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a b s t r a c t

Nonlinear filtering problem has important applications in various fields. One of the core issues in
nonlinear filtering is to numerically solve the Duncan–Mortensen–Zakai (DMZ) equation, which is an
evolution equation satisfied by the unnormalized conditional density of state process under noisy
observations, in a real-time and memoryless manner. When the noise in observations is correlated
to the state process, the DMZ equation we need to deal with is a second-order stochastic partial
differential equation. In this paper, we will propose an algorithm to solve the DMZ equation in this case,
based on Hermite–Galerkin spectral method. According to this method, the DMZ equation is converted
into a system of linear stochastic differential equations generated by the observation process. The
effects of different discretization schemes on this stochastic differential system will also be discussed.
Moreover, rigorous convergence analysis of the algorithm is given under mild conditions. Numerical
results show that the method proposed in this paper can provide an instantaneous and accurate
estimation to the state process of the system.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear filtering (NLF) problem originated from the field
f signal processing and has important applications in military,
ndustrial and commercial areas. The fundamental problem in NLF
s to give an instantaneous and accurate estimation to the state
rocess, which is, in many cases, a diffusion process described by
system of stochastic differential equations (SDE), based on noisy
bservations (Bain & Crisan, 2009; Luo & Yau, 2013b).
One approach to solving NLF is based on particle filter or se-

uential Monte Carlo method, which is referred to Arulampalam,
askell, Gordon, and Clapp (2002) and Liu and Chen (1998) and

eferences therein. The principle of the particle filter is basically
he Law of Large Numbers and therefore, the accuracy of the par-
icle filter depends on the number of the particles exploited. With
ore particles engaged in, a more accurate estimation can be
btained, but in the meanwhile, the computation and storage cost
ill also increase. In 1960s, Duncan (1967), Mortensen (1996) and
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Zakai (1969) independently derived the so-called DMZ equation
which is the evolution equation satisfied by the unnormalized
probability density of state process conditioned on observations.
A more general form of DMZ equations can be found in recent
literature such as (Ceci & Colaneri, 2012). DMZ equations are
stochastic partial differential equations (SPDE) whose solutions
cannot be expressed in a closed form in general. Therefore, one
of the core issues in NLF is numerically solving the DMZ equation
in a real-time and memoryless manner.

The stochastic parts in an NLF system, as is shown later in (1),
are the Wiener process generating the SDE satisfied by the state
process, and the noise in the observations. If these two stochastic
terms are independent (which is referred to as NLF with indepen-
dent noise), then by introducing another scalar, the DMZ equation
can be converted into a deterministic partial differential equation
with stochastic coefficients, which is called the robust DMZ equa-
tion (Bain & Crisan, 2009; Baras, Blankenship, & Hopkins, 1983;
Davis, 1980). Yau and Yau apply frozen coefficient method to
solving robust DMZ equation in which the main computation cost
comes from solving a Kolmogorov forward equation and can be
computed off-line (Yau & Yau, 2000, 2008). Later on, based on this
method, Yau and his collaborators develop a real-time nonlinear
filtering algorithm, called Yau–Yau algorithm (Dong, Luo, & Yau,
2021; Luo & Yau, 2013a, 2013b; Wang, Luo, Yau, & Zhang, 2020).

If the Wiener process generating the state process and the
noise in the observations are correlated (which is referred to
as NLF with correlated noise), a robust DMZ equation cannot
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e obtained easily and we need to deal with the original DMZ
quation directly. In 1991, Florchinger and Le Gland (1991) pro-
osed a splitting-up method to solve DMZ equation, where the
MZ equation is decomposed into a deterministic PDE and a
ackward SDE. Other numerical methods of solving SPDEs can
lso be applied to solving DMZ equations (Ahmed & Radaideh,
997; Budhiraja, Chen, & Lee, 2007; Cheng, Hou, & Zhang, 2013;
rey, Schmidt, & Xu, 2013).
Among all the numerical methods of solving PDEs and SPDEs,

pectral methods construct a numerical solution by projecting the
xact solution onto a finite dimensional function space spanned
y an orthogonal system in square-integrable space. In compari-
on with other methods such as finite element, finite difference,
hich are more capable of describing the local structure of the
olution, spectral methods can provide superior accuracy glob-
lly (Shen, Tang, & Wang, 2011) and are more suitable for the NLF
roblem, because the conditional expectation itself reflects global
roperties of the density function. The introduction of spectral
ethods in solving PDEs can date back to the 1970s, in the field
f computational fluid dynamics (Gottlieb & Orszag, 1977). For a
horough comprehension of spectral methods, readers can refer
o the monographs such as (Gottlieb & Orszag, 1977; Shen et al.,
011).
Spectral methods have also been proposed to solve PDEs ap-

earing in NLF. As for the problem with independent noise, the
olmogorov forward equations in the off-line part of Yau–Yau
lgorithm can be solved numerically by spectral method (Dong
t al., 2021; Luo & Yau, 2013b); Frey et al. (2013) also use spectral
ethods to solve the DMZ equation in NLF with point process
bservations; as for the problem with correlated noise, Lototsky
nd collaborators applied chaos expansion to the solution of DMZ
quations, separated the time variable, spatial variable and ran-
om variable completely, and proposed a numerical algorithm to
olve SPDEs based on spectral methods (Lototsky, 2003; Lototsky,
ikulevicius, & Rozovskii, 1997).
In this paper, we will apply Hermite–Galerkin spectral method

HGSM) to solve the DMZ equation of NLF with correlated noise,
n which the functions of the orthogonal system are chosen to be
ermite functions with suitable scaling and translating factors,
s is studied in relevant researches (Funaro & Kavian, 1991;
uo & Yau, 2013c; Xiang & Wang, 2010). Hermite functions, as
efined in (4), are supported on the whole space while vanishing
xponentially at infinity. For NLF with mild coefficients, the con-
itional density function shares similar properties with Hermite
unctions: it also concentrates on a bounded domain and vanishes
apidly at infinity. Therefore, it is efficient to use Hermite func-
ions to approximate the conditional density function in this case
nd we will also provide a rigorous convergence analysis of this
umerical method.
Since the DMZ equations here are SPDEs, when we project

he solution on the finite dimensional space spanned by Hermite
unctions, the linear combination coefficients, which are also re-
erred to as Hermite–Fourier coefficients, satisfy another system
f SDEs generated by the noisy observations. In the works of
ototsky and his collaborators (Lototsky, 2003; Lototsky et al.,
997), the time variable and the random variable are further sep-
rated based on the chaos expansion techniques and the problem
f numerically solving the SPDE is converted into the problem of
umerically solving a system of deterministic partial differential
quations or a system of ordinary differential equations. In this
aper, instead of further separating the time variable and random
ariable of the SDE system, we will apply more efficient time dis-
retization schemes, such as Milstein scheme (Kloeden & Platen,
992) and curved schemes (Armstrong & King, 2022), to solve the
DE system directly, and discuss the effects of these schemes on

LF problems. 1

2

When the spectral methods are applied in high dimensional
problems, the number of the basis functions needed will in-
crease rapidly with respect to the dimension and cause a great
increment in the overall computational cost. This phenomenon
is often referred to as curse of dimensionality. In this paper, we
lso introduce scaling and translating factors to the standard
ermite functions as in Luo and Yau (2013c), in order to improve
he approximation efficiency. With proper scaling and translating
actors, the HGSM proposed in this paper can successfully solve
wo-dimensional NLF problems. Together with other sparse mesh
echniques, the HGSM also has the potential of being generalized
o problems in medium high dimensions.

The structure of this paper is as follows. In Section 2, we intro-
uce the basic concepts of NLF and numerical methods, such as
MZ equations and Hermite polynomials, in detail. In Section 3,
e propose the HGSM to solve the DMZ equation introduced in
ection 2 and discuss the convergence result of this method under
ild conditions. In Section 4, we focus on numerical methods of
olving SDEs. Some numerical results are provided in Section 5
nd Section 6 is the conclusion.

