF provides a natural
connection between sampling and filtering problems, which
means that any new sampling method can correspond to a
new EnKF. So far, there are already many different EnKFs
[17]–[20], which are widely used in many real applications.
However, a unified understanding of the EnKFs is still
empty in generally correlated cases [28]. Therefore, it is
natural to focus on the linear system in this article. Second,
there are two major issues in the current FPF algorithms
even in linear Gaussian cases. For example, the FPF in
correlated noise is not efficient in high-dimensional cases,
which can be seen from our experiments. Therefore, we
want to construct a new FPF to overcome the slowness of
high-dimensional sampling and combine it with a feedback
control structure, which has stability with a small number
of particles. Deterministic transfer in OT makes it possi-
ble. Besides, the equivalence of stochastic evolution and
deterministic evolution gives a unified method to accelerate
the FPF, which is only possible by setting up a unified
framework in OT.

We make the following contributions in this article.

1) We propose a novel optimal transportation particle
filter (OTPF) for linear filtering systems with corre-
lated noises, and this new filter can work very effi-
ciently for high-dimensional cases, which has been
verified in several numerical experiments. More-
over, the so-called square-root EnKF [20] can be
considered as the suboptimal filter of the OTPF, as
discussed in Remark 2.

2) The OTPF can be considered as the extension of the
FPF. Similarly, there is no importance sampling or
resampling used in the OTPF, which allows the OTPF
to not suffer from particle degeneracy or sample
impoverishment.

3) We give a rigorous proof of the convergence of the
proposed method when the system is time invariant.
Furthermore, we show that the mean square error
(MSE) is bounded by Ce−λt√

N
, where the constant C has

polynomial dependence on the dimension of state
space, λ is governed by the system, and N is the
number of particles.

4) We also give the error analysis of the FPF for linear
time-invariant scalar systems with correlated noises.

In this article, we use ‖ · ‖2 to represent the L2 norm of
the vectors or the matrices, ‖ · ‖F to represent the Frobenius
norm (FN) of the matrices, and Tr(·) to represent the trace
of the matrix.

The rest of this article is organized as follows. In Sec-
tion II, we recall the Kalman–Bucy filter (KBF) and the FPF
for the linear time-invariant system with correlated noise.
The motivation, derivation, and technique details of our
OTPF are shown in Section III. The detailed understanding
of the new algorithm is given at the end of Section III.
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Furthermore, we prove the convergence of the OTPF and the
FPF for linear systems with correlated noises in Section IV.
In Section V, we compare our OTPF with the FPF, the EnKF,
and the KBF in two numerical examples. Finally, Section VI
concludes this article.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce some preliminary knowl-
edge. In Section II-A, we listed the optimal filter, i.e., KBF.
In Section II-B, we slightly generalized the FPF to the
time-varying cases. Both the KBF and the FPF are used
to compare with our new algorithms in Section V.

A. Kalman–Bucy Filter for (2)

It is well known that the optimal estimate of the state
in (2) is given by the KBF. Let μt := E [xt |Yt ] and Pt :=
E [(xt − μt )(xt − μt )T |Yt ]. Then, the evolution equations of
the conditional expectation μt and the conditional covari-
ance Pt are given in the following lemma.

LEMMA 1 (SEE[29]) The KBF of the system (2) is as fol-
lows:

dμt = Atμt dt + [Pt H
T
t + σW (t )Qt )]Q−1

t (dyt − Htμt dt )

dPt

dt
= At Pt + Pt A

T
t + σB(t )σ T

B (t ) (3)

− [Pt H
T
t σ

T
W (t ) + σW (t )Ht Pt + Pt H

T
t Q−1

t Ht Pt ].
(4)

Although the optimal estimate μt can be obtained
by solving the ordinary differential equations (ODEs) in
Lemma 1, ODEs in Lemma 1 are difficult to be solved fast
in high-dimensional cases, since the size of Pt is n × n.

Therefore, it is vital to propose an effective and fast
numerical PF algorithm for this filtering system.

B. Feedback Particle Filter for (2)

In this part, we shall introduce the FPF for (2), which was
proposed in [16]. The FPF for nonlinear filtering systems
with correlated noises can be found in [16]. Since the
proposed FPF is for time-invariant cases, we need to slightly
generalize it to the time-varying cases.

The evolution equation of the ith particle x̃i
t in the FPF

is given by the following controlled system:

dx̃i
t = At x̃

i
t dt + σB(t )dBi

t + u(x̃i
t , t )dt + K̃(x̃i

t , t )dyt (5)

where (u, K̃) is the control input to be determined. The
initial particles {x̃i

0} are drawn from the initial distribution
p∗(x, 0) of x0. Let p(x, t ) be the conditional density function
of x̃i

t , i.e., for any measurable set U ∈ R
n∫

U
p(x, t )dx = P(x̃i

t ∈ U |Yt ). (6)

DEFINITION 1 (OPTIMAL) We call the control (K̃, u) is
optimal if p(x, t ) = p∗(x, t ), given the same initial condi-
tion p(x, 0) = p∗(x, 0), where p∗(x, t ) defined in (1) is the
posterior density function of xt .

It is vital to know that the posteriors of the states in the
linear system (2) are Gaussian, and this result is given by
the following Lemma 2.

LEMMA 2 The posterior distribution of the system (2) is
Gaussian if the initial distribution of the state is Gaussian.

The proof of this lemma can be found in the Appendix.
For the linear system (2), the optimal control input

(u, K̃) can be explicitly computed, and therefore, we have
Theorem 1.

THEOREM 1 For the system (2), the optimal control in-
put in (5) is K̃t := K̃t + σW (t ), and u(t, x) = −K̃t Htμt +
Pt HT

t Q−1
t

Htμt −Ht x
2 , where K̃t = Pt HT

t Q−1
t is the Kalman

gain.

PROOF We can directly know that the evolution equa-
tion (5) with the optimal control terms for the system (2)
is

dx̃i
t = At x̃

i
t dt + σW (t )(dyt − Htμt dt ) + σB(t )dBi

t

+ K̃t

(
dyt − Ht x̃i + Htμt

2
dt

)
. (7)

Since (7) is a linear SDE with a Gaussian initial value,
the expectation and the variance of it can be directly calcu-
lated. Naturally, it is not difficult to find that it is the same
as the KBF in Lemma 1. �

REMARK 1 The proposed FPF in [16] can be generalized
only in this linear Gaussian setting; the existence of multidi-
mensional correlated nonlinear FPF is still an open problem.

