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LOG-CONCAVE POSTERIOR DENSITIES ARISING IN
CONTINUOUS FILTERING AND A MAXIMUM A POSTERIORI

ALGORITHM*

JIAYI KANG\dagger , ANDREW SALMON\ddagger , AND STEPHEN S.-T. YAU\S 

Abstract. Nonlinear filtering is fundamental to many engineering problems, as it involves infer-
ring the state of a system given complicated dynamics and noisy observations. Some approaches to
nonlinear filtering use the analysis of the underlying PDE or stochastic PDE governing the evolution
of the posterior probability distribution over time, one approach, in particular, being the Yau--Yau
method. In this paper, we give a maximum a posteriori (MAP) framework for the Yau--Yau method.
Furthermore, we propose convex filtering, intermediate between linear and nonlinear filtering, which
gives criteria under which the posterior preserves log-concavity. The key tool from the PDE is a
result from Korevaar, giving criteria under which a quasilinear parabolic PDE preserves convexity.
A bridge between the MAP estimator and the structure of the posterior is explained. Finally, we
propose a novel numerical method based on iteration and apply this method to a tracking problem.

Key words. nonlinear filtering problems, convex optimization, DMZ equation, Yau--Yau method

MSC codes. 35K15, 49M99, 60G35, 93E11

DOI. 10.1137/22M1508352

1. Introduction. The central problem of filtering is to estimate the dynamical
system with some related and noisy observations. Kalman [27] proposed the first
analytical recursive filtering algorithm, thus opening the door to nonlinear filtering
algorithms. Nonlinear filtering plays an important role in state estimation, and it
is a significant part of modern control. Filtering can be analyzed using either a
continuous or a discrete model for the evolution of both state and observations. While
a continuous model for the evolution of state is often closer to the underlying ODE
model used to describe the dynamics of a system, a discrete model for the observation
process is often closer to the behavior of a sensor that gives a discrete rather than
continuous sequence of measurements.

After decades of accumulation and development, there are three major frameworks
for nonlinear filtering.

\bullet Minimum mean square error (MMSE) [23, 41],

\^xMMSE
t = argmin

\phi t

E[\| xt  - \phi t(yt)\| 22| \scrY t] for t\in [0, T ].

\bullet Maximum a posteriori (MAP) [31, 38],

\^xMAP
t = argmax

xt

p(t, xt| \scrY t) for t\in [0, T ],

where the p(t, \cdot | \scrY t) is the posterior density at time t.
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2408 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

\bullet Variational inference (VI),

\^q\phi (t, x) = argmin
q\phi 

KL(q\phi (t, x)\| p(t, x| \scrY t)) for t\in [0, T ],

where the p(t, \cdot | \scrY t) is the posterior density at time t.
These three frameworks are not completely independent and they are equivalent to
each other under some certain conditions such as the linear MMSE model [32, 33].

Since 1966, Duncan [20], Mortensen [37], and Zakai [54] have independently de-
rived the stochastic partial differential equation of the unnormalized conditional den-
sity function for a continuous state equation with continuous observation, which is
the so-called DMZ equation. The DMZ equation can be further transformed to the
robust form [16]. In the 1970s. Brockett and Clark [6], Brockett [7], and Mitter [36]
independently proposed to construct finite-dimensional filters by using the estima-
tion algebra method. Since the 1990s, in a series of works [13, 11, 10, 9, 8, 51], Yau
and his collaborators have completely classified finite-dimensional estimation algebras
(FDEA) with maximal rank with arbitrary state space dimension, which includes both
Kalman--Bucy and Ben\'es filtering systems as special cases. Since the 2000s, Yau and
coworkers [49, 18, 43, 45, 46, 26] have made significant progress in nonmaximal rank
FDEA.

Furthermore, Yau and Yau [52] used a different way to solve the DMZ equation
from the Lie algebra method. Motivated by Yau and Yau [52], Yau and Hu [50, 25]
first proposed a novel direct method to solve the explicit solutions of the DMZ equation
with arbitrary initial conditions. The explicit solutions of the DMZ equation can
provide important guidance for the design of numerical algorithms. Shi, Yang, and
Yau [44] designed an effective numerical method for time-invariant filtering problems
by using the direct method and the Gaussian approximation algorithm. Chen, Shi,
and Yau extended the numerical method to time-varying filtering problems in [12]. In
practice, many numerical algorithms use the idea of linearization, such as the extended
Kalman filter (EKF; 1979) [34], the iterated extended Kalman filter (IEKF; 1993) [5],
and the unscented Kalman filter (UKF; 2000) [47]. More and more algorithms based
on linearization of MMSE have been proposed which have created prosperity for
algorithms based on MMSE.

In the meantime, the projection filter [39] motivated by the VI was proposed. In
the 1990s, the particle filter [22, 2] was proposed to avoid calculating the posterior
densities by simulating the distributions directly. A variety of sampling techniques
[21, 30] which are based on the framework of VI develop the different filtering algo-
rithms. Combining with the linearization method, the Gaussian particle filter [29] was
developed. While the filtering model based on VI frameworks has quickly developed,
Yau and Luo proposed an algorithm, called the Hermite spectral method [35], which
directs parameterized posterior densities for the Yau--Yau method [53]. From then on,
many different methods including the proper orthogonal decomposition method [48]
and the Legendre Galerkin method [19] have been used in the Yau--Yau algorithm.