. Preliminaries

.1. Nonlinear filtering problem with correlated noise

Consider the following nonlinear filtering system with corre-
ated noise,
dXt = b(Xt )dt + σ (Xt )dWt + ρ(Xt )dVt

dYt = h(Xt )dt + dVt
, (1)

here {Xt : 0 ≤ t ≤ T } and {Yt : 0 ≤ t ≤ T } are Rd-valued
tochastic processes, {Wt : 0 ≤ t ≤ T } and {Vt : 0 ≤ t ≤

} are independent standard Brownian motions of appropriate
imension, and T > 0 is a fixed terminal time. The coefficients
, σ , ρ, h are globally Lipschitz continuous, vector or matrix
alued functions defined on Rd.
For the simplicity of notations, we define a(x) = σ (x)σ (x)⊤

nd c(x) = ρ(x)ρ(x)⊤.
The unnormalized density function pt satisfies the following

MZ equation (Bain & Crisan, 2009; Florchinger & Le Gland, 1991)

pt = L0ptdt +

d∑
k=1

LkptdY k
t , (2)

here

0(⋆) =
1
2

d∑
i,j=1

∂2

∂xi∂xj

[(
aij + c ij

)
⋆
]
−

d∑
i=1

∂

∂xi

(
bi⋆
)
,

and Li(⋆) = hi ⋆+
∑d

j=1
∂
∂xj

(
ρ ij⋆

)
.

If ρ(x) ≡ 0, then the filtering system (1) reduces to the noise-
ndependent case considered in abundant literature and the DMZ
quation is indeed in the standard form proposed in Duncan
1967), Mortensen (1996) and Zakai (1969).

In the noise-independent case, the DMZ equation, an SPDE, can
e converted into a deterministic PDE with stochastic coefficients
hrough invertible exponential transformation (Rozovsky, 1972).
or the noise-correlated case we consider here, however, due
o the existence of partial derivative with respect to the spatial
ariable, x, in the operators Lk, such kind of explicit exponential
ransformations do not exist. Therefore, we need to think of
umerical methods to solve the SPDE (2) directly.

.2. Hermite functions

Hermite functions form an orthogonal basis of L2(Rd). For d =

, univariate Hermite functions are constructed from Hermite
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olynomials {hn(x)}∞n=0, which are orthogonal polynomials with
espect to weight function w(x) = e−x2 and satisfy the following
iterative formula:

h0(x) ≡ 1, h1(x) = 2x,
hn+1(x) = 2xhn(x) − 2nhn−1(x), n ≥ 1.

(3)

The univariate Hermite functions
{
e−

1
2 x

2
hn(x)

}∞

n=0
can be used to

approximate functions which concentrate on the neighborhood of
the origin. In order to approximate more general functions with
Hermite functions, we need to introduce scaling and translating
factors α and β .

For α > 0 and β ∈ R and n ∈ N, the generalized univariate
Hermite function Hα,β

n is defined to be

Hα,β
n (x) =

(
α

2nn!
√
π

) 1
2

hn(α(x − β))e−
1
2 α

2(x−β)2 .

where
(

α

2nn!
√
π

) 1
2
is the normalizing parameter, so that

∥Hα,β
n ∥

2
L2(R) ≜

∫
R

|Hα,β
n (x)|2dx = 1.

For fixed factors α > 0 and β ∈ R, the generalized univariate
Hermite functions {Hα,β

n (x)}∞n=0 defined above actually form an
orthonormal basis of L2(R). This basis has the capability of ap-
proximating functions concentrating on the neighborhood of the
translating factor β .

For the case when dimension d > 1, the Hermite functions
can be constructed by tensor products of univariate ones. Let
α = (α1, . . . , αd), β = (β1, . . . , βd) be multi-factors, with αi > 0,
βi ∈ R, i = 1, . . . , d, and n = (n1, . . . , nd) be a multi-index, with
ni ∈ N, i = 1, . . . , d. Then the d-dimensional Hermite function,
Hα,β

n (x), is defined as

Hα,β
n (x) =

d∏
i=1

Hαi,βi
ni (xi). (4)

According to the orthonormality of univariate Hermite func-
tions, for fixed multi-factors α and β, the collection {Hα,β

n (x) : n ∈

Nd
} also forms an orthonormal basis of the Hilbert space L2(Rd),
hich means that

Rd
Hα,β

n (x)Hα,β
m (x)dx =

{
1, n = m
0, otherwise

,

nd for any u ∈ L2(Rd), we have

(x) =

∑
n∈Nd

⟨u,Hα,β
n ⟩Hα,β

n (x), (5)

where ⟨·, ·⟩ denotes the inner product in L2(Rd) and the series on
the right-hand side converge in L2 sense.

If we do the summation only on a finite subset of Nd in (5),
then the truncated series can be regarded as a good approxima-
tion to the original function u(x). For example, letΩN = {n ∈ Nd

:

0 ≤ ni ≤ N, 1 ≤ i ≤ d} be the finite multi-index set, in which
each component of a multi-index is no larger than N , then for N
large enough, the projection

PNu(x) =

∑
n∈ΩN

⟨u,Hα,β
n ⟩Hα,β

n (x) (6)

is close to u(x). Given additional regularity of u(x), we can also
give the rate of convergence, as is stated later in Theorem 2 in
Section 3.
 H

3

3. Hermite-Galerkin spectral method

The core procedure in HGSM is to obtain the Hermite–Galerkin
approximation to the variational problem reformulated from the
DMZ Eq. (2). To this end, we need first to write the differential op-
erator L0 in divergence form, which can be done if the coefficients
are smooth enough.

L0u =
1
2

d∑
i,j=1

∂

∂xi

[
Aij ∂u
∂xj

]
+

d∑
i=1

Bi ∂u
∂xj

+ Cu,

where Aij
=
(
aij + c ij

)
, Bi

=
1
2

∑d
j=1

∂Aij
∂xj

− bi, C =
1
2

∑d
i,j=1

∂2Aij
∂xi∂xj

−

d
i=1

∂bi
∂xi

.
From now on, we use ω to represent randomness. For fixed
> 0, the variational problem will be considered in the Hilbert

pace L2ω([0, T ], X), which is the space of all stochastic processes
(t, ω) in a separable Banach space X such that∫ T

0
∥u(t, ω)∥2

Xdt < ∞. (7)

Since both the Hermite functions and the conditional prob-
ability density functions vanish rapidly at infinity, in order to
avoid tedious discussion on the properties of functions at infinity,
we would like to focus on the behavior of the solution to DMZ
equation in a bounded domain. Let U ⊂ Rd be a bounded
open subset. H1(U) is defined to be the Sobolev space of square-
ntegrable functions with partial derivatives also belongs to L2(U),
i.e. H1(U) = {u ∈ L2(U) :

∂u
∂xi

∈ L2(U), 1 ≤ i ≤ d}, equipped with
he H1-norm:

u∥H1(U) =

(
∥u∥2

L2(U) +

d∑
i=1

 ∂u∂xi
2
L2(U)

) 1
2

,

where ∂u
∂xi

, 1 ≤ i ≤ d are defined in weak sense. Moreover, H1
0 (U)

s defined to be the closure of the set of smooth functions with
ompact support, C∞

0 (U), under H1-norm.
The generalized solution to the variational problem reformu-

ated from the DMZ equation will be defined in the Hilbert space
2
ω([0, T ],H1

0 (U)) as follows.

efinition 1. Let U ⊂ Rd be a bounded open subset. A function
∈ L2ω([0, T ],H1

0 (U)) is called a generalized solution of Eq. (2)
f, for every y ∈ C∞

0 (U), the following equality holds almost
verywhere for t ∈ [0, T ] with respect to Lebesgue measure and
lmost surely with respect to the probability measure,

p(t), y⟩ =⟨ϕ, y⟩ +

∫ t

0
A (p(s), y)ds

+

d∑
k=1

∫ t

0
⟨Lkp(s), y⟩dY k

s ,

(8)

here

(u, v)

= −
1
2

d∑
i,j=1

⟨
Aij ∂u
∂xi
,
∂v

∂xj

⟩
+

d∑
i=1

⟨
Bi ∂u
∂xi

+ Cu, v
⟩

=

∫
U

−
1
2

d∑
i,j=1

Aij ∂u
∂xi

∂v

∂xj
+

(
d∑

i=1

Bi ∂u
∂xi

+ Cu

)
vdx.