Therefore, μt and K̃t are approximated by

μt ≈ μ̃
(N )
t := 1

N

N∑
i=1

x̃i
t

Pt ≈ P̃(N )
t := 1

N − 1

N∑
i=1

(x̃i
t − μ̃

(N )
t )(x̃i

t − μ̃
(N )
t )T

K̃t ≈ K (N )
t := P̃(N )

t HT Q−1 (8)

in numerical computations. The complete procedure of the
FPF for the system (2) is shown in Algorithm 1.

Although the FPF has good theoretical characteristics,
it needs to sample Gaussian distribution at each step, which
requires lots of calculation time in high-dimensional cases.
In the numerical experiments, it can be found that this algo-
rithm is not feasible in high-dimensional cases. In addition,
the FPF can only work for time-invariant systems.

III. OPTIMAL TRANSPORTATION PARTICLE FILTER

In this section, we propose a new PF, where the particles
are evolved in a deterministic way.

As we discussed before, for high-dimensional systems,
sampling Gaussian distributions in the FPF is quite time
consuming. However, the particles can be evolved in a
deterministic way instead of stochastic way in the FPF.
Therefore, we need to construct the functions Ut and Gt
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Algorithm 1: FPF for the Correlated Linear System
(2).

1: Initialization
2: S is the total time, and m is the number of the

discretization steps.
3: Set n = 0, dt = S

m and tn = n × dt holds.
4: for i = 1 to N do
5: Sample x̃i

0 ∼ p0, where p0 is the initial
distribution.

1: Iteration 1: Predicting
2: μ̃tn := 1

N

∑N
i=1 x̃i

tn as the filtering result at time tn
3: for i = 1 to N do
4: From N (0, σB(tn)σ T

B (tn)dt ) to get samplings
{σB(tn)dBtn}N

i=1.
5: x̃i

t−
n

= Atn−1 x̃t−
n−1

dt + x̃i
t−
n−1

+ dBi
tn

1: Iteration 2: Feedback Updating
2: Let μ̃N

t−
n

≈ 1
N

∑N
i=1 x̃i

t−
n

, and

P̃tn ≈ P̃(N )
tn = 1

N−1

∑N
i=1(x̃i

t−
n

− μ̃N
tn )(x̃i

t−
n

− μ̃N
tn )T .

3: And K̃tn ≈ P̃(N )
tn HT

tn Q−1
tn .

4: Put x̃t−
n−1

, μ̃N
tn−1

, μ̃N
t−
n

, dytn−1, dytn , and Ktn in (7)

with the forward Euler scheme to get x̃i
tn .

5: n = n + 1
6: If n ≤ m
7: Then, go to Iteration 1
8: Else End

in the following equation:

dxi
t = At x

i
t dt + Ut (x

i
t , t )dt + G(xi

t , t )dyt (9)

such that the variance and the mean of xi
t in (9) satisfy the

same evolution equation in Lemma 1.
In this new framework (9), one needs to construct a

set of transfer maps that will transfer samples of the initial
distribution to samples with any posterior distribution [22]–
[25]. However, the transfer maps between posteriors are
not unique [28]. As an obvious example, we consider that
any n-dimensional orthogonal transformationV can transfer
the n-dimensional standard normal distribution to itself.
Because the transfer maps are not unique, how to determine
the specific form of the transfer maps becomes an important
problem. Therefore, the OT map between distributions can
naturally solve this problem.

A. Background of the OT

Let α and β be two probability measures on measure
spaces�X and�Y , respectively, and we use P (�) to denote
the set of probability measures on �. Let c : �X ×�Y →
[0,+∞] be a cost function decided by some structures, and
c(x, y) measures the cost of transporting one unit of mass
from x ∈ �X to y ∈ �Y . First, the definition of the transport
map is as follows.

DEFINITION 2 We say that T : �X → �Y transports α ∈
P (�X ) to β ∈ P (�Y ), and we call T a transport map if

β(B) = α
(
T −1(B)

)
for all β-measurable sets B. (10)

We write

Xβ = T#α (11)

if (10) is satisfied.

With these notations, Monge’s OT problem is formu-
lated as follows.

DEFINITION 3 (SEE[30]) Monge’s OT problem: Given α ∈
P (X ) and β ∈ P (Y )

minimize I[T ] =
∫

X
c(x, T (x))dα(x)

over α-measurable maps T : X → Y subject to β = T#α.

In most cases, we cannot obtain the explicit form of T .
However, the posterior distributions of the filtering system
we considered are Gaussian; therefore, we only need to
focus on the OT problem between Gaussian distributions.
Let us useN (μ,P) to denote the Gaussian distribution with
mean μ and covariance P. The OT between two Gaussian
distributions is given in the following theorem.

THEOREM 2 (SEE [31, REMARK 2.31]) If α = N (μα,Pα )
and β = N (μβ,Pβ ) are two Gaussians in R

n with Pα, Pβ �
0, then one can show that the following map:

T : x → μβ + V (x − μα ) (12)

is the OT with cost function

c(α, β ) := ‖μα − μβ‖2
2 + ‖P

1
2
α − P

1
2
β ‖2

F (13)

where

XV = P
− 1

2
α (P

1
2
α PβP

1
2
α )

1
2 P

− 1
2

α . (14)

B. OT Structure in the Correlated System

In the FPF, each step requires independent sampling,
which undoubtedly increases the operation time greatly in
higher dimensional problems. Since the posterior distribu-
tion at each instant and the noise between the observed
instants are both Gaussian, we can take advantage of Theo-
rem 2 and give another deterministic evolution equation of
the particles by the OT. Before we proceed, we need the
following lemma.