Accordingly, less attention has been paid to MAP estimation techniques in this
field. Differently from the MMSE, the MAP estimator approximates the point with
the maximum likelihood, not the mean of the posterior state. Importantly, MAP
estimators can be used for target tracking problems, communications, radar track-
ing, sonar ranging, and satellite navigation [4]. Under the assumption that posterior
densities are Gaussians, the well-known IEKF, induced by using the Gauss--Newton
optimization [5], can be interpreted as a MAP estimator. And generally speaking,
the complexity of the MAP estimators is smaller [33]. So, it is valuable to find the
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LOG-CONCAVE POSTERIOR DENSITIES 2409

MAP estimator for the nonlinear filtering problems. From history, we can see the
DMZ equation and the Yau--Yau method are central concepts for nonlinear filter-
ing problems in the sense of not only MMSE but also VI. One natural question is
whether PDE methods, such as the Yau--Yau method, can be used to develop MAP
estimators. For the MAP framework, the core problem is to calculate the maximum
point of posterior density, which means that we should be able to solve the maximum
points in the posterior densities of PDE. Unfortunately, it is impossible to construct
an explicit equation for the maximum point in the posterior densities, and usually, it
is not well defined by considering the process where the initial density is unimodal
and terminal density is bimodal. In order to overcome such an issue, we need to
investigate the case that the posterior densities are all unimodal, or equivalently, the
densities are all logarithmic concave. Korevaar established a theory to describe the
convexity in a posteriori density function of the parabolic PDE [28], which provides
the foundation for our work.

In this paper, the main contributions are as follows:
\bullet We propose the concept of convex filtering and explain the reason why linear

filtering maintains a log-concave distribution when the initial distribution is
log-concave.

\bullet Convex filtering can be considered as a natural generalization of linear filter-
ing and provides a mathematical foundation for continuous MAP models.

\bullet We prove that the Yau-type FDEA system is a convex filter under appropriate
conditions.

\bullet Motivated by the concept of convex filtering, we proposed a novel iteration
method for solving the general filtering problems which is called the iteration
optimization Kalman filter (IOKF).

Bearings-only tracking (BOT) is the benchmark scenario that we use to evaluate
the performance of IOKF and compare the result to that of UKF and IEKF.

2. Background. The problem of filtering is to optimally estimate the state of a
system evolving in time according to a stochastic differential equation by using noisy
observations. Such a system can be given by the signal observation model.

Hidden state process:

dxt = f(t, xt)dt+ g(t, xt)dVt.(2.1)

Observation process:

dyt = h(t, xt)dt+ dWt (Continuous),

ztk =H(tk, xtk) +Btk (Discrete).
(2.2)

The stochastic processes xt, Vt, yt, and Wt are valued in \BbbR n, \BbbR p, \BbbR m, and \BbbR m, respec-
tively. Vt, Wt, x0 are assumed to be mutually independent and y0 = 0. The Vt and Wt

processes are Brownian motions and their covariance matrices are E[dVtdV
\top 
t ] = Indt

and E[dWtdW
\top 
t ] = S(t)dt. Btk is given by a Gaussian distribution with covariance

matrix \~Stk . The functions f(t, x), h(t, x), g(t, x), and H(t, x) are all smooth functions
with suitable dimension of input and output.

In this section, we will recall the DMZ equation for continuous state evolution
and continuous observations and the Bayesian framework for the discrete observation
system. Finally, we will recall a theorem of Korevaar, which is the main technical tool
we will use to study the convexity properties of the parabolic PDE we consider.
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2410 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

2.1. Review of the Yau--Yau method for the DMZ equation. At the
beginning of this subsection, let us review the well-known DMZ [20, 37, 54] equation
of (2.1) with continuous observation in (2.2). For simplicity of discussion, we assume
that g(t, x) in (2.1) satisfies g(t, x)g(t, x)\dagger \equiv In.

The unnormalized density function \sigma (t, x) of Xt conditioned on the observation
history \scrY t satisfies as follows:\Biggl\{ 

d\sigma (t, x) =L0\sigma (t, x)dt+ h\top (t, x)S - 1(t)\sigma (t, x)dyt,

\sigma (0, x) = \sigma 0(x),
(2.3)

where

L0 :=
1

2

n\sum 
i=1

\partial 2

\partial x2
i

 - 
n\sum 

i=1

fi
\partial 

\partial xi
 - 

n\sum 
i=1

\partial fi
\partial xi
 - 1

2
h\top (x, t)S - 1h(x, t).(2.4)

The DMZ equation can be transformed into a deterministic PDE by using the
following robust exponential transformation:

\rho (t, x) =exp[ - K(t, x)]\sigma (t, x),

K(x, t) =h\top (x, t)S - 1(t)yt.
(2.5)

By using the robust transformation, we can obtain the robust DMZ equation as\left\{                     

\partial \rho 
\partial t =

1
2

\sum n
i=1

\partial 2\rho 
\partial x2

i

+
\sum n

i=1(
\partial K
\partial xi
 - fi)

\partial \rho 
\partial xi

+( \partial 
\partial t (h

\top S - 1)yt +
1
2

\sum n
i=1[

\partial 2K
\partial x2

i
+ ( \partial K\partial xi

)2]

 - 
\sum n

i=1 fi
\partial K
\partial xi

(t, x)

 - 
\sum n

i=1
\partial fi
\partial xi
 - 1

2 (h
\top S - 1h))\rho (t, x),

\rho (0, x) = \sigma 0(x).

(2.6)

The most important method for solving the robust DMZ equation is the Yau--Yau
algorithm [53]. Denote the sequence of observation times as \scrP N = \{ 0 = \tau 0 < \tau 1 <
\cdot \cdot \cdot < \tau N = T\} . Let \rho k be the solution of the robust DMZ equation with yt = y\tau k - 1

on
the time interval \tau k - 1 \leq t < \tau k, so that for k = 0,1, . . . ,N , \rho k satisfies the following
equation: \left\{                               

\partial \rho k

\partial t = 1
2

\sum n
i=1

\partial 2\rho k

\partial x2
i
(t, x)

+
\sum n

i=1(
\partial \~Kk

\partial xi
 - fi)

\partial \rho k

\partial xi

+( \partial 
\partial t (h

\top S - 1)y\tau k - 1
+ 1

2

\sum n
i=1[

\partial 2 \~Kk

\partial x2
i

+ (\partial 
\~Kk

\partial xi
)2]

 - 
\sum n

i=1 fi
\partial \~Kk

\partial xi
(t, x)

 - 
\sum n

i=1
\partial fi
\partial xi
 - 1

2 (h
\top S - 1h))\rho k(t, x),

\rho 1(0, x) = \sigma 0(x),

\rho k(\tau k - 1, x) = \rho k - 1(\tau k - 1, x), k= 2,3, . . . ,N,
\~Kk = h\top (x, t)S - 1(t)y\tau k - 1

.