Hermite–Galerkin approximation of the solution to the varia-
tional problem (8) is obtained by replacing the test function y to
e a function in a finite dimensional function space spanned by
ermite functions.



Z. Sun and S.S.-T. Yau Automatica 156 (2023) 111176

f

H

W

w

n

w
d

R
s
c√
a
i

t
δ

R

s

E

Let us denote by SNα,β the finite dimensional space spanned by
{Hα,β

n : n ∈ ΩN},i.e. SNα,β = Span{Hα,β
n : n ∈ ΩN}.

We called a stochastic process pN ∈ L2ω([0, T ], SNα,β) a Galerkin
approximation of the solution to the variational problem (8), if it
satisfies

⟨pN (t),Hα,β
n ⟩ =⟨ϕ,Hα,β

n ⟩ +

∫ t

0
A (pN (s),Hα,β

n )ds

+

d∑
k=1

∫ t

0
⟨LkpN (s),Hα,β

n ⟩dY k
s ,

(9)

for all n ∈ ΩN , and for t ∈ [0, T ] almost everywhere and almost
surely.

Since for almost every t ∈ [0, T ], the Hermite–Galerkin
approximation process pN (t, ·) ∈ SNα,β , there exist coefficients
Ψ (t) = (ψn(t))n∈ΩN , such that

pN (t) =

∑
n∈ΩN

ψn(t)Hα,β
n (x). (10)

The coefficients Ψt are often called Hermite–Fourier coefficients.
Taking Eq. (10) into (9) for each n ∈ ΩN , we can obtain a

system of SDEs for Ψ (t), based on the orthonormality of Hermite
functions.

dΨ (t) = PΨ (t)dt +

d∑
k=1

Q (k)Ψ (t)dY k(t), (11)

where P = (Pn1,n2 )n1,n2∈ΩN , (Q
(k)
n1,n2 )n1,n2∈ΩN are constant matrices

with entries Pn1,n2 = A (Hα,β
n2 ,H

α,β
n1 ), Q (k)

n1,n2 = ⟨LkHα,β
n2 ,H

α,β
n1 ⟩ can

be computed off-line.
By solving the stochastic differential system (11), we can ob-

tain the coefficients Ψ (t) and then compute the Hermite–Galerkin
approximation pN (t, x) at a given time t ∈ [0, T ], which fulfills the
core procedure in HGSM.

We postpone the discussion of methods for SDE systems to
Section 4 and focus on the convergence analysis of HGSM here.

For the convenience of the discussion of convergence analysis,
we need introduce the Sobolev-type spaces related to Hermite
functions.

For the same multi-factors α and β as in the Hermite functions
(4), consider the operator

Dk
x =

d∏
j=1

D
kj
xj , (12)

where Dxj =
∂
∂xj

+ α2
j (xj − βj), 1 ≤ j ≤ d.

The connection between the operator Dk
x and the Hermite

unctions Hα,β
n is that Dk

xH
α,β
n =

√
µn,kH

α,β

n−k , with µn,k =∏d
j=1 µnj,kj , and

µnj,kj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2kjα

2kj
j nj!

(nj − kj)!
, nj ≥ kj > 0;

1 nj ≥ kj, kj = 0;
0 kj > nj ≥ 0.

(13)

For further relationships between the operators Dk
x and the

ermite functions, readers may refer to Luo and Yau (2013c).
Sobolev-type spaces Wr

α,β(U), r ∈ N, are defined to be

r
α,β(U) =

{
u ∈ L2(U) : Dk

x ∈ L2(U), ∀|k| ≤ r
}
,

here |k| =
∑d k .
i=1 i

4

Similar to the standard Sobolev spaces, for u ∈ Wr
α,β(U), the

orm and semi-norm in Wr
α,β(U) are defined as follows:

∥u∥Wr
α,β

(U) =

⎛⎝∑
|k|≤r

∥Dk
xu∥

2
L2(U)

⎞⎠ 1
2

,|u|Wr
α,β

(U) =

⎛⎝ d∑
j=1

∥Dr
xju∥

2
L2(U)

⎞⎠ 1
2

,

and we use Wr
α,β(U) to denote the closure of C∞

0 (U) under the
Wr

α,β-norm.
Functions in the Sobolev-type spaces u ∈ Wr

α,β(U) can be
approximated well by its projection on SNα,β provided that N is
large enough. In fact, a more general result with respect to U =

Rd also holds, as is stated in Theorem 2.

Theorem 2 (Luo & Yau, 2013c). For r ∈ N, assume that the
coefficient N > 2(r − 1) and the multi-factor α satisfies

max
1≤j≤d

|αj|/ min
1≤j≤d

|αj| ≤ c0,

for some c0 > 0. Given u ∈ Wr
α,β(R

d), we have for any 0 ≤ l ≤ r,

∥PNu − u∥W l
α,β

(Rd)

≤ Cd,l

√
2c2r0 + 1(2|α|

2
∞
)
l−r
2 N

l−r
2 |u|Wr

α,β
(Rd)

(14)

here |α|∞ ≜ max1≤j≤d |αj|, and Cd,l is some constant depending on
and l.

emark 3. For practical use, the multi-factor α can be chosen
uch that each component of α are closed to each other. In that
ase, c0 can be chosen to be very closed to 1, and the coefficients
2c2r0 + 1 in the right-hand side of (14) is not very large, even for
relatively large r . A detailed proof of Theorem 2 is demonstrated
n Appendix A.

From now on, we further assume that a(x) is uniformly elliptic,
hat is, there exists a constant δ > 0 such that

∑d
i,j=1 a

ij(x)ξiξj ≥

|ξ |2 holds for all ξ = (ξ1, . . . , ξd) ∈ Rd and x ∈ U .

emark 4. Since U is a bounded open set, U is compact. There-
fore, the uniformly elliptic condition can be replaced by: there
exists a continuous function δ(x) defined on U such that δ(x) > 0,
∀x ∈ U and

∑d
i,j=1 a

ij(x)ξiξj ≥ δ(x)|ξ |2 holds for all x ∈ U and
ξ = (ξ1, . . . , ξd) ∈ Rd

These assumptions guarantee the super-parabolicity of (2) as
an SPDE mentioned in Rozovsky and Lototsky (2018) and thus,
the Cauchy initial-value problem has a unique generalized solu-
tion. Moreover, the following theorem shows that the generalized
solution also has the additional regularity corresponding to mild
coefficients.

Theorem 5. Let U ⊂ Rd be a bounded open subset. Suppose that
the uniformly elliptic condition holds and for some positive integer r,
the coefficients a, b, c, h, ρ, σ and their derivatives up to order r are
uniformly bounded by a constant K; the initial value ϕ ∈ Wr

α,β(U).
Then the generalized solution p of the Cauchy problem (2) belongs

to L∞
ω ([0, T ],Wr

α,β(U)) ∩ L2ω([0, T ],Wr+1
α,β (U)), and there exists a

positive number M depending only on the coefficients and T , d,m, r,
uch that

sup
t≤T

∥p(t)∥2
Wr

α,β
(U)+E

∫ T

0
∥p(t)∥2

Wr+1
α,β

(U)
dt

≤ M∥ϕ∥
2

r .

(15)
W
α,β

(U)
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roof. The bilinear form A (·, ·) can be rewritten using the
perators Dxi , 1 ≤ i ≤ d, that is, for all u, v ∈ Wr

α,β(U),

A (u, v) = −
1
2

d∑
i,j=1

⟨AijDxiu,Dxjv⟩

+

d∑
i=1

⟨BiDxiu, v⟩ + ⟨̃Cu, v⟩,

(16)

here

(x) =C(x) −
1
2

d∑
i,j=1

∂

∂xj

(
Aij(x)α2

i (xi − βi)
)

+
1
2

d∑
i,j=1

Aij(x)α2
i α

2
j (xi − βi)(xj − βj)

−

d∑
i=1

Bi(x)α2
i (xi − βi).

imilarly, each Li can also be rewritten using Dxj , 1 ≤ j ≤ d.

iu =

d∑
j=1

ρ ij(x)Dxju + Ji(x)u, (17)

where

Ji(x) = hi(x) +

d∑
j=1

(
∂ρ ij

∂xj
(x) − ρ ij(x)α2

j (xj − βj)
)
.