LEMMA 3 Let Pt be the solution of (3) in Lemma 1; then,
we have

P
− 1

2
t (P

1
2

t Pt+�t P
1
2

t )
1
2 P

− 1
2

t = I + Gt�t + O(�t2) (15)

where�t is a small positive real number, A,H, σB, σW , and
Q are the smooth functions of t , and

Gt = At − σW (t )Ht + 1

2
σB(t )σ T

B (t )P−1
t

− 1

2
Pt H

T
t Q−1

t Ht +�t P
−1
t

where �t is the solution to

�t P
−1
t + P−1

t �t = AT
t − At + 1

2
(Pt H

T
t Q−1Ht

− HT
t Q−1

t Ht Pt )
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+ 1

2
(σB(t )σ T

B (t )P−1
t −P−1

t σB(t )σ T
B (t )).

(16)

Proof: The solution Pt is positive and bounded since the
system is observable [29]. Fix t ∈ [0, S], and define

F (s) := P
− 1

2
t (P

1
2

t Pt+sP
1
2

t )
1
2 P

− 1
2

t .

Taking the Taylor expansion of F (s) at s = 0, we obtain

F (�t ) = I + F ′(0)�t + 1

2
F ′′(τ )�t2, τ ∈ [0,�t].

Then, the following equation:

F (s)Pt F (s) = Pt+s (17)

holds. Taking the derivative of both the sides of (17) with
respect to s, we obtain

F ′(0)Pt + Pt F
′(0) = At Pt + Pt A

T
t + σB(t )σ T

B (t )

− [Pt H
T
t σ

T
W (t ) + σW (t )Ht Pt + Pt H

T
t Q−1

t Ht Pt ]. (18)

The linear equation of (18) has a special solution G0 = At −
σW (t )Ht + 1

2σB(t )σ T
B (t )P−1

t − 1
2 Pt HT

t Q−1
t Ht ; therefore, the

solution of (18) will be Gt = G0 +�t P
−1
t , where�t can be

any skew-symmetric matrix.
However, the matrix Gt is a symmetric matrix, so that

Gt = GT
t holds, which is (16). From Lemma 2, (16) has a

unique solution. �
Now, the evolution equation of the particles in our new

OTPF is given in Theorem 3.

THEOREM 3 (OTPF) The evolution equation of the particles
in the OTPF for the continuous system (2) is as follows:

dxi
t = At x

i
t dt + σW (t )(dyt − Ht x

i
t dt )

+�t P
−1
t (xi

t − μt )dt + 1

2
σB(t )σ T

B (t )P−1
t (xi

t − μt )dt

+ Kt

(
dyt − Ht xi

t + Htμt

2
dt

)
(19)

where Kt = Pt HT
t Q−1

t and �t is the solution to (16).

Proof: First, we need to consider a discrete parti-
tion {0 = t0 < · · · < tn = S} of time interval [0, S] with
tk+1 − tk = �t, k = 0, . . . , n − 1. By Lemmas 1 and 2, we
know that the posterior distributions of states xtk and xtk+1

are N (μtk ,Ptk ) and N (μtk+1,Ptk+1 ), respectively. Following
Theorem 2, it is known that the optimal transport map Ttk
between these two Gaussians is

Ttk (xi
tk ) = μtk+1 + Vtk (xi

tk − μtk ) (20)

where

Vtk = P
− 1

2
tk (P

1
2

tk Ptk+1 P
1
2

tk )
1
2 P

− 1
2

tk .

Using Lemma 3 and (5), we have

Gt Pt + Pt Gt = (At − σW (t )Ht )Pt + Pt (A
T
t − HT

t σ
T
W (t ))

+ σB(t )σ T
B (t ) − Pt H

T
t Q−1

t Ht Pt . (21)

Thus, if Pt is nonsingular, for any system, there is exactly
one solution Gt for each time t by Lemma 3. We can get

Vtk = In + Gtk�t + O(�t2). Therefore, the particles {xi
t } in

the OTPF have the following map from tk to tk+1:

xi
tk+1

= μtk+1 + (xi
tk − μtk ) + Gtk (xi

tk − μtk )�t + O(�t2).
(22)

Let �t → 0; then, one has

dxi
t = dμt + Gt (x

i
t − μt )dt (23)

so that we complete the proof. �
In the numerical experiments, μt , Pt , and �t in (19)

are approximated by

μt ≈ μ
(N )
t := 1

N

N∑
i=1

xi
t

Pt ≈ P(N )
t := 1

N − 1

N∑
i=1

(xi
t − μ

(N )
t )(xi

t − μ
(N )
t )T

Gt ≈ G(N )
t = At − σW (t )Ht + 1

2
σB(t )σ T

B (t )P(N )
t

−1

− 1

2
P(N )

t HT
t Q−1

t Ht +�
(N )
t P(N )

t
−1

and �(N )
t is the solution to

�
(N )
t P(N )

t
−1 + P(N )

t
−1
�

(N )
t = AT

t − At

+ 1

2
(P(N )

t HT
t Q−1

t Ht

− HT
t Q−1

t Ht P
(N )
t )

+ 1

2
(σB(t )σ T

B (t )P(N )
t

−1 − P(N )
t

−1
σB(t )σ T

B (t )).

REMARK 2 The stochastic term σB(t )dBt in (7) is re-
placed with the deterministic term σB(t )σ T

B (t )P−1
t (xt −

mt )dt . Given a Gaussian prior, the two terms yield the
same posterior. If we just assume that σW = 0 and �t = 0,
the OTPF will exactly become the square-root EnKF [20].
Therefore, the OTPF can be considered as the extension of
the EnKF as well.

The complete procedure of the OTPF is listed in Algo-
rithm 2.

Using different algorithms to calculate P−1
tn can produce

different algorithms, and the details are in the next subsec-
tion.

C. Calculation of P−1
t

In practical applications, the inverse matrix P−1
t can be

calculated by using some linear algebra tricks. For instance,
we can calculate P−1

t b by solving linear equation Pt a = b
instead of calculating P−1

t , where a and b are some vectors.
There are many famous algorithms for this question (such
as singular value decomposition (SVD) and lower–upper
decomposition) [32]. In general, it is not necessary to use
the SVD method all the time, but SVD is an effective method
in the appropriate dimension.

In addition, we can reduce the computational complex-
ity by evolving the dual system.
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Algorithm 2: OTPF for the Correlated Linear System.
1: Initialization
2: S is the total time and m is the number of

discretization steps.
3: Set n = 0, dt = S

m , and tn = n × dt holds.
4: for i = 1 to N do
5: Sample xi

0 ∼ p0, where p0 is the initial
distribution.