(2.7)

Define the norm of \scrP N by | \scrP N | = sup1\leq k\leq N (\tau k  - \tau k - 1). The convergence of the
Yau--Yau algorithm has been proved in both the pointwise sense and the L2 sense in
[53], i.e.,

lim
| \scrP N | \rightarrow 0

\rho k(t, x) = \rho (t, x).(2.8)

The key proposition of the Yau--Yau method is given as follows.
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LOG-CONCAVE POSTERIOR DENSITIES 2411

Proposition 2.1 (Proposition 2.1 in [35]). For each \tau k - 1 \leq t\leq \tau k, k = 1,2, . . . ,
N , \rho k(t, x) satisfies (2.7) if and only if

\varrho k(t, x) = exp(h\top (t, x)S - 1y\tau k - 1
)\rho k(t, x)(2.9)

satisfies the PDE

\partial \varrho k

\partial t
=L0\varrho 

k,(2.10)

where L0 is defined in (2.4), while the initial data is updated as follows:\left\{         
\varrho 1(0, x) = \sigma 0(x)

or

\varrho k(\tau k - 1, x) = exp(h\top (\tau k - 1, x)S
 - 1(\tau k - 1)(y\tau k - 1

 - (y\tau k - 2
)) \cdot \varrho k - 1(\tau k - 1, x)

for k\geq 2.

(2.11)

Remark 2.2. Equation (2.10) is defined as the Yau--Yau PDE in [3].

We can summarize the Yau--Yau method as the following diagram:

Numerical solver\leftarrow  - \varrho k(t, x)
\| \scrP N\| \rightarrow 0 - \rightarrow 

normalizing
p(t, x| \scrY t).(2.12)

2.2. The Bayesian framework for the continuous system with discrete
observation. The setting of continuous state space and discrete observations is
known as the continuous-discrete system. The probability density of xt in (2.1), de-
noted \~p(t, x), satisfies a forward Kolmogorov equation, also known as a Fokker--Planck
equation,

\partial 

\partial t
\~p(t, x) =

1

2

n\sum 
i=1

\partial 2

\partial x2
i

(\~p(t, x)) - 
n\sum 

i=1

\partial 

\partial xi
(fi\~p(t, x)),

\~p(0, x) is given as initial condition t\in [0,\infty ).

(2.13)

For a sequence of observations \{ ztk\} Nk=1 on the time series \{ 0 = t0 < t1 < \cdot \cdot \cdot < tN \leq 
T\} , we define that \~pk(t, x) := \~p(t, x| \scrY k), where \scrY k is \sigma -algebra formed by observations
at the first k steps.

In the continuous-discrete filtering, the condition densities only update at separate
time tk. There are two different steps as follows:

\bullet The first step is the evolution between observations.
\bullet The second step is to update by using the new observation.

The evolution of the conditional densities between observations satisfies the
Fokker--Planck equation (2.13). That is,

\partial 

\partial t
\~pk(t, x) =

1

2

n\sum 
i=1

\partial 2

\partial x2
i

(\~pk(t, x)) - 
n\sum 

i=1

\partial 

\partial xi
(fi\~p

k(t, x)),

and \~pk(tk, x) is given as initial condition, t\in [tk, tk+1).

(2.14)

Then, we need to update the \~pk(tk+1, x) to \~pk+1(tk+1, x) by using the new obser-
vation ztk+1

. The well-known Bayes rule governs such an update step. Combining it
with (2.2), the update step is given by

\~pk+1(tk+1, x) = ck+1\~p
k(tk+1, x)e

 - 1
2 (H(tk+1,x) - zk+1)

\top S - 1(tk+1)(H(tk+1,x) - zk+1),(2.15)

where the ck is some normalizing factor.
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2412 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

2.3. The convexity in parabolic PDEs. We now recall a special case of a
result of Korevaar [28, Theorems 1.6, 2.5], which we recall in the modified form
below.

Theorem 2.3 (Korevaar [28]). Let \Omega be a smooth, bounded, strongly convex
domain (that is, all principal curvatures are positive) and let u \in C2([0, T ]\times \Omega ) be a
function satisfying

\partial 

\partial t
u(t, x) =

n\sum 
i,j=1

ai,j(\nabla u)
\partial 2u

\partial xi\partial xj
 - b(x,\nabla u),(2.16)

as well as the boundary condition u| \partial \Omega = \infty . Suppose furthermore that u(t, x) =
 - log vt(x), where vt satisfies

\nabla vt(x) \cdot n(x)> 0

for any point x\in \partial \Omega with interior normal n(x). If b(x, y) is concave in x, for a fixed y
and ai,j(\nabla u) is positive definite as a matrix for any fixed \nabla u, and if u(0, x) is convex,
then u(t, x) is convex for all t.

For readers' convenience, the proof is given in the appendix.

3. The continuous filtering framework via convexity and MAP. In this
section, we will introduce a novel MAP framework for a continuous filtering system
by using Theorem 2.3, and we will define a new type of filtering system, the convex
filtering system. This class of filtering systems will ensure the logarithmic concavity
of the posterior density function under appropriate conditions so that the posterior
distributions are always unimodal. This ensures that the MAP estimate should be
continuous in time, thus providing a good theoretical foundation for reducing the
computational complexity of numerical methods.

As in the diagram (2.12), we shall study the log-concavity of \rho k(t, x) through the
log-concavity of \varrho k(t, x). It is easy to see that if h is a linear function, then \rho k(t, x) is
log-concave if and only if \varrho k(t, x) is log-concave.