Define the dual operator of Dxj to be Dxj =
∂
∂xj

−α2
j (xj−βj), 1 ≤

j ≤ d, and similarly Dk
x =

∏d
j=1 D

kj
xj .

The duality of Dk
x and Dk

x is implied by ⟨u,Dk
xv⟩ = (−1)|k|

Dk
xu, v⟩, for all u, v ∈ W

r
α,β(U), 0 ≤ |k| ≤ r .

Since Wr+1
α,β (U) is the closure of C∞

0 (U) under the Wr+1
α,β -norm,

y direct computation and Cauchy–Schwarz inequality, we can
btain the coercivity condition, that is, there exist δ′ > 0 and
′ > 0, such that ∀u ∈ Wr+1

α,β (U)

−
1
2

d∑
i,j=1

⟨AijDxiu,Dxju⟩r +

d∑
i=1

⟨BiDxiu, u⟩r

+ ⟨̃Cu, u⟩r +
1
2

d∑
i=1

∥Liu∥2
Wr

α,β
(U)

≤ −δ′
∥u∥2

Wr+1
α,β

(U)
+ M ′

∥u∥2
Wr

α,β
(U),

(18)

here ⟨·, ·⟩r denotes the standard inner product on Wr
α,β(U).

With the coercivity condition (18), Theorem 5 holds accord-
ng to the standard proof in the theory of coercive stochas-
ic evolution systems, which can be found in monographs such
s (Rozovsky & Lototsky, 2018). For readers’ convenience, we put
he calculation processes as well as the details of this proof in
ppendix B.
Under mild conditions when the generalized solution, p(t, x),

s smooth enough, we can give an estimation of the difference
etween p(t, x) and its Galerkin approximation, as is stated in the
ollowing theorem.

heorem 6. Let U ⊂ Rd be an arbitrary bounded open subset.
uppose that the conditions about the coefficients of the NLF system
n Theorem 5 are satisfied and the generalized solution of Eq. (2)
∈ L2ω([0, T ],Wr

α,β(U)) for some r > 1, then

max E∥1U (pN (t) − p(t))∥2
0≤t≤T

5

≤ KN1−r max
0≤t≤T

E|p(t)|2Wr
α,β

(U), (19)

here 1U is the indicator function on U, ∥ · ∥ denotes the norm
in L2(Rd) and K is a constant depending on T , r, α, β and the
oefficients in the NLF system.

roof. We further define the value of the generalized solution
and the coefficients to be zero outside the open subset U . Let

N : Wr
α,β(R

d) → SNα,β be the projection operator defined in (6)
nd denote qN (t) = PNp(t), then we have ⟨p(t) − qN (t),H

α,β
n ⟩ =

, ∀n ∈ ΩN .
Therefore, by the definition of generalized solution,

qN (t),Hα,β
n ⟩ = ⟨p(t),Hα,β

n ⟩ = ⟨ϕ,Hα,β
n ⟩+∫ t

0
A (p(s),Hα,β

n )ds +

d∑
k=1

∫ t

0
⟨Lkp(s),Hα,β

n ⟩dY k
s .

(20)

ombining (9) and (20), we have

pN (t) − qN (t),Hα,β
n ⟩ =

∫ t

0
A (pN (s) − p(s),Hα,β

n )ds

+

d∑
k=1

∫ t

0
⟨Lk(pN (s) − p(s)),Hα,β

n ⟩dY k
s .

ince pN (t) − qN (t) ∈ SNα,β ,

pN (t) − qN (t)∥2
=

∑
n∈ΩN

⟨pN (t) − qN (t),Hα,β
n ⟩

2.

y Ito’s formula,

pN (t) − qN (t),Hα,β
n ⟩

2
= ⟨pN (0) − qN (0),Hα,β

n ⟩
2

+ 2
∫ t

0
A (pN (s) − p(s), ⟨pN (s) − qN (s),Hα,β

n ⟩Hα,β
n )ds

+ 2
d∑

k=1

∫ t

0
⟨Lk(pN (s) − p(s)),

⟨pN (s) − qN (s),Hα,β
n ⟩Hα,β

n ⟩dY k
s

+

d∑
k=1

∫ t

0
⟨Lk(pN (s) − p(s)),Hα,β

n ⟩
2ds.

Therefore,

∥pN (t) − qN (t)∥2
= ∥pN (0) − qN (0)∥2

+ 2
∫ t

0
A (pN (s) − p(s), pN (s) − qN (s))ds

+ 2
d∑

k=1

∫ t

0
⟨Lk(pN (s) − p(s)), pN (s) − qN (s)⟩dY k

s

+

d∑
k=1

∫ t

0

∑
n∈ΩN

⟨Lk(pN (s) − p(s)),Hα,β
n ⟩

2ds. (21)

ccording to Bessel’s inequality,∑
∈ΩN

⟨Lk(pN (s) − p(s)),Hα,β
n ⟩

2
≤ ∥Lk(pN (s) − p(s))∥2.

hus, taking expectations for both sides in (21), we obtain

E∥pN (t) − qN (t)∥2

≤E∥pN (0) − qN (0)∥2

+ 2E
∫ t

A (pN (s) − p(s), pN (s) − qN (s))ds

0
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+

d∑
k=1

E
∫ t

0
∥Lk(pN (s) − p(s))∥2ds

=E∥pN (0) − qN (0)∥2

+ 2
∫ t

0
EA (pN (s) − qN (s), pN (s) − qN (s))ds

+

d∑
k=1

∫ t

0
E∥Lk(pN (s) − qN (s))∥2ds

+ 2
∫ t

0
A (qN (s) − p(s), pN (s) − qN (s))ds

+

d∑
k=1

∫ t

0

d∑
k=1

∥Lk(qN (s) − p(s))∥2ds

+

d∑
k=1

∫ t

0
E⟨Lk(pN (s) − qN (s)),

Lk(qN (s) − p(s))⟩ds, (22)

where we use the fact that the stochastic integral terms in (21)
are martingales and have expectations zero. For a general case
where the stochastic integral terms are local martingales, similar
results can be obtained through the standard localization process.

Let us denote ϱN (t) = pN (t) − qN (t), and consider the form
of A and Lk in (16) and (17), respectively. With the uniformly
elliptic property of a(x) and the fact that all the coefficients vanish
outside U , we have

2A (ϱN , ϱN ) +

d∑
k=1

∥LkϱN∥
2

=

∫
U

−

d∑
i,j=1

AijDxiϱNDxjϱN + 2

(
d∑

i=1

BiDxiϱN + C̃ϱN

)
×

ϱNdx +

d∑
k=1

∫
U

(
JkϱN +

d∑
i=1

ρkiDxiϱN

)2

dx

≤ − δ|ϱN |
2
W1

α,β
(U)

+ 2
∫
U

(
d∑

i=1

BiDxiϱN + C̃ϱN

)
ϱNdx

+

d∑
k=1

∫
U

(
J2k ϱ

2
N + 2JkϱN

(
d∑

i=1

ρkiDxiϱN

))
dx. (23)

Other terms except −δ|ϱN |
2
W1

α,β
(U)

can be dominated by

ϵ|ϱN |
2
W1

α,β
(U)

+ K (ϵ)∥ϱN1U∥
2, where ϵ > 0 is an arbitrary positive

number and K (ϵ) > 0 is a generic constant which may only
depend on T , r , α, β , the coefficients in the system and ϵ.