6: The filtering result of the initial time is
μ0 := 1

N

∑N
i=1 xi

0
1: Iteration 1: Offline calculation.
2: Let μ(N )

0 ≈ 1
N

∑N
i=1 xi

t0 .
3: calculate Ptn by Lemma 1 with

P0 ≈ P(N )
0

1
N−1

∑N
i=1(xi

0 − μ0)(xi
0 − μ0)T . (Solve

the ODE system by the forward Euler scheme)
4: Calculate P−1

tn .
5: Ktn ≈ K (N )

tn = P(N )
tn HT

tn .
6: Calculate �tn by (15).
1: Iteration 2: Online updating
2: Put the xi

tn−1
, μ

(N )
tn , μ(N )

tn−1
, dytn−1, dytn , �(N )

tn , and

K (N )
tn in (19) with the forward Euler scheme to

get xi
tn .

3: Output 1
N

∑N
i=1 xi

tn as the filtering result at time tn
4: n = n + 1
5: If n ≤ m
6: Then, go to Iteration 1
7: Else End

Since Pt P
−1
t = In, we take the derivative at both the sides

and obtain

d (P−1
t )

dt
= − P−1

t Ricc(Pt )P−1
t

= P−1
t (−L) + (−LT )P−1

t − P−1
t CT CP−1

t + MT M
(24)

where Ricc(Pt ) is defined in (30) with the initial condition
P−1

0 .
From (24), it is obvious that P−1

t can be considered as
the variance matrix of the following filtering system:{

dx∗
t = A∗

t x∗
t dt + σ ∗

W (t )dW ∗
t + σ ∗

B (t )dB∗
t

dy∗
t = H∗

t x∗
t dt + dW ∗

t

(25)

where A∗
t = −AT

t , σ ∗
W (t ) = −HT

t σ
T
W (t )σ T,−1

B (t ), σ ∗
B (t ) =

Q
1
2 Ht , H∗

t = σ T
B (t ), and dB∗

t and dW ∗
t are the m-

dimensional and n-dimensional standard Brownian motion,
respectively.

It can be easily verified that the variance of (25) satisfies
(24) according to the KBF.

Since the system (25) is a linear system, we can easily
construct the OTPF equation for it. The covariance of (25)
is exactly P−1

t . The particles {x∗,i
t }N

i=1 that are determined
by the OTPF of (25) can approximate P−1

t by the following
equation:

P−1
t ≈ P∗,(N )

t , P∗
t

−1 ≈ P(N )
t . (26)

Next, we summarize the dual-dynamic system for the
OTPF in the following theorem.

THEOREM 4 (DUAL SYSTEM) The evolution equation of the
particles in the dual system of the OTPF for the continuous
system (2) is as follows:

dx∗,i
t = A∗

t x∗,i
t dt + σ ∗

W (t )(dy∗
t − H∗

t x∗,i
t dt )

+�∗
t P∗,−1

t (x∗,i
t − μt )dt

+ 1

2
σ ∗

B (t )σ ∗,T
B (t )P∗,−1

t (x∗,i
t − μ∗

t )dt

+ K∗
t (dy∗

t − Ht x
∗,i
t + Htμ

∗
t

2
dt ). (27)

In the real application, there are no observation data dy∗
t

for the dual system. However, it is reasonable to consider
the innovation process of the original system can transfer
to the innovation process of the dual system, since the
variance is irrelevant with the observation process. dI∗

t =
dy∗

t − H∗μ∗
t dt is a Brownian motion with E [dI∗

t dI∗,T
t ] =

Indt , and the original dIt = dyt − Hμt dt is a Brownian
motion with E [dIt dIT

t ] = Qt dt . dI∗
t is determined by dIt

with the transfer map (γt Q
− 1

2
t ), where γt is the projection

matrix of the first n components. (γt Q
− 1

2
t ) naturally solves

the equation Vt QtV T
t = In of Vt .

It naturally requires that the observation dimension can-
not be less than the system dimension. Otherwise, there is
no determined map from dIt to dI∗

t , which means that the
dual system needs extra information for the evolution.

Therefore, we can have the estimate of P−1
t from the

dual system

P−1
t ≈ P∗,(N )

t = 1

N − 1

N∑
i=1

(x∗,i
t − μ

∗,(N )
t )(x∗,i

t − μ
∗,(N )
t )T

(28)
where μ∗

t = 1
N

∑N
i=1 x∗,i

t .

D. Singular Covariance of State

The derivation of the OTPF crucially relies on the
assumption that Pt is positive definite. In general, when
the covariance of Gaussian random variables xtk or xtk+1

is singular, the optimal transport map V does not exist.
The simplest example is that there is no deterministic linear
map that transfers a 1-D Gaussian random variable to a 2-D
Gaussian random variable. However, this difficulty will be
resolved as we reintroduce noise, which is the so-called
Kantorovich relaxation.

Let Y1 and Y2 be the 1-D standard Gaussian and the 2-D
standard Gaussian, respectively. There is no a deterministic
map V , which satisfies V (Y1) = Y2. However, a stochastic
map [30] exists and is given by

Y2 = Y1 ·
(

1

0

)
+
(

0

1

)
B

where B is a 1-D standard Gaussian and is independent of
Y1.
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From the above analysis, even it is indeed impossible to
construct an explicit expression of the OT when the system
state covariance is singular, we can still transfer the particles
in an FPF way. Besides, when some components of the
distribution degenerate, we can still use the FPF structure
in Algorithm 1.

In a word, the following formula can be obtained by
rewriting (23) as the most general conclusion

dxi
t = dμt + Ĝt (x

i
t − μt )dt + 
tσBdBt (29)

where 
t is the projective operator to the kernel of Pt and Ĝt

is the OT in the orthogonal complement of the kernel of Pt .

REMARK 3 So far, we can clearly describe the alternative
relationship between stochastic evolution and deterministic
evolution. There will be many hybrid methods derived from
this alternative relationship.

IV. STABILITY AND CONVERGENCE FOR THE OTPF
AND THE FPF

In this section, we focus on the system (2), in which
A,H, σB, and σW are constants. We will discuss the conver-
gence of our OTPF and FPF.

A. Riccati Flow

We start with the correlated Riccati flow.