3.1. The log-concavity in posterior densities.

3.1.1. Convex filtering with continuous observations. First, we need to
transform for the densities \varrho k(t, x) into uk(t, x) by using a Hopf--Cole transformation
[24, 14],

uk(t, x) := - log\varrho k(t, x),(3.1)

and it is easy to find that (3.1) is well-defined for the support set of the function
\varrho k(t, x),

For x \in supp(\varrho k(t, x)), the Yau--Yau PDE system in Proposition 2.1 is converted
to the following form after the change of variables:

\partial uk

\partial t
=

1

2

n\sum 
i=1

\biggl( 
\partial 2uk

\partial x2
i

 - \partial uk

\partial xi

\partial uk

\partial xi

\biggr) 
 - 

n\sum 
l=1

fl \cdot 
\partial uk

\partial xl
+\nabla \cdot f +

1

2
h\top S - 1h,(3.2)

with initial condition

uk(tk - 1, x) = uk - 1(tk - 1, x) - hT (tk - 1, x)S
 - 1(tk - 1)(ytk - 1

 - ytk - 2
)

and u0(0, x) = - log\sigma 0(x).
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LOG-CONCAVE POSTERIOR DENSITIES 2413

Regularity theory for linear parabolic PDEs allows us to conclude the smoothness
of solutions of the PDE system in Proposition 2.1 and that the other hypotheses on the
logarithmic transform in Theorem 2.3 hold. By applying Theorem 2.3, the solutions
of (3.2) are convex for any time t if uk(tk - 1, x) is convex and  - b(x,\nabla uk) is convex
for any fixed \nabla uk, where b is defined as

b(x,\nabla uk) :=
1

2

n\sum 
i

\biggl( 
\partial uk

\partial xi

\biggr) 2

+

n\sum 
i=1

fi \cdot 
\partial uk

\partial xi
 - \nabla \cdot f  - 1

2
h\top S - 1h.(3.3)

Remark 3.1. If f is linear, the condition that  - b(x,\nabla uk) is a convex function of
x is equivalent to the condition that 1

2h
\top (t, x)S - 1(x)h(t, x) is a convex function. On

the other hand, if f is nonlinear, there may be a value of \nabla uk such that  - b(x,\nabla uk)
fails to be convex.

Linear observation cases. The novelty of this paper is that many of the Yau
filtering systems have the convex filter property as shown below.

Theorem 3.2. For a continuous state-observation process with state equation in
(2.1) and continuous observation process in (2.2), assume h(x) =Hx is linear for H
an m\times n matrix. In addition, assume that there exists a smooth function \Phi , n\times n
matrices J and L, with J symmetric, and an n-dimensional vector l such that the
following conditions are satisfied:

1. f(x) =Lx+ l - \nabla \Phi (x).
2. \Phi (x) + x\top Jx is convex.
3. u(0, x) - \Phi (x) - x\top Jx is convex.
4. x\top H\top S - 1Hx - \Delta \Phi (x) + | \nabla \Phi (x)| 2 + 4x\top (J\top  - L\top )Jx is convex.

Then, the filtering system is a convex filter in the sense that the solution of (3.2),
u(t, x) is convex for all t.

Proof. For any observation sequence on the time series \scrP N = \{ 0 = \tau 0 < \tau 1 < \cdot \cdot \cdot <
\tau N = T\} , let uk(t, x) denote the solution of the log Yau--Yau PDE defined in (3.2).
Consider the change of variables wk(\tau k - 1, x) = uk(\tau k - 1, x) - \Phi (x) - x\top Jx. Then the
third assumption implies that w1(0, x) is convex. If vk(\tau k - 1, x) = uk(\tau k - 1, x) - \Phi (x),
then vk satisfies the following PDE:

\partial vk

\partial t
=
1

2

n\sum 
i=1

\Biggl( 
\partial 2vk

\partial x2
i

 - 
\biggl( 
\partial vk

\partial xi

\biggr) 2
\Biggr) 
 - (Lx+ l)\top \nabla vk

+
1

2

\bigl[ 
x\top H\top S - 1Hx+ 2Tr(L) + ( - \Delta \Phi (x) + | \nabla \Phi (x)| 2)

\bigr] 
.

(3.4)

Therefore, wk(t, x) satisfies the following PDE:

\partial wk

\partial t
=

1

2

n\sum 
i=1

\Biggl( 
\partial 2wk

\partial x2
i

 - 
\biggl( 
\partial wk

\partial xi

\biggr) 2
\Biggr) 
 - (Lx+ l - 2Jx)\top \nabla wk

+
1

2

\bigl( 
x\top H\top S - 1Hx+ 2Tr(L+ J) - \Delta \Phi (x) + | \nabla \Phi (x)| 2 + 4| Jx| 2  - 4(x\top L\top + l\top )Jx

\bigr) 
.

Since the initial condition is convex, then the fourth property shows that wk(\tau k - 1, x)
is convex for all \tau k - 1. By the second property, this means that uk is also convex, being
the sum of two convex functions. Therefore, the posterior density function \varrho k(t, x)
in the standard Yau--Yau method is log-concave. By taking the limit \| \scrP N\| \rightarrow 0, any
posterior density is log-concave for t\in [0, T ].
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2414 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

Remark 3.3. In the special case that the linear portion in Theorem 3.2 vanishes,
l= 0 and L= 0, and in addition the matrix J = 0, the above theorem above recovers
the log-concavity portion of [40, Lemma 5.1], which is the most general log-concavity
result that we know of for filtering in the literature. Note that in this special case,
the dynamics are required to be a gradient flow and are proven using different tech-
niques. Part of our interest in the more general formulation is that it encompasses
additional results for finite-dimensional filters, including the Benes filter. One simple
one-dimensional example is when f(x) = tanh(x), which comes from a nonconvex
potential. It is notable that in such examples the posterior distribution will be log-
concave even though the Gibbs distribution will not be.