In fact, for example, if we denote by K a generic constant that
may only depend on T and the coefficients in the equation, then
by the assumption of the theorem,∫
U

(
d∑

i=1

BiDxiϱN

)
ϱNdx ≤ K |ϱN |W1

α,β
(U)∥ϱN1U∥

≤ ϵ|ϱN |
2
W1

α,β
(U)

+
K
2ϵ

∥ϱN1U∥
2,

here the first inequality holds according to the Cauchy–Schwarz
nequality while the second holds because of the Young’s inequal-
ty. Other terms on the right-hand side of (23) can be treated in
similar way.
Let us move back to the rest terms on the right hand side of

22).

(q − p, p − q )
N N N

6

≤ K∥qN − p∥W1
α,β

(U)∥pN − qN∥W1
α,β

(U)

≤ ϵ∥ϱN∥
2
W1

α,β
(U)

+ Kϵ∥qN − p∥2
W1

α,β
(U)

= ϵ∥ϱN1U∥
2
+ ϵ|ϱN |

2
W1

α,β
(U)

+ Kϵ∥qN − p∥2
W1

α,β
(U)
,

d

k=1

∥Lk(qN − p)∥2
≤ K∥qN − p∥2

W1
α,β

(U)
,

nd

Lk(pN − qN ), Lk(qN − p)⟩

≤ K∥ϱN∥W1
α,β

(U)∥qN − p∥2
W1

α,β
(U)

≤ ϵ∥ϱN∥
2
W1

α,β
(U)

+ Kϵ∥qN − p∥2
W1

α,β
(U)

= ϵ∥ϱN1U∥
2
+ ϵ|ϱN |

2
W1

α,β
(U)

+ Kϵ∥qN − p∥2
W1

α,β
(U)
.

herefore, from (22) and the fact that ρN (0) = 0, we have

∥ϱN (t)1U∥
2

≤ −δ

∫ t

0
|ϱN |

2
W1

α,β
(U)

ds + K (ϵ)∥ϱN1U∥
2

+

∫ t

0
ϵ|ϱN |

2
W1

α,β
(U)

+ K (ϵ)∥qN − p∥2
W1

α,β
(U)

ds.

hoose ϵ ∈ (0, δ) and denote δ′
= δ − ϵ, we have

∥ϱN (t)1U∥
2
+ δ′

∫ t

0
|ϱN |

2
W1

α,β
(U)

ds

≤

∫ t

0
K (ϵ)∥ϱN (s)1U∥

2
+ K (ϵ)∥qN − p∥2

W1
α,β

(U)
ds.

ccording to Gronwall’s inequality, we have

∥ϱN (t)1U∥
2

≤ K
∫ t

0
∥qN − p∥2

W1
α,β

(U)
ds

≤ KT max
0≤t≤T

∥qN (t) − p(t)∥2
W1

α,β
(U)
.

herefore, E∥1U (pN (t) − p(t))∥2
≤ E∥ϱN1U∥

2
+ E∥(qN (t) −

(t))1U∥
2, and by Theorem 2,

sup
≤t≤T

E∥1U (pN (t) − p(t))∥2

≤ K max
0≤t≤T

E∥qN (t) − p(t)∥2
W1

α,β
(U)

≤ KN1−r max
0≤t≤T

E|p(t)|2Wr
α,β

(U),

here K is a generic constant depending on T , r , α, β and the
oefficients in the system.

emark 7. For practical implementations, one can use p̃N (t, x) ≜
ax {pN (t, x), 0} to preserve the non-negativity, so that p̃N is
ctually a probability density function after normalization. In the
eanwhile, since the target function p(t, x) is itself an unnor-
alized probability density function and thus p(t, x) ≥ 0 almost
urely, we always have |p̃N (t, x) − p(t, x)| ≤ |pN (t, x) − p(t, x)|.
herefore, the convergence result (19) in Theorem 6 also holds
rue if pN is replaced by p̃N .

. Numerical method for solving stochastic differential equa-
ions

Generally, the solution of the SDEs (11), which we need to
olve in the procedure of Hermite–Galerkin approximation, does
ot have a closed form. Therefore, we need to further apply time
iscretization schemes and solve the SDE system numerically.
Let P : 0 = t0 < t1 < · · · < tn = T be a partition of the time

eriod, where t − t =
T

:= ∆t , i = 1, 2, . . . , n. Our goal is to
i i−1 n



Z. Sun and S.S.-T. Yau Automatica 156 (2023) 111176

o

i

˜

Ψ

I
d
o
t
m

c
E
m
p

5

i
r
n

5

o
p
c
t
f
a
n
c
t
c
α

t
a
t
n
s

β
p
t
x̂
t
k
(

i

p

A

btain a good estimation of the value Ψt at time t = ti, for each
1 ≤ i ≤ n.

Here, we will introduce two kinds of time discretization
schemes for the SDE system (11).

4.1. Euler scheme

For the given discretization P for time period [0, T ], an Euler
approximation to SDE (11) is a continuous time stochastic process
Ψ̃ = {Ψ̃t , 0 ≤ t ≤ T } satisfying the iterative scheme

Ψ̃tl = Ψ̃tl−1 + PΨ̃tl−1∆t +

d∑
k=1

Q (k)Ψ̃tl−1 (Y
k
tl − Y k

tl−1
),

with initial value Ψ̃0 = Ψ0, l = 1, 2, . . . , n. Since we are more
concerned about the values of Ψ̃ at each time tl, the values of
Ψ̃t with t ∈ (tl−1, tl), for some l, can be simply determined by
linear interpolation of Ψ̃tl−1 and Ψ̃tl , such that Ψ̃ is a continuous
stochastic process.

Theoretical analysis shows that Euler scheme is an order 0.5
scheme (Kloeden & Platen, 1992) and therefore, it may suffer from
robustness problems for big time discretization step.

4.2. Curved scheme and milstein scheme

When the concise Euler scheme cannot meet our requirements
for accuracy, we need to use more accurate numerical algorithms
to solve SDE systems.

For one-dimensional cases, higher order time discretization
schemes, such as Milstein scheme, can be obtained through
stochastic Taylor expansion. As is introduced in Kloeden and
Platen (1992), the stochastic Taylor expansion up to order 1.0 of
the solution to the SDE (11) has the form

Ψti+1 =Ψti + PΨti∆t +

d∑
j=1

Q (j)Ψti (Yti+1 − Yti )

+

d∑
j1,j2=1

Q (j2)Q (j1)Ψti I(j1,j2) + R3,

(24)

where R3 contains terms of order at least 1.5, and

I(j1,j2) =

∫ ti+1

ti

∫ s1

ti

dY j1
s2 dY

j2
s1

are multiple Ito integrals.
The iterative formula of Milstein scheme in one dimension is

as follows,

Ψ̃ti+1 = Ψ̃ti + PΨ̃ti∆t + Q Ψ̃ti (Yti+1 − Yti )

+
1
2
Q 2Ψ̃ti

[
(Yti+1 − Yti )

2
−∆t

]
,

where we use the fact that∫ ti+1

ti

∫ s1

ti

dYs2dYs1 = (Yti+1 − Yti )
2
−∆t.

For high dimensional cases, unfortunately, the multiple Ito
ntegral I(j1,j2) cannot be expressed explicitly by the endpoint
values Y (j1)

ti+1
, Y (j1)

ti , Y (j2)
ti+1

and Y (j2)
ti for different j1 and j2. We would

like to use

I(j ,j ) =
1
(Y (j1)

− Y (j1))(Y (j2)
− Y (j2))
1 2 2 ti+1 ti ti+1 ti

7

to estimate I(j1,j2) and obtain the following scheme

t̃i+1 =Ψ̃ti + PΨ̃ti∆t +

d∑
j=1

Q (j)Ψ̃ti (Yti+1 − Yti )

+

d∑
j1,j2=1

Q (j2)Q (j1)Ψ̃tĩ I(j1,j2).

(25)

n fact, scheme (25) can be regarded as a kind of curved scheme
iscussed in Armstrong and King (2022). Although the overall
rder of this scheme is still 0.5, numerical solutions provided by
his scheme can better approximate a certain low dimensional
anifold containing the exact solution.
Numerical results in the next section show that in the appli-

ation of solving NLF problems, in comparison with the classical
uler scheme, Milstein schemes (24) and curved schemes (25) are
ore robust with respect to the time discretization step ∆t , and
rovide more accurate estimations to the state process.