DEFINITION 4 A Riccati quadratic operator is defined as

Ricc(Pt ) := LPt + Pt L
T − Pt M

T MPt + CT C (30)

where

L = A − σW H, M = Q− 1
2 H, C = σB. (31)

A Riccati quadratic system is as follows:

dPt

dt
= Ricc(Pt ). (32)

For the error analysis, the following assumptions are
made.

Assumption 1 The system (2) is detectable and A −
σW H, σBσ

T
B , σW Q,Q, and R are constant matrices and sta-

ble.

Assumption 2 The initial covariance matrix is positive def-
inite.

We consider the bound condition

Ricc(P) = 0. (33)

Let �t be the transition matrix of the following form and
above notion:

d

dt
�t = (L − Pt M

T M )�t , �0 = I (34)

where Pt is the solution for (30). Therefore, we have the
following lemma.

LEMMA 4 (SEE[29] AND [33]) Consider equations in
Lemma 1 and (33). Then, under Assumption 1, we will
have the following result.

1) There exists a unique positive-definite solution P∞
to (33).

2) The explicit solution to the Riccati flow (30) with
notation (31) is given by

Pt = P∞ + eF∞t D−1
t eF∞t (35)

where F∞ = A − σW H − P∞HQ−1HT and Dt =
(P0 − P∞)−1 + ∫ t

0 eF∞sHT HeF∞sds. The real part of
eigenvalue in F∞ is all negative and less than −η0

for some η0 > 0.
3) If the initial covariance matrix P0 is strictly positive

definite, then there exist α0 and β0, such that the
solution Pt satisfies

α0In ≺ Pt ≺ β0In

where α0In ≺ Pt means that Pt − α0In is a positive-
definite matrix.

4) The covariance Pt → P∞ exponentially fast which
means that for any 0 < η < η0

lim
t→∞ ‖Pt − P∞‖F ≤ ce−2ηt

where η0 is the same as that in (2).

B. Convergence of the Correlated OT Filter

Now, we will give the error analysis of our OTPF, and the
conditional expectationμt is approximated byμN

t satisfying
the following equations:

dxi
t = Aμ(N )

t dt + σW (dyt − Hμ(N )
t dt )

+ K (N )(dyt − Hμ(N ) + G(N )(xi
t − μ

(N )
t )dt (36)

which is directly from (23). Then, we take the sum of (36);
μ

(N )
t satisfies the following equations:

dμ(N )
t = Aμ(N )

t dt + σW (dyt − Hμ(N )
t dt )

+ K (N )(dyt − Hμ(N )dt ) (37)

dP(N )
t = Ricc(P(N )

t )dt (38)

dζ i
t = G(N )ζ i

t dt (39)

where μ
(N )
t := 1

N

∑N
i=1 xi

t , P(N )
t := 1

N−1

∑N
i=1(xi

t −
μ

(N )
t )(xi

t − μ
(N )
t )T , K (N )

t = P(N )
t HT , ζ i

t := xi
t − μ

(N )
t , and

G(N )
t = A − σW H + 1

2
σBσ

T
B P(N )

t
−1

− 1

2
P(N )

t HT Q−1H +�
(N )
t P(N )

t
−1

where �(N )
t is the solution to

�
(N )
t P(N )

t
−1 + P(N )

t
−1
�

(N )
t = AT − A

+ 1

2
(P(N )

t HT Q−1H

−HT Q−1HP(N )
t )

+ 1

2
(σBσ

T
B P(N )

t
−1 − P(N )

t
−1
σBσ

T
B )

with notations (31).
Next, we will introduce the results of consistency of

μ
(N )
t and P(N )

t .
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THEOREM 5 Consider the correlated filtering system (2)
initialized with the prior x0, and the variance is strict positive
definite. The estimate μ(N )

t satisfies the system (37). Under
Assumptions 1 and 2, we have the following convergence
and error properties results.

1) For any N > 1

lim
t→∞ e2ηt‖μ(N )

t − μt‖2 = 0 (40)

lim
t→∞ e2ηt‖P(N )

t − Pt‖F = 0. (41)

2) For any t > 0 and as N → ∞

E [‖μ(N )
t − μt‖2

2] ≤ Cm
Tr(P0) + Tr(P0)2

N
e−2ηt

(42)

E [‖P(N )
t − Pt‖2

F ] ≤ CP
Tr(P0)2

N
e−4ηt . (43)

For all 0 < η < ψ (A − PW H ); ψ (B) := min{−λ|λ
is the eigenvalue of B}; Cm and Cp are some constants.

Proof: The difference P(N )
t − Pt [see (32)–(37)] is

d (P(N )
t − Pt )

= (A − σW H − Pt H
T Q−1H )(P(N )

t − Pt )dt

− (P(N )
t − Pt )(A − σW H − Pt H

T Q−1H )T dt .

Therefore, we need to analyze the system

d

dt
X (t ) = (A − σW H − Pt H

T Q−1H )Xt

= Ft Xt = F∞Xt + (P∞ − Pt )HT Q−1H (44)

where Ft = A − σW H − Pt HT Q−1H and F∞ = A − σW H
− P∞HT Q−1H . This is a standard ODE; therefore, the
solution can be expressed as

Xt = etF∞Xs +
∫ t

s
e(t−τ )F∞ (P∞ − Pt )HT Q−1Hdτ. (45)

Grönwall’s inequality is, then, used to conclude that

‖Xt‖2 ≤ ‖etF∞‖2‖Xs‖2+∫ t

s
‖e(t−τ )F∞‖2‖P∞ − Pt‖F ‖HT Q−1H‖2‖Xτ‖dτ. (46)

Here, we need an error analysis for ‖etF∞‖. First, we
consider the Jordon standard form of ‖etF∞‖2 = ‖OJO−1‖2.
Owing to linear algebra and Lemma 4, the norm is bounded

‖etF∞‖2 ≤ ‖O‖2‖O−1‖2

(
max

0≤k≤n

t k

k!

)
e−η0t (47)

where η0 is the largest multiplicity of the eigenvalues of F∞.
Then, for all 0 < η < η0, there exists a constant c

‖etF∞‖2 ≤ ce−ηt .