Definition 3.4. A function a :\BbbR n\rightarrow \BbbR is said to be a semiconcave function of a
linear modulus if there exists a constant C \geq 0 such that

\lambda a(x) + (1 - \lambda )a(y) - a(\lambda x+ (1 - \lambda )y)\leq \lambda (1 - \lambda )C\| x - y\| 22(3.5)

for any x, y \in \BbbR n and for all \lambda \in [0,1]. And by Remark 2.1 in [1], the condition (3.5)
equals to that a(x) - C\| x\| 22 is concave function.

Corollary 3.5. For a potential \Phi , we assume that  - \Phi and \Delta \Phi (x) - | \nabla \Phi (x)| 2
are semiconcave functions of the linear modulus; then for sufficiently large H (that is,
H  - cI is positive definite for sufficiently large c), the continuous filtering system as
in Theorem 3.2 is convex if the initial distribution is sufficiently log-concave (that is,
condition 3 in Theorem 3.2 is satisfied).

Proof. By the definition of semiconcavity, we can find a positive definite J such
that \Phi (x) + xTJx is convex. Fixing such a J , we can also ensure that the initial
distribution is sufficiently log-concave so that condition 3 of Theorem 3.2 is satisfied.
It remains to check that condition 4 can be made to hold, which follows by choosing
H to be sufficiently large.

One example of systems satisfying condition 1 of Theorem 3.2 is FDEA systems
of maximum rank. In the FDEA case, the choice of J is often clear---there should be
a minimal choice of J in many cases.

Nonlinear observation cases. Next, we need to analyze the initial condition
more clearly. The convexity of the uk(\tau k - 1, x) depends on not only the uk - 1(tk - 1, x)
but also

 - hT (\tau k - 1, x)S
 - 1(\tau k - 1)(y\tau k - 1

 - y\tau k - 2
).

Intuitively, (y\tau k - 1
 - y\tau k - 2

) should be small enough so that uk will be convex after it
is updated. Also, the nonlinearities of h should be small so that \varrho k(t, x) maintains
log-concavity for any 1 \leq k \leq N . So, we shall summarize this argument into the
following definition.

Definition 3.6 (admissible observation condition for convexity). The admis-
sible observation condition for convexity of the continuous filtering system with the
continuous observation process is

\bullet uk - 1(\tau k - 1, x) - h\top (\tau k - 1, x)S
 - 1(\tau k - 1)(y\tau k - 1

 - y\tau k - 2
) is convex for any 2\leq k\leq 

N , where \scrP N = \{ 0 = \tau 0 < \tau 1 < \cdot \cdot \cdot < \tau N = T\} .
Remark 3.7. We can find that if h(t, x) is a linear function in x, then Defini-

tion 3.6 is satisfied and it does not depend on observation yt. However, if the h(t, x)
is a nonlinear function in x, then convex filtering can be obtained only by imposing
appropriate conditions on the observation process yt.
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LOG-CONCAVE POSTERIOR DENSITIES 2415

In general, the time steps between observations should be small so that admissible
observations conditions for convexity are satisfied. On the contrary, if the time step is
relatively large, the continuous observation model is not suitable, and the continuous-
discrete system should be used. We now summarize the above analysis on nonlinear
observations into the following theorem.

Theorem 3.8. For the continuous filtering system, if the system equation f is
linear, 1

2h
\top (t, x)S - 1(t)h(t, x) is a convex function and admissible observation for con-

vexity conditions Definition 3.6 is satisfied for any \scrP N = \{ 0 = \tau 0 < \tau 1 < \cdot \cdot \cdot < \tau N = T\} ,
then the log of posterior density  - log p(t, x| \scrY t) is convex.

Proof. The uk(t, x) is convex by using Theorem 2.3, \varrho k is log-concave by using
Definition 3.6, and the theorem is proved by taking the limit \| \scrP N\| \rightarrow 0 in (2.12).

Remark 3.9. The linear filtering system with log-concave initial distribution is
convex filtering by Theorem 3.8.

3.1.2. Convex filtering for a continuous-discrete system. Starting with
(2.14) and (2.15) and applying the substitution

\~uk(t, x) = - log \~p(t, x| \scrY tk), for t\in [tk, tk+1),(3.6)

we get \~uk(tk, x) = \~uk - 1(tk, x) +
1
2 (H(tk, x) - zk)

\top S - 1(H(tk, x) - zk),

\partial \~uk

\partial t
=

1

2

n\sum 
i

\Biggl( 
\partial 2\~uk

\partial x2
i

 - 
\biggl( 
\partial \~uk

\partial xi

\biggr) 2
\Biggr) 
 - 

n\sum 
l=1

fl \cdot 
\partial \~uk

\partial xl
 - \nabla \cdot f.

Theorem 3.10. For such a continuous-discrete filtering model, if the 1
2 (H(tk, x) - 

zk)
\top S - 1(H(tk, x) - zk), \~u0(0, x) and f are convex in x for any fixed \nabla \~uk, then the

\~uk(t, x) for any k is a convex function.

Proof. The theorem is true by using Theorem 2.3.

By using Korevaar's theorem, we shall see several examples of convex filters com-
ing from nonlinear continuous dynamics with continuous observation in the next sec-
tion. It needs to be pointed out that it is hard to construct a convex filter from a
continuous-discrete filtering system. However, for the continuous-discrete filtering sys-
tem, there is an important lemma to ensure that the nonconvexity will be effectively
controlled under some suitable assumptions.

Lemma 3.11. Consider a continuous-discrete setting with linear dynamics so that
f(t, x) = f0(t) + f1(t)x. Suppose that A(t) is a matrix-valued function differentiable
except with jump discontinuities at tk. Suppose A(t) satisfies a Riccati-type equation

d

dt
A(t) = - A\top (t)A(t) - f1(t)

\top A(t) - A(t)f1(t)(3.7)

on all intervals (tk - 1, tk).