. Numerical results

In this section, we will discuss the strategies of choosing scal-
ng factor α and translating factor β, and provide two numerical
esults of solving nonlinear filtering problems with correlated
oise using HGSM.

.1. Determination of scaling and translating factors

When approximating functions with the Hermite basis, the
ptimal choice of scaling and translating factors is still an open
roblem. Generally speaking, a proper choice of scaling factor α
an promote the efficiency of approximating functions concen-
rating on the neighborhood of the origin, while the translating
actor β largely decides the efficiency of approximating functions
way from the origin. For NLF problems, the state process may
ot stay near the origin and therefore, the main part of the
onditional density can also be away from the origin. Thus, the
ranslating factor β is more important and we will focus on the
hoice of β in this section. For guidance of choosing scaling factor
, readers can refer to Luo and Yau (2013b).
If the state process wanders near the origin, then the condi-

ional density concentrates on the neighborhood of the origin,
nd we can fix the translating factor β = 0. If the state process
ends to deviate from the origin, then the translating factor β
eed to be adjusted adaptively. The self-adjusting procedure is
ummarized as follows.
Fix a threshold value β0 > 0 and an initial translating factor

. If the k(1 ≤ k ≤ d)th component of the estimation of the state
rocess given by the HGSM continues to exceed the threshold to
he one side, i.e., several consecutive estimates x̂k ≥ βk + β0 (or
k

≤ βk − β0), then the major part of the conditional density
ends to move right (left) on the kth component, and we set the
th component of the new translating factor β′ to be β ′

k = βk+β0,
β ′

k = βk − β0).
Before the adjustment, the conditional density p(t) is approx-

mated by

N (t) =

∑
n∈ΩN

ψn(t)Hα,β
n (x).

fter the adjustment, p(t) is approximated by pN (t) =
∑

n∈ΩN

ψn(t)H
α,β′

n (x), with Ψ = TΨ , Tn1 , n2 = ⟨Hα,β
n2 ,H

α,β′

n1 ⟩.
Coefficients in the SDE (11) are also reset using the basis with

respect to β′: Pn1,n2 = A (Hα,β′

n2 ,H
α,β′

n1 ), Q (k)
n1,n2 = ⟨LkHα,β′

n2 ,H
α,β′

n1 ⟩,
and we have move the HGSM to the new basis {Hα,β′

n }.
The whole procedure of the NLF algorithm proposed in this

paper is summarized in Algorithm 1.
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Algorithm 1 NLF Algorithm Based on HGSM
Step 1: (Off-Line) Choose suitable parameters α and N . Fix β = 0
r set the threshold β0. Conduct the Hermite–Galerkin approxi-
ation procedure and obtain the system of SDEs (11) satisfied by

he Hermite–Fourier coefficients Ψt .
tep 2: (On-Line) When new observations come, use proper time
iscretization schemes to numerically solve the SDE system (11)
nd obtain the approximated Hermite–Fourier coefficients, Ψ̃t , at
ach time step. If the condition of changing translating factor is
atisfied, then conduct the factor adjusting procedure.
tep 3: (On-Line) Compute the unnormalized conditional density
unction at each time step based on Ψ̃t and obtain the conditional
xpectation of the state process.

5.2. One-dimensional cases

We first consider the following one-dimensional nonlinear
iltering problem

dxt = dwt + dvt ,
dyt = xt (1 + 0.25 sin(xt ))dt + dvt ,

(26)

here v = {vt : 0 ≤ t ≤ T } and w = {wt : 0 ≤ t ≤ T } are
mutually independent standard 1-dimensional Brownian motion.

We would like to use this example to test the effect of different
time discretization schemes on the HGSM. Therefore, we truncate
the state process xt and restrict xt ∈ [−3, 3], so that we can fix
the translating factor β ≡ 0. The terminal time T is set to be 50.
Other parameters in Hermite–Galerkin approximation procedure
are chosen to be α = 1 and N = 10. Both Euler and Milstein
schemes are used to numerically solving the system of SDEs,
respectively.

Hereafter, the rooted mean square errors (RMSEs) are used to
assess the performance of each method and the RMSE at time ti
is calculated by

RMSEi =

√ 1
i + 1

i∑
j=0

|xi − x̂i|
2
, (27)

nd the subscript is omitted when we consider the overall RMSE
t the terminal time T .
Typical performances for HGSM with time discretization step

t = 0.01 s and ∆t = 0.05 s are shown in Figs. 1 and 2. The
erformances of the resampling particle filters with 400 particles
re illustrated as a benchmark. Since the purpose of filtering is
o give a precise estimation to the state process, and at each
ime, the expectations of the state process is equal to those of
he conditional expectations given the observations, we also draw
he trajectories of the state process in Figs. 1 and 2, as a reference.
he RMSEs of the methods are shown in Tables 1 and 2.
When the time discretization step is ∆t = 0.01 s, HGSM with

oth Euler and Milstein scheme can obtain a good estimation
f the state process. However, if the ∆t increases to 0.05 s,
nly HGSM with Milstein scheme can properly track the state
rocess. In fact, in the 100 numerical experiments with time step
t = 0.05 s, some simulations of the Euler scheme blow up,
nd therefore, the average RMSE in those experiments of the
uler scheme cannot be calculated and is reported to be ‘NaN’ in
able 2. Such results imply that for big time discretization steps,
ilstein scheme is more suitable for solving the SDE systems
rising in the HGSM, when solving nonlinear filtering problems.
In order to show that the numerical solution to the DMZ

quation based on HGSM with Milstein scheme is a good approx-
mation to the real solution, which is the conditional probability
8

Table 1
The one-dimensional example: rooted mean square error (RMSE)
and CPU time of two time discretization schemes with time step
∆t = 0.01 s.
Scheme Milstein scheme Euler scheme

RMSEa 0.6334 0.5485
CPU timeb 0.0570 s 0.0578 s

aRooted mean square error (RMSE) of a method is estimated by
the average RMSE in 100 experiments.
bThe CPU time of a method is the average time cost in 100
experiments.

Table 2
The one-dimensional example: rooted mean square error (RMSE)
and CPU time of two time discretization schemes with time step
∆t = 0.05 s.
Scheme Milstein scheme Euler scheme

RMSEa 0.7569 NaNc

CPU timeb 0.0102 s 0.0105 s

aRooted mean square error (RMSE) of a method is estimated by
the average RMSE in 100 experiments.
bThe CPU time of a method is the average time cost in 100
experiments.
cThe average RMSE is reported to be ‘NaN’, because some of the
simulations blow up.

density of the state process given the observations, the condi-
tional probability density function obtained by HGSM and the
distribution of the particles at 9 time points uniformly distributed
in the time period are shown in Fig. 3. At these time points, the
shapes of the conditional probability density functions obtained
by the HGSM is very closed to the outlines of the histograms of
the particles, especially when most of the particles are inside the
interval [−3, 3]. Since the distribution of the particles can well
reflect the properties of the conditional probability density, the
solution to the NLF based on HGSM approximates the conditional
probability density well.

5.3. Two-dimensional case

Now, we consider the following nonlinear filtering problem
with state and observation processes both in dimension two.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx(1)t = x(2)t dt + 0.1 ∗ dw(1)

t + dv(1)t ,

dx(2)t = −x(1)t dt + 0.1 ∗ dw(2)
t + dv(2)t ,

dy(1)t = x(1)t (1 + cos x(2)t )dt + dv(1)t ,

dy(2)t = x(2)t (1 + cos x(1)t )dt + dv(2)t ,

(28)

where v(1) = {v
(1)
t : 0 ≤ t ≤ T }, v(2) = {v

(2)
t : 0 ≤ t ≤ T },

w(1)
= {w

(1)
t : 0 ≤ t ≤ T } and w(2)

= {w
(2)
t : 0 ≤ t ≤

T } are mutually independent standard 1-dimensional Brownian
motions. The state process simulates a uniform circular motion
under white noise disturbances. Since the deterministic part of
the state process is at the critical point of stability, simulation
results show that the effect of the stochastic part is gradually
enlarging the radius of the circular motion. Therefore, adjusting
the transforming factor β during the filtering process is necessary.