Therefore, using ‖etF∞‖2 ≤ ce−ηt and (46), we have

‖Xt‖2 ≤ ce−ηt‖Xs‖2+∫ t

s
ce−η(t−τ )‖P∞ − Pt‖F ‖HT Q−1H‖2‖Xτ‖2dτ. (48)

Grönwall’s inequality is used to conclude that

‖Xt‖2 ≤ c′e−η(t−s)‖Xs‖2ec′‖HT Q−1H‖2
∫ t

s ‖Pt −P∞‖F ds. (49)

This shows that the transition matrix �t
s , where �t

sXs = Xt

holds, for the linear system (44) is bounded as follows:

‖�t
s‖2 ≤ c′e−η(t−s)c′‖HT Q−1H‖2

∫ t
s ‖Pt −P∞‖F ds. (50)

Now, because of the exponential convergence from
Lemma 4, we have

‖�t
s‖2 ≤ c′e−η(t−s)c′‖HT Q−1H‖2

c‖P0−P∞‖F
2η . (51)

The equation in Lemma 1 and the variance equation in
(37) are similar. Furthermore, consider that the empirical
counterpart of the linear system replaces Ft ,Pt , and �t

s with
F (N )

t ,P(N )
t , and �t,(N )

s , respectively. Now, we can simplify
(44) by the above approach

P(N )
t − Pt = �t

0(P(N )
0 − P0)(�t,(N )

0 )T . (52)

Therefore

‖P(N )
t − Pt‖F ≤ ‖�t

0‖2‖(�t,(N )
0 )T ‖2‖P(N )

0 − P0‖F

≤ c2e−2ηt‖P(N )
0 − P0‖F . (53)

Taking the expectation of both the sides, we obtain

E [‖P(N )
t − Pt‖F ] ≤ c4e−4ηt E [‖P(N )

0 − P0‖F ]

= c4e−4ηt 1

N
E [‖Tr(ζ i

0ζ
i T
0 ) − P0)2]

≤ c4e−4ηt E [‖ζ i
0‖4

2]

N
= c4e−4ηt 3Tr(P0)2

N
.

(54)

Then, the error analysis of the mean square estimation
can be given. Subtracting conditional mean from (37) for
Lemma 1, we have

dμ(N )
t − dμt = (A − σW H − P(N )

t HT Q−1H )(μ(N )
t −μt )dt

+ (P(N )
t − Pt )HT Q−1HdIt (55)

where dIt = dyt − Hμt dt is the innovation process. Its
solution is given by

μ
(N )
t − μt = �

t,(N )
0 (μ(N )

0 − μ0)

+
∫ t

0
�t,(N )

s (P(N )
s − Ps)HT Q−1HdIs. (56)

The norm of the first term of (55) is bounded by

E [‖�t,(N )
0 (μ(N )

0 − μ0)‖2
2] ≤ c2e−2ηt E [‖μ(N )

0 − μ0‖2
2]

≤ c2e−2ηt Tr(P0)

N
. (57)

The norm of the second term of (55) is bounded by

E

[
‖
∫ t

0
�t,(N )

s

(
P(N )

s − Ps
)

HT Q−1HdIs‖2
2

]

=
∫

E
[
Tr
(
�t,(N )

s (P(N )
s − Ps)HT Q−1H

(P(N )
s − Ps)T

) (
�t,(N )

s

)T ]
ds
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≤
∫ t

0
E [‖�t,(N )

s (P(N )
s − Ps)‖2

F ‖H‖2
2]ds

≤ ‖H‖2
2

∫ t

0
c2e−2η(t−s)c4e−4ηsE

[
‖P(N )

0 − P0‖2
F

]
ds

≤ c6‖H‖2
3Tr(P0)2

N

e−2ηt

2η
. (58)

The first row leads to the second row using a quadratic
variation process [34], which is 〈dIs〉 = Qsds. Adding (56)
and (58), we complete the proof. �

C. Convergence of the Correlated FPF

In this subsection, we prove the convergence of the 1-D
linear correlated FPF.

Consider the N particle system. We define the error pro-
cesses ζ̃ i

t := x̃i
t − μt . The evolutions for the mean μ̃(N )

t , the
covariance P̃(N )

t , and the error ζ̃ i
t := x̃i

t − μt are determined
by the following equations.

LEMMA 5 The error process ζ̃ i
t = x̃i

t − μt for the FPF is
determined by the following equation:

d ζ̃ i
t =

{
A − σW H − Pt HT Q−1H

2

}
ζ̃t dt + σBdBi

t . (59)

ζ̃ i
t is the Gaussian at any time t if the initial ζ̃ i

0 is the Gaussian.

Proof: It can be obtained directly from (7) and
Lemma 1. �

Similar to (37), we have

dμ̃(N )
t = Aμ̃(N )

t dt + σW (dyt − Ht μ̃
(N )
t dt )

+ σBdB(N )
t + K (N )(dyt − Hμ̃(N )

t dt ) (60)

dP̃(N )
t = Ricc(P̃(N )

t )dt + dZt + dZT
t (61)

d ζ̃ i
t = Gt ζ̃

i
t dt + σBdBi

t − σBdB(N )
t (62)

where dB(N )
t := 1

N

∑N
i=1 dBi

t and dZt := 1
N−1

∑N
i=1(σB

dBi
tζ

T,i
t + ζ i

t dBi,T
t σ T

B ).
Then, we can conclude the following convergence anal-

ysis.

THEOREM 6 Consider the SDE system (60). Under
Assumptions 1 and 2 and for the state dimension with 1,
we have the following.

1) For any t > 0, p > 1, and N > 4p

E [(P̃(N )
t − Pt )2p]

1
p ≤ C1

N
e−βt + C2

N
. (63)

2) For any t > 0 and as N → ∞

E [(μ̃(N )
t − μt )2] ≤ P0

N
e−ψ (A−σW H )t + C3

N
(64)

where ψ (B) := min{−λ|λ is the eigenvalue of B}
and C1,C2, and C3 are some constant numbers.

Proof: We can obtain the results following the similar
procedure in the proof of Theorem 5. A,H, σB, σW , μt ,Pt ,
and Q are scales.

The evolution of the difference P̃(N )
t − Pt is

d (P̃(N )
t − Pt )

= 2

(
A − σW H − P̃(N )

t + Pt

2
H2Q−1

)
(P̃(N )

t − Pt )dt

+ 2dZt .