Suppose furthermore that \sigma 0(0, x)e
1
2x

\top A(0)x is log-concave and our observation
process zk is such that

1

2
(H(\tau k, x) - ztk)

\top S(tk)(H(tk, x) - ztk) - 
1

2
x\top (A(t+k ) - A(t - k ))x(3.8)

is convex for all k. Then pk(t, x)e
1
2x

\top A(t)x is log-concave on all intervals (tk - 1, tk).
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2416 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

Proof. First, let \~vk(t, x) =  - log(pk(t, x)e
1
2x

\top A(t)x) with t \in (tk - 1, tk) and let
\~uk(t, x) = - log(pk(t, x)), which means \~vk(t, x) = \~uk(t, x) - 1

2x
\top A(t)x with t\in (tk - 1, tk).

We can get that

\~v0(0, x) = - log\sigma 0(x) - 
1

2
x\top A(0)x,

\~vk(tk - 1, x) = \~vk - 1(tk - 1, x) +
1

2
(zk  - h(x))\top S - 1(zk  - h(x))

 - 1

2
x\top (A(t+k - 1) - A(t - k - 1))x.(3.9)

By using (3.1.2), we will get

\partial \~vk

\partial t
=

1

2

n\sum 
i=1

\Biggl( 
\partial 2\~vk

\partial x2
i

 - 
\biggl( 
\partial \~vk

\partial xi

\biggr) 2
\Biggr) 
+ (\nabla \~vk)\top A(t)x

 - f \cdot \nabla \~vk  - 1

2
Tr(A(t)) - 1

2
x\top 
\biggl( 

d

dt
A(t) +A\top (t)A(t)

\biggr) 
x - f \cdot A(t)x - \nabla f.

(3.10)

Furthermore, the f(t, x) = f0(t) + f1(t)x. Fix \~vk, and the function term of (3.10) by
Theorem 2.3 is

 - b(t, x,\nabla \~vk) = - 1

2
\| \nabla \~vk\| 2 + (\nabla \~vk)\top A(t)x - f\top \cdot \nabla \~vk

 - 1

2
Tr(A(t)) - 1

2
x\top 
\biggl( 

d

dt
A(t) +A\top (t)A(t)

\biggr) 
x - f\top \cdot A(t)x - \nabla f.

(3.11)

Taking the Hessian of  - b(t, x,\nabla \~vk) yields

 - d

dt
A(t) - A\top (t)A(t) - f1(t)

\top A(t) - A(t)f1(t).(3.12)

By using (3.7),  - d
dtA(t)  - A\top (t)A(t)  - f1(t)

\top A(t)  - A(t)f1(t) = 0 for any t \in 
(tk - 1, tk).

Since \sigma 0(0, x)e
1
2x

\top A(0)x is log-concave, the initial condition for \~v0(0, x) is convex.
So it implies that the function \~vk(t, x) is convex for any k with t \in (tk - 1, tk) if the
initial \~vk(tk, x) is convex. Furthermore, (3.9) and (3.8) show that if \~vk is convex at
time t = tk+1, then \~vk+1 is convex at the same time. Now we have that \~vk(t, x) is

convex for any k with t\in [tk - 1, tk], which means that the \~pk(t, x)e
1
2x

\top A(t)x log-concave
t\in (tk - 1, tk).

3.2. Examples of convex filtering systems. In this subsection, we want to
point out the following fact for our proposed convex filter system. By using Theo-
rem 3.2, it follows that

Linear filtering\subset Convex filtering\subset Nonlinear filtering.

3.2.1. The example with deterministic dynamical system. Now, it is im-
portant to find out whether the convex filtering is exactly linear. If so, convex filtering
is a redundant concept. Next, we can give readers two vital examples of convex fil-
tering.

Example 1 (convex filtering with continuous observation). We can consider the
following nonlinear filtering system:\Biggl\{ 

dxt = 0, x0 \sim p0(x),

dyt = h(xt)dt+ dvt,
(3.13)
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LOG-CONCAVE POSTERIOR DENSITIES 2417

where the xt and yt are the one-dimensional processes and the variance of dvt is \sigma 
2
V dt.

For the filtering problem the posterior densities are given as follows:

p(t, x| \scrY t) = ctp0(x)\times exp

\biggl( 
1

\sigma 2
V

\biggl( 
h(x)yt  - 

t

2
h(x)2

\biggr) \biggr) 
,(3.14)

where ct is the normalizing factor of the distribution.
We shall assume that the p0(x) is a Gaussian distribution, h(x) is the

cubic function h(x) = x3, and \sigma V = 1. So, the posterior density in this case is

p(t, x| \scrY t) = ctp0(x)\times exp(x3yt - t
2x

6). It is easy to calculate that U(x) = d2

dx2 [ - log(p(t,
x| \scrY t))] = 1

V ar0
 - 6ytx+ 15x4. Suppose U(x) achieves its minimal value at x0. Then

d
dxU(x)| x0

= 0. So, x0 = ( 1
10y0)

1
3 . It follows that U(x)\geq 0 if and only if

U(x0) =
1

V ar0
 - 9

2
yt

\Bigl( yt
10

\Bigr) 1
3 \geq 0,(3.15)

where V ar0 is the initial variance of p0(x). So if the yt satisfy the condition (3.15),
then the system is a convex filter.

Next, we will show a figure of the posterior distributions at different times (t \in 
\{ 1,2,3,4,5,6,7,8\} ) with p0(x) =

1\surd 
2\pi V ar0

e - 
1

V ar0
x2

and V ar0 is 0.1. The continuous

observations yt in Figure 1(a) satisfy (3.15) so that the posterior distributions are
log-concave. However, the observation yt in Figure 1(b) in the last step t= 8 fails to
satisfy this property, so that the last posterior distribution is not log-concave.

3.2.2. The case of FDEA systems. For the general FDEA system with max-
imum rank, we can construct many convex filters in FDEA for any dimension n. We
shall start with the following lemma.