Here we set the time discretization steps to be ∆t = 0.01 s
and use curved scheme (25) to solve the SDEs in the HGSM. The
terminal time T is also set to be 50. We choose N = 9 and
thus the dimension of the finite dimensional subspace SNα,β is
|ΩN | = (N + 1)2 = 100. The scalar factor in Hermite–Galerkin
approximation procedure is set to be α = (α1, α2) = (1, 1) and
the transforming factor takes value in β = (β1, β2) = (2k1, 2k2),
with k , k ∈ Z, because Hermite functions with scalar factor α =
1 2
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Fig. 1. The one-dimensional example: a typical performance for HGSM using Milstein scheme and Euler scheme with time discretization step ∆t = 0.01 s.
and translating factor β can efficiently approximate probability
ensity functions with expectation value µ ∈ [β − 2, β + 2].
The transforming factor β will change as long as one compo-

ent of 20 estimations in a row given by HGSM are outside the
nterval [βi − 2, βi + 2], and fall to the same side. For example,
f at time t0, 20 estimations of x(1), {x(1)t0−k : k = 0, 1, . . . , 9} are
arger than β1 + 2, then the transforming factor will be reset to
= (β1 + 2, β2) at time t0.
Since the parameter matrices in curved scheme can be cal-

ulated beforehand, the main on-line computation cost comes
rom multiplications of sparse matrices of size (N + 1)2 with
nly O(N) non-zero entries each row. Therefore, at each time
tep, the computation cost is O(N3). The change of translating
actor β will bring additional computations, because Hermite–
ourier coefficients Ψ̃t need to be transferred to adapt to the new
asis. However, the introduction of adaptive translating factor β
ignificantly improves the approximation capability of Hermite
asis. Accurate estimation to the state process can be obtained
ith smaller N . In the meanwhile, the transferring procedure also
nly consists of the multiplication of matrices and vectors and the
verall computation cost is still O(N3).
The result of the resampling particle filter with particle num-

er NPF = 400 is again used as a benchmark in this example and
he trajectories of the state process are also shown as a reference.
typical performance of HGSM and particle filter is shown in

ig. 4. Green vertical lines in Fig. 4 demonstrate the time when
he corresponding component of the translating factor changes.
he rooted mean square errors of the estimation to the state
rocesses and the computation time of HGSM as well as particle
ilter are shown in Table 3. We also consider the approximation
apability of the HGSM on higher moments of the conditional
9

Table 3
The two-dimensional example: rooted mean square error (RMSE)
and CPU time of HGSM and the particle filter for tracking the state
process in the two-dimensional example (∆t = 0.01 s).
Method HGSM Particle filter with NPF = 400

RMSEa 1.5546 1.6510
CPU timeb 3.3421 s 38.0886 s

aRooted mean square error (RMSE) of a method is estimated by
the average RMSE in 100 experiments.
bThe CPU time of a method is the average time cost in 100
experiments.

probability distributions. For this particular trajectory, the RMSEs
of estimating the first, second and third moments of the process
using HGSM and resampling particle filter evolves as is shown in
Fig. 5.

Results show that the conditional mean and also the second
and third moment of the conditional probability distributions are
well approximated by the HGSM in this example. In terms of the
RMSEs, the HGSM performs almost on a par with the resampling
particle filter in this particular trajectory (Fig. 5), and the average
RMSE of HGSM in the 100 experiments is a little smaller than that
of the resampling particle filter (Table 3). In the meanwhile, the
average computation time it takes is only 3.3421s, which is only
about 1

10 of the computation time of resampling particle filter
with 400 particles. Therefore, in this example, the HGSM method
is more capable in giving instantaneous estimations to the state
process.
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Fig. 2. The one-dimensional example: a typical performance for HGSM using Milstein scheme and Euler scheme with time discretization step ∆t = 0.05 s.

Fig. 3. The one-dimensional example: conditional probability density function obtained by HGSM with Milstein scheme and the distribution of the particles.

10
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Fig. 4. The two-dimensional example: a typical tracking performance with time
discretization step ∆t = 0.01 s for HGSM and particle filter with N = 400
articles. Green vertical lines demonstrate the time when translating factor β

hanges.

. Conclusions

In this paper, we use HGSM to solve the DMZ equation which
ccurs in the NLF with correlated noise. The convergence result
s well as the convergence rate of the algorithm on bounded
pen sets are studied under mild conditions. After projecting
he exact solution onto the finite dimensional space spanned by
ermite functions, we obtain a system of SDEs generated by the
bservation process. Accurate time discretization schemes such
s the Milstein scheme and curved schemes can be applied to
olving the SDE system. Numerical results show that the algo-
ithm with these schemes can provide a robust and accurate
stimation to the state process, while the computation cost can
e sharply reduced in comparison with the resampling particle
ilter, in order to get a similar mean square error.

With the dimension of the NLF increasing, the cardinality of
he set ΩN is (N + 1)d, which increases exponentially. The com-
utational cost of the algorithm will thus also increase rapidly
or high dimensional cases, which is well-known as the curse of
imensionality. Numerical results show that with proper scaling
nd translating factors, a relatively small N can provide an accu-
ate estimation to the state process. Besides, for a particular N ,
nother possible approach to deal with this problem is reducing
he number of basis functions by choosing a proper subset of
ulti-indices in ΩN , which is also discussed in relevant works
uch as (Luo & Yau, 2013b; Wang et al., 2020). Combining the
bove two techniques together, we think that the algorithm pro-
osed in this paper also has the potential of dealing with NLF in
edium high dimensions.
11
Generally speaking, the algorithm of numerically solving the
MZ equation based on HGSM performs well in NLF with cor-
elated noise in low dimension cases, and has the potential of
eing generalized to NLF in medium high dimensions. Theoretical
nd numerical results both imply that this algorithm is especially
uitable for NLF systems in which the state process is contained
n a bounded domain with high probability.

ppendix A. Proof of Theorem 2

roof. For all u ∈ Wr
α,β(R

d), r ∈ N, we have the expression u(x) =

n∈Nd ûα,β
n Hα,β

n (x) and PNu(x) − u(x) = −
∑

n∈Ωc
N
ûα,β
n Hα,β

n (x),
here Ωc

N = {n ∈ Nd
: nj ≥ N, for some 1 ≤ j ≤ d} and

α,β
n = ⟨u,Hα,β

n ⟩ are the Hermite–Fourier coefficients.
According to the Parseval’s equality, for l ≤ r , we have

PNu − u|2
W l

α,β
(Rd)

=

d∑
j=1

∑
n∈Ωc

N

µnj,l |̂u
α,β
n |

2
,

here µnj,l are defined in (13).
For all 1 ≤ j ≤ d, denote by Λ1,j

N = {n ∈ Ωc
N , nj > N} and

2,j
N = {n ∈ Ωc

N , nj ≤ N}, then∑
n∈Ωc

N

µnj,l |̂u
α,β
n |

2

=

∑
n∈Λ

1,j
N

µnj,l |̂u
α,β
n |

2
+

∑
n∈Λ

2,j
N

µnj,l |̂u
α,β
n |

2
≜ I1 + I2

or I1, we have the following estimation:

1 ≤ max
n∈Λ

1,j
N

{
µnj,l

µnj,r

} ∑
n∈Λ

1,j
N

µnj,r |̂u
α,β
n |

2

Notice that∑
n∈Λ

1,j
N

µnj,r |̂u
α,β
n |

2
≤

∑
n∈Nd

µnj,r |̂u
α,β
n |

2
= |u|2Wr

α,β
(Rd)

nd

max
∈Λ

1,j
N

{
µnj,l

µnj,r

}
≤ (2α2

j )
l−rN l−r .

Therefore, I1 ≤ (2α2
j )

l−rN l−r
|u|2Wr

α,β
(Rd).