Define R̃t := E [(P̃(N )
t − P̃t )2p], and by Itô’s formula, we

have

dR̃t

dt
=E

[
4p

(
A−σW H − P̃(N )

t +Pt

2
H2Q−1

)(
P̃(N )

t −Pt

)2p
]

+ p(2p − 1)
4σ 2

B

N − 1
E [P̃(N )

t (P̃(N )
t − Pt )2p−2]. (65)

It is easy to see that(
A − σW H − P̃(N )

t + Pt

2
H2Q−1

)
≤ Gt (Pt ).

By mean inequality and Pt ≤ P∞ + P0, we have

P̃(N )
t = (P̃(N )

t − Pt ) + Pt ≤ (P̃(N )
t − Pt )2

2P∞
+ P̃0 + 2P∞.

From Hölder’s inequality, we have E [P̃(N )
t − Pt )2p−2] ≤

R
p−1

p
t . Therefore

dR̃t

dt
≤
(

4pGt (Pt ) + 4p(p − 1)σ 2
B

2P∞(N − 1)

)
Rt

+ 4p(p − 1)σ 2
B

(N − 1)
(2P∞ + P0)R̃

p−1
p

t . (66)

Therefore

dR̃
1
p

t

dt
≤ 4(Gt (Pt ) + 4p(p − 1)σ 2

B

2P∞(N − 1))
R̃

1
p

t

+ 4(2p − 1)σ 2
B (2P∞ + P0)

N − 1
. (67)

Using the linear transition result from points 3 and 4 of
Lemma 4 with the same notation, we have

dR̃
1
p

t

dt
≤ c4e−4ηt+ 4(2p−1)η0

N−1 t R̃
1
p

t

+ c4

4η0 − 4(2p−1)η0

N−1

4(2p − 1)σ 2
B (2P∞ + P0)

N − 1
(68)

using N > 4p, which proves the first part.
The difference μ(N )

t − μt satisfies

d (μ̃(N )
t − μt ) = (A − σW H − P̃(N )

t H2Q−1)

+ (P̃(N )
t − Pt )HQ−1(dyt − Hμt dt )

+ σBdB(N )
t . (69)

Therefore, by the application of Itô’s rule, we have

d

dt
E [(μ̃(N )

t − μt )2]

= E [2(A − σW H − P̃(N )
t H2Q−1)(μ̃(N )

t − μt )]
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+ E
[

(P̃(N )
t − Pt )2H2Q−1

]
+ σ 2

B

N
. (70)

Pt is bounded by using the bounded condition assump-
tion, we can obtain

d

dt
E [(μ̃(N )

t − μt )2] ≤ − 2ψ (A − σW H )E [(μ̃(N )
t − μt )2]

+ c1e−ηt+c2

N
H2Q−1 + σ 2

B

N
. (71)

The application of Grönwall’s inequality concludes the
second part. �

REMARK 4 Here, the analysis of the OTPF and the FPF
for the continuous system is given. Furthermore, the new
convergence order of the MSE is O( 1

N ), which is better than
O( 1

N2− 2
r

) with 1 ≤ r < 2 in general result for the PF [35]
[27].

V. NUMERICAL EXPERIMENTS FOR ALGORITHMS

In this part, we will test the efficiency of our proposed
OTPF. We consider two numerical examples. The first one is
a scalar case and the second one is a high-dimensional case
with the dimension varying from 25 to 200. We repeated
each experiment 20 times and take the average of the MSE
and time. The definitions of the mean of mean square error
(MMSE) and the mean of time (MT) are as follows:

MMSE := 1

20

20∑
i=1

⎡
⎣ 1

NS + 1

NS∑
j=0

(
x̂i

t j
− μi

t j

)2

⎤
⎦ (72)

MT := 1

20

20∑
i=1

RTi (73)

where NS means the number steps of the experiments, the
RT means the total running time of the ith experiment, x̂i

t j

is the filtering result of the ith experiment at time t j , and x̂i
t j

is the estimation of μi
t j

. The EnKF used in the experiments
is from [18].

There are two kinds of OTPF in our simulations, which
the OTPF uses the linear algebra method to calculate P−1

t
and the OTPF DP uses the dual-particle flow to approximate
P−1

t . The selection of initial particles has a great influence
on the approximation of Pt by the dual system, and it is
important to make the initial P∗,(N )

0 close enough to P−1
0 .

We run our simulations on CPU clusters with Intel Core
i9-9880H(2.3CGz/L3 16M) equipped with 16-GB memory.
Besides, we use NumPy, which is a python package for
scientific computing in algorithms, and we use time, which
is a python package for obtaining the CPU running time of
algorithms.

A. Scalar Case

The scalar system is as follows:{
dxt = Axt dt + σBdBt + σW dWt

dyt = Hxt dt + dWt
(74)

TABLE I
Parameter Setting in Simulation and Experiment Result

TABLE II
Parameter Setting in Simulation and Experiment Result

where Bt is a standard Brownian motion and the initial
distribution of x0 isN (1, 1). Here, we investigate the system
(74) with varying A, σB, σW , H , and Q, where Q is the
covariance matrix of Wt .

In Table I, the total time of the simulation is 40˜s and
the number of steps is 4000, so that dt is 0.01 s, the system
matrix A = −0.5, and observation matrix H = 1. From
Table I, we can find out our new method OTPF is highly
robust for noise term, such as σW , σB, and Q. Our algorithm
still maintains high efficiency even if the standard deviation
of the noise is 20, and the other algorithms are all failed.

In Table II, the total time of the simulation is 40 s and
the number of steps is 4000, so that dt is 0.01 s, the system
matrix A = −0.5, and observation matrix H = 1. From
Table II, our new algorithm requires fewer particles than
other algorithms. The FPF needs three times of the particle
number to have the same performance. As the dimensional
grows, the computational complexity of the OTPF does not
grow as fast as that of the other two algorithms.

In Table III, the total time of the simulation is 4 s and the
number of steps is 400, so that dt is 0.01 s, σB = 1, Q = 1,
and σW = 0.2. The particle number is 5. We can find out
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TABLE III
Parameter Setting in Simulation and Experiment Result

that the OTPF is better than any other algorithms in several
situations.