(a) Convex Cubic system

(b) Convex Cubic system

Fig. 1. The x-axis denotes as space variable x and takes value in [ - 1.5,1.5], the y-axis de-
notes time and takes values in \{ 1,2,3,4,5,6,7,8\} , and the z-axis denotes the value of the posterior
distributions.
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2418 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

Theorem 3.12 (Theorem 12 in [17]). Consider the following equation:

 - \Delta \Phi + | \nabla \Phi | 2 =
n\sum 

i=1

\lambda ix
2
i  - c,(3.16)

where x= (x1, . . . , xn)\in \BbbR n and \lambda i \geq 0. Then we have the following:
\bullet (Existence) When c <

\sum n
i=1

\surd 
\lambda i, there is a family of convex solutions of

(3.16) with 2n parameters such that | \nabla \Phi | has at most linear growth at \infty ,
namely,

| \nabla \Phi (x)| \leq C(1 + | x| ),(3.17)

for some constant C.
\bullet (Uniqueness) When c=

\sum n
i=1

\surd 
\lambda i, there is a quadratic polynomial, uniquely

determined up to a constant, which satisfies (3.16). Moreover, this is the
unique solution up to a constant if either one of the following conditions
holds:
-- \lambda i = 0 for any i.
-- There is at least n - 2 nonzero terms in \lambda i.

\bullet (Nonexistence). When c >
\sum n

i=1

\surd 
\lambda i, there is no smooth solution to (3.16).

Example 2. Consider a potential function \Phi :\BbbR n\rightarrow \BbbR defined by

\Phi (x) = - 
n\sum 

i=1

log(cosh(xi)),

where x= (x1, . . . , xn) \in \BbbR n. Let f = - \nabla \Phi (x). Then, | \nabla \Phi (x)| 2  - \Delta \Phi (x) = n. So we
can take h(x) = cInx for c > 1. In particular, if the initial distribution is a Gaussian
\Pi n

i=1
1\surd 
\pi 
e - x2

i , the filter is convex by Theorem 3.2.

Remark 3.13. The Benes filter also can be constructed by considering c= - n and
\lambda i = 0 in Theorem 3.12.

Through our detailed analysis, it is not difficult to see that the posterior density
function of the convex filtering system is still unimodal distribution when the initial
density is log-concave. This property can provide the basis for using MAP as a
framework for a continuous filtering system.

As for the continuous-discrete setting, the posterior densities can be log-concave
after a quadratic term correction in the case of a linear system, which provides a
reasonable explanation for filtering algorithms of the MAP framework.

4. Algorithms for nonlinear filtering. In this section, we set up a new frame-
work for nonlinear filtering algorithms by using the log concavity of the posterior
densities.

There is no real continuous observation data in practical applications. In this
section, we will assume that the observations are only obtained at time steps

\{ 0 = \tau 0 < \cdot \cdot \cdot < \tau N = T\} .

In a word, the MAP framework of filtering is to solve the following equation in order
to estimate the states,

\^xMAP
t = arg max

xt\in \bfR n
p(t, xt| \scrY \tau k) for t\in [\tau k, \tau k+1),(4.1)

where 0\leq k\leq N  - 1, \tau N+1 >T , and the p(t, \cdot | \scrY t) is the posterior density at time t.
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LOG-CONCAVE POSTERIOR DENSITIES 2419

In practical applications such as target tracking, we need to get the maximum
point of the density, not the average effect of density. One common assumption
frequently used in the numerical method is to assume the posterior densities are
Gaussians, which means we apply the linearization method to the original system,
and it is similar with the EKF and UKF methods. Setting [5, 33, 44]

\~p(t, xt| \scrY tk) =
1\sqrt{} 

(2\pi )n det( \^Pt| tk)
e
 - 1

2 (x - \^xt| tk )
\top \^P - 1

t| tk
(x - \^xt| tk ),(4.2)

when t \in (\tau k, \tau k+1) for some 0\leq k \leq N  - 1, the density \~p(t, xt| \scrY tk) is determined by
(2.1). So the estimate \^xt| \tau k is given by

\^xt| \tau k = \^x\tau k| \tau k +

\int t

\tau k

f(s, \^xs| \tau k)ds.(4.3)

Now we only need to determine the update part of the filtering:

\~p(t, xt| \scrY \tau k)\propto \~p(t, xt| \scrY \tau k - 1
)\~p(z\tau k | x\tau k).(4.4)

It is easy to see that finding the maximal point of the posterior densities is equal
to finding the minimum point of  - log \~p(t, xt| \scrY \tau k):

\^xMAP
\tau k| \tau k =arg min

xt\in \bfR n
(x - \^xt| \tau k - 1

)\top \^P - 1
t| tk - 1

(x - \^xt| tk - 1
)

+ (z\tau k  - H(\tau k, xt))
\top S - 1(\tau k)(z\tau k  - H(\tau k, xt)).

(4.5)

IEKF and its variants can be obtained by using the iterative method to solve such
optimization problems.

From our previous characterization of the log concavity of the posterior distribu-
tion, log concavity will be preserved as the system evolves in time, but not preserved
in general by the update functions. We will assume a continuous update process by
introducing an update parameter \lambda and a MAP flow, which is motivated by [15]; the
maximum point at the later time should be perturbed from a maximum point at this
time:

\~p\lambda (t, xt| \scrY \tau k)\propto \~p(t, xt| \scrY \tau k - 1
)\~p(z\tau k | x\tau k)

\lambda with \lambda \in [0,1].(4.6)

Thus we can refine our main idea into the following optimization problem:

\^x
\lambda , MAP

\tau k| \tau k = arg min
x\in \bfR n

L\lambda (xt),(4.7)

where

L\lambda (x) =arg min
x\in \bfR n

(x - \^xt| \tau k - 1
)\top \^P - 1

t| tk - 1
(x - \^xt| tk - 1

)

+ \lambda (z\tau k  - H(\tau k, x))
\top S - 1(\tau k)(z\tau k  - H(\tau k, x)).