Now, we come to the estimation of I2. For n ∈ Λ
2,j
N , there exists

some kj ̸= j such that nk > N ≥ nj, then

2 ≤ max
n∈Λ

2,j
N

{
µnj,l

µnkj ,r

} ∑
n∈Λ

2,j
N

µnkj ,r
|̂uα,β

n |
2

nd

max
∈Λ

2,j
N

{
µnj,l

µnkj ,r

}
≤ 2l−r

α2l
j

α2r
kj

N l

(N − r + 1)r
.

hen N > 2(r − 1),

max
∈Λ

2,j
N

{
µnj,l

µnkj ,r

}
≤

(2α2
j )

l

α2r
kj

N l−r

herefore,

PNu − u|2
W l

α,β
(Rd)

≤

d∑(
(2α2

j )
l−r

+
(2α2

j )
l

α2r

)
N l−r

|u|2Wr
α,β

(Rd)

j=1 kj
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Fig. 5. The two-dimensional example: the evolution of the RMSE for the estimation of the first, second and third moments using the HGSM and the resampling
particle filter.
A

D

When max1≤j≤d |αj|

min1≤j≤d |αj|
≤ c0,

|PNu − u|2
W l

α,β
(Rd)

≤ d(2c2r0 + 1)(2|α|
2
∞
)l−rN l−r

|u|2Wr
α,β

(Rd)

imilar estimations can be done for other terms in ∥PNu −

∥W l
α,β

(Rd) and therefore, we have

∥PNu − u∥W l
α,β

(Rd)

≤ Cd,l

√
2c2r0 + 1(2|α|

2
∞
)
l−r
2 N

l−r
2 |u|Wr

α,β
(Rd)

here C is a constant that only depends on d and l.
d,l

12
ppendix B. Proof of Theorem 5

For any test function v ∈ C∞

0 (U), according to the duality of
k
x and Dk

x , we have

−
1
2

d∑
i,j=1

⟨AijDxiv,Dxjv⟩r +

d∑
i=1

⟨BiDxiv, v⟩r + ⟨̃Cv, v⟩r

= −
1
2

d∑
i,j=1

∑
|k|=r

Ck ⟨Dk
x
(
Dxjv

)
, AijDk

x
(
Dxiv

)⟩
−

1
2

d∑
i,j=1

∑
|k|=r

∑
l+m=k

Ck ⟨Dl
xA

ijDm
x
(
Dxiv

)
,Dk

x
(
Dxjv

)⟩

|l|≥1
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+

d∑
i=1

∑
|k|=r

Ck ⟨Dk
xv, B

iDk
x
(
Dxiv

)⟩
+ U1(v),

here Ck
=

|k|!

k1!···kd!
, ∀|k| ≤ r , ⟨·, ·⟩ denotes the inner product in

2(U) and |U1(v)| ≤ K∥v∥2
Wr

α,β
(U) for some constant K > 0.

Similarly,

Liv∥2
Wr

α,β
(U) =


d∑

j=1

ρ ijDxjv + Jiv


2

r

=

∑
|k|=r

Ck

⟨
d∑

j=1

ρ ijDk
x
(
Dxjv

)
,

d∑
j=1

ρ ijDk
x
(
Dxjv

)⟩

+

∑
|k|=r

∑
l+m=k
|l|≥1

Ck

⟨
d∑

j=1

Dl
x(ρ

ij)Dm
x
(
Dxjv

)
,

d∑
j=1

ρ ijDk
x
(
Dxjv

)⟩

+ 2
∑
|k|=r

Ck

⟨
d∑

j=1

ρ ijDxk
(
Dxjv

)
, JiDk

xv

⟩
+ U2(v),

where |U2(v)| ≤ K ′
∥v∥2

Wr
α,β

(U), for some K ′ > 0.
According to the uniformly elliptic condition of a(x) and the

fact that A(x) = a(x) + c(x) = a(x) + ρ(x)ρ(x)⊤, we have

−
1
2

d∑
i,j=1

⟨AijDxiv,Dxjv⟩r
+

d∑
i=1

⟨BiDxiv, v⟩r

+ ⟨̃Cv, v⟩r +
1
2

d∑
i=1

∥Liv∥2
Wr

α,β
(U)

≤ −
δ

2

∑
|k|=r

Cα
d∑

j=1

Dk
x
(
Dxjv

)2 + V (v) + U1(v) + U2(v),

ith |V (v)|2 ≤ K ′′
∥v∥Wr+1

α,β
(U)∥v∥Wr

α,β
(U), for some constant K ′′ >

.
By Cauchy–Schwarz inequality, for arbitrarily chosen ϵ > 0,

V (v)| ≤ ϵ∥v∥2
Wr+1

α,β
(U)

+ K (ϵ)∥v∥2
Wr

α,β
(U).

Therefore,

−
1
2

d∑
i,j=1

⟨AijDxiv,Dxjv⟩r +

d∑
i=1

⟨BiDxiv, v⟩r

+ ⟨̃Cv, v⟩r +
1
2

d∑
i=1

∥Liv∥2
Wr

α,β
(U)

≤ −δ′
∥v∥2

Wr+1
α,β

(U)
+ M ′

∥v∥2
Wr

α,β
(U) (B.1)

olds for all v ∈ C∞

0 (U). Since Wr+1
α,β (U) is the closure of C∞

0 (U)
under the Wr

α,β-norm, (B.1) holds for all u ∈ Wr+1
α,β (U).

Given the coercivity condition (B.1), the estimation (15) can be
erived using standard Galerkin approach.
Let {di}∞i=1 be a orthonormal basis of W

r
α,β(U), and assume that

d }
∞

⊂ W
r+1

(U).
i i=1 α,β
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For each n ∈ N, define pn(t, x) =
∑n

i=1 p
i
n(t)di(x), with pin(t)

given by the following SDEs:

pin(t) = ⟨ϕ, di⟩r +

∫ t

0
⟨L0pn(s), di⟩rds

+

d∑
l=1

∫ t

0
⟨Llpn(s), di⟩rdY l

s .

By Ito’s formula, we have

|pin(t)|
2

=|⟨ϕ, di⟩r |2 + 2
∫ t

0
⟨L0pn(s), pin(s)di⟩rds

+ 2
d∑

l=1

∫ t

0
⟨Llpn(s), pin(s)di⟩rdY

l
s

+

d∑
l=1

∫ t

0
|⟨Llpn(s), di⟩r |2 ds.

ince {di}∞i=1 is an orthonormal basis of Wr
α,β(U),

E∥pn(t)∥2
Wr

α,β
(U) = E

n∑
i=1

|pin(t)|
2

≤∥ϕ∥
2
Wr

α,β
(U) + 2E

∫ t

0
⟨L0pn(s), pn(s)⟩rds

+

d∑
l=1

E
∫ t

0
∥Llpn(s)∥2

Wr
α,β

(U)ds

∥ϕ∥
2
Wr

α,β
(U) − E

∫ t

0
2δ′

∥pn(s)∥2
Wr+1

α,β
(U)

ds

+ 2M ′

∫ t

0
∥pn(s)∥2

Wr
α,β

(U)ds.

ccording to Gronwall’s inequality and Burkholder–Davis–Gundy
nequality, we have

sup
t≤T

∥pn(t)∥2
Wr

α,β
(U)+E

∫ T

0
∥pn(t)∥2

Wr+1
α,β

(U)
dt

≤ M∥ϕ∥
2
Wr

α,β
(U),

or all n ∈ N, where M > 0 is a constant that is independent to
.
Therefore, there exists a subsequence of {pn(t)}, which con-

erges to an element p ∈ L∞
ω ([0, T ],Wr

α,β(U)) ∩ L2ω([0, T ],

Wr+1
α,β (U)), which is the generalized solution of (2) and inequality

(15)

E sup
t≤T

∥p(t)∥2
Wr

α,β
(U)+E

∫ T

0
∥p(t)∥2

Wr+1
α,β

(U)
dt

≤ M∥ϕ∥
2
Wr

α,β
(U)

olds. Now, we have finished the proof of Theorem 5.
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