B. Vector Case

In the vector system, the total time of the simulation is
10 s and the number of steps is 1000, so that dt is 0.01 s.

The high-dimensional example considered here is as
follows: {

dxt = Anxt dt + 1.5IndBt + 0.3IndWt

dyt = Hnxt dt + dWt
(75)

where

An =

⎛
⎜⎜⎜⎜⎜⎝

a b 0 · · · 0

c a b · · · 0

0 c a · · · 0

· · · · · · ·
0 0 · · · c a

⎞
⎟⎟⎟⎟⎟⎠ ∈ Mn(R)

with a = −0.2, b = −0.1, c = 0, Hn = In ∈ R
n is the iden-

tity matrix, and dBt and dWt are the standard n dimen-
sional Brownian motions. The initial distribution of x0 is
N (μn, 2In), where the first [ n

2 ] ([·] is the rounding function)
components in μn are 1, and the others are −1.

REMARK 5 The online–offline approach can be applied to
the OTPF. The offline part of the OTPF is to compute Pt and
�t , and the others are the online part. It is easy to see that
Pt and �t in the OTPF are independent of the observation.

In Table IV, the total time of the simulation is 40 s with
1000 number steps. The OLT in Table V means the online
time.

From Table IV, it is not difficult to see that the time
required by the FPF increases significantly as the dimension
increases compared with the other two methods, because
of the complexity of high-dimensional sampling. It can

TABLE IV
Error of the Ensemble Variance in 100 Dimension With Time Steps 0.01 s

TABLE V
Parameter Setting in Simulation and Experiment Result

also be seen that the EnKF cannot effectively improve the
accuracy of the algorithm with the increase in the number
of particles. The OTPF performs well in any situation. After
the improvement of the online and offline approaches, the
computational complexity of the OTPF is almost the same
as that of the EnKF, and it performs better than the FPF with
the same parameters.

In order to show the convergence of the ensemble vari-
ance, we give the FN of the error between the optimal
variance and the ensemble variance. The time steps in
Table IV are 0.01 s, and the system is 100-D in (75). We
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Fig. 1. Estimation results of algorithms in the 100-D case with 100
particles at different time steps 0 ≤ k ≤ 1000. (a) First dimension. (b)

50th dimension. (c) 100th dimension. (d) Total RMSE.

set P40 as P∞, and we calculate the FN of error between
the ensemble variance and the optimal variance at time
steps 100, 500, and 1000. The “Component average” (CA)
is the mean average of the FN, i.e., CA = FN/100. The
convergence of the ensemble variance will be effectively
improved by shortening the time step.

Fig. 1 shows the comparison of the three algorithms in
100-D filtering, where the parameters are the same with the
100-D case in Table V.

Then, we compared the ensemble means of the two
OTPFs based on the different approximation methods for
P−1

t through 200-D experiments. The ensemble means of
the OTPFs, the EnKF, and the optimal result KBF are
displayed in Fig. 2. The MMSEs of the 200-D case are
given in Table VI, where N1 and N2 are particle numbers.
It is easy to find that the OTPFs perform better than the
traditional EnKF given the same number of particles, and

Fig. 2. Estimation results of algorithms in the 200-D case with 100
particles and 200 particles at different time steps 0 ≤ k ≤ 1000. (a) First
dimension with 100 particles. (b) 200th dimension with 100 particles. (c)

First dimension with 200 particles. (d) 200th dimension with 200
particles.

TABLE VI
MMSE in 200 Dimensions

the OTPF based on the dual system also has good accuracy.
As the number of particles increases, the EnKF performs
better, but its results are not as good as the OTPF with a low
number of particles. In higher dimensional cases, we have
reason to believe that the OTPF can use a smaller number of
particles than the EnKF to obtain better numerical results.
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VI. CONCLUSION

In this article, we reinterpret the evolution of the poste-
rior distribution as the geometric evolution and give transfer
maps by OT. Based on this idea, we propose a new effective
OTPF for linear time-varying systems with correlated noise.
Furthermore, we give the rigorous convergence analysis
of our method as well as the FPF when the system is
time invariant. In the simulation part, it is shown that our
OTPF is especially efficient for high-dimensional problems
compared with the FPF and the EnKF. More specifically, we
only need 100 particles for 100-D problems in our OTPF.
However, the new method is not limited to 100 dimensions
and can solve higher dimensional numerical experiments
with the aid of suitable computing equipment.

The experimental results show that the sparsity of the
system in high-dimensional situations means that the sys-
tem can be approximated by a small number of parti-
cles. The computational complexity will be reduced from
O(n × n) to O(N × n), where N is much smaller than n.

However, all our works are limited in linear systems,
and how to derive the efficient OTPF for general nonlinear
systems is our future work.

APPENDIX

Proof of Lemma 2

In this appendix, we will give the proof of Lemma 2.
First of all, we need the following lemma.

LEMMA 6 (SEE [29]) The two Gaussian distribution a and
b, where a ∼ N (μa,Paa) b ∼ N (μb,Pbb) and(

a

b

)
∼ N

((
μa

μb

)
,

(
Paa Pab

Pba Pbb

))
.

Then, the conditional random variable a|b is also Gaus-
sian and a|b ∼ N (μa|b,Pa|b)

μa|b = μa + PabP−1
bb (b − μb) (76)

Pa|b = Paa − PabP−1
bb Pba. (77)

Proof of Lemma 2: For the filtering system (2), we have

xt = eÃ(t )x0 + σW

∫ t

0
eÃ(t−s)dWs + σB

∫ t

0
eÃ(t−s)dBs (78)

where Ã(t ) := ∫ t
0 A(s)ds. It can be easily concluded that xt

is Gaussian since x0, {Ws} and {Bs} are independent and
Gaussian.

Then, for the observation term, we have

yt = y0 +
∫ t

0
H (t )xt dt +

∫ t

0
dWt

= y0 + A−1(t )(In − eÃ(t ) )x0+

+ σW (t )A−1(t )
∫ t

0
(In − eÃ(t−s) )dWs

+ σB(t )A−1(t )
∫ t

0
(In − eÃ(t−s) )dBs + Wt . (79)

Then, we can know that yt is also Gaussian. Then, this
lemma holds by Lemma 6. �
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