(4.8)

5. Numerical experiments. In this section, we compare the relative perfor-
mance of IEKF, UKF, and our proposed IOKF on a typical example that is well-known
as BOT, and we discuss the advantages and effectiveness of the proposed IOKF.

In the experiments, for the purpose of comparing the performance of different
methods, we introduce the mean of the squared error (MSE) based on 100 realizations,
which is defined as follows:

MSE :=
1

100

100\sum 
i=1

1

K2 + 1

K2\sum 
k=0

\| x(i)
k  - \^x

(i)
k \| 2,(5.1)
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2420 JIAYI KANG, ANDREW SALMON, AND STEPHEN S.-T. YAU

where x
(i)
k is the real state at discrete time instant k in the ith experiment and \^x

(i)
k is

the estimation of x
(i)
k , with 0\leq k\leq K2, where K2 \in \BbbN is total number of time steps.\Biggl\{ 

dxt = Fxtdt+wt,

ztk = h(xtk) +Bk,
(5.2)

where wt is the standard Brownian motion of dimension 4 and Bk is the Gaussian
\scrN (0, I2),

F =

\left(    
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

\right)    ,

and h(x) is the function \BbbR 4\rightarrow \BbbR 2.
In Table 1, the iteration of IOKF is 2 \ast 3, which means that 2 is a number of the

Newton gradient descent steps and 3 is the split number of the optimization problem
l in Algorithm 4.1. The algorithm of UKF is from [42] and with the \alpha = 0.5, \beta = 2,
\kappa = - 0.5 in the numerical experiments.

As we can see from Figure 2 and Table 1, the proposed algorithm, IOKF, out-
performs IEKF when we fix the total number of iteration steps. Furthermore, the
proposed algorithm IOKF has a similar performance to UKF, and UKF can be con-
sidered a standard benchmark. We ran our simulations on CPU clusters with an Intel
Core i9-9880H (2.3 GHz/L3 16M) equipped with 16 GB memory.

6. Conclusion. In this paper, we extend the Yau--Yau PDE method to the MAP
framework. Convex filtering is important when we need to characterize the maximum
point in the posterior densities. Furthermore, we give an iterative algorithm motivated
by the structure of convex filtering. The effectiveness of the new algorithm reflects
the theoretical value of convex filtering. And we hope there are still many efficient
algorithms that can be designed by using the concept of convex filtering.

Algorithm 4.1 IOKF based on MAP framework.

1: Input: Functions f , h, H, S(t), initial density p(0, x), and let l, m be the
number of iterations for the optimization problem and the optimization steps
for a single problem, respectively.

2: Choose a sequence of numbers 0 = \lambda 0 < \cdot \cdot \cdot <\lambda l = 1 and calculate the initial
estimation \^xMAP

0| 0 . Set k= 0.

3: While k\leq N Do:
4: For j = 1 : l Do:
5: Define functions L\lambda (x) by using the observation ztk as equation.

6: Solve \^x
\lambda j , MAP

\tau k| \tau k = argminx\in \bfR n L\lambda j (x) with initial \^x
\lambda j - 1, MAP

\tau k| \tau k with Newton

method for m time.

7: \^xMAP
\tau k| \tau k = \^x\lambda l, MAP

\tau k| \tau k
8: Output: \^xMAP

\tau k| \tau k
9: k= k+ 1
10: End

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a) tracking

(b) tracking

Fig. 2. Results of BOT. The x-axis denotes the first component in xt and the y-axis denotes
the second component in xt for both (a) and (b).

Table 1
MSE for 100 realizations.

Algorithm MSE Steps Time (s) Iteration

IOKF 0.6274 1000 0.50162 2 \ast 3
IEKF 0.68334 1000 0.52093 6

UKF 0.6295 1000 0.46794  - 

Appendix.

Proof of Theorem 2.3. In Theorem 2.8 of [28], Korevaar considers parabolic
equations in a slightly more general formulation of the form

\partial 

\partial t
u=Lu,(6.1)

where L is a nonlinear operator of the form

Lu=

n\sum 
i,j=1

aij(\nabla u)
\partial 2

\partial xi\partial xj
 - b(x,u,\nabla u)(6.2)

such that \partial b
\partial u \geq 0. In the special case that b(x,u,\nabla u) does not have a dependence

on u, the \partial b
\partial u condition is automatically satisfied. Under such assumptions, Korevaar

considers a convexity function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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\scrC (t, y1, y3, \mu ) = u(t, \mu y1 + (1 - \mu )y3) - \mu u(t, y1) - (1 - \mu )u(t, y3),

defined for t, y1, y3, \mu \in [0, T )\times \=\Omega \times \=\Omega \times [0,1]. Korevaar concludes that if \scrC is positive
anywhere, it attains a positive maximum at a ``boundary"" point, that is, a point for
which t = 0 or a point for which at least one of \{ y1, y3, \mu y1 + (1 - \mu )y3\} lies on the
boundary \partial \Omega . Therefore, if u(t, x) fails to be convex for some t, then \scrC > 0 for some
(t, y1, y3, \mu ). Moreover, if \Omega is strictly convex, then if \mu y1 + (1 - \mu )y3 \in \partial \Omega , we must
have y1 = y3 or \mu \in \{ 0,1\} , and in this case, we have \scrC = 0 (to avoid infinities here
we can replace \Omega with \Omega \delta = \{ x : d(x,\partial \Omega ) \geq \delta \} as in [28]). By the assumption that
u(0, x) is convex, we know the convexity function is nonpositive for t = 0. So the
only remaining case is if one of y1, y3 \in \partial \Omega and \mu \in (0,1). But our assumptions
on strong convexity and interior normal show that the hypotheses of Lemma 2.4 in
[28] are satisfied, and the conclusion of that lemma rules out this last remaining case.
Therefore, we conclude that \scrC cannot be positive anywhere on the interior, and u(t, x)
must be convex for all t.
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