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Abstract— In this article, we investigate the approximation
ability of recurrent neural networks (RNNs) with stochastic
inputs in state space model form. More explicitly, we prove
that open dynamical systems with stochastic inputs can be
well-approximated by a special class of RNNs under some natural
assumptions, and the asymptotic approximation error has also
been delicately analyzed as time goes to infinity. In addition, as an
important application of this result, we construct an RNN-based
filter and prove that it can well-approximate finite dimensional
filters which include Kalman filter (KF) and Beneš filter as special
cases. The efficiency of RNN-based filter has also been verified
by two numerical experiments compared with optimal KF.

Index Terms— Dynamical systems with stochastic inputs, finite
dimensional filter (FDF), Kalman filter (KF), recurrent neural
networks (RNNs).

I. INTRODUCTION

RECURRENT neural networks (RNNs) are able to learn
features and long-term dependencies from time-series

data [1], [2]. In the foundational article, Rumelhart et al. [1]
used back-propagation to train a neural network with one
or two hidden layers, and Elman [2] popularized simple
RNNs (Elman network). RNNs have various applications in
many fields, such as language modeling [3], [4], speech
recognition [5], [6], image processing [7], [8], and machine
translation [9]. Major and recent advancements of RNNs
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including the challenging problems are reviewed on [10].
Despite the great successes of RNN in applications, the
theoretical parts still need to be further investigated. Schäfer
and Zimmermann [11] proved that open dynamical systems
can be approximated by RNN in state space model form with
an arbitrary accuracy, based on the universal approximation of
feedforward neural networks which was proven in [12]–[14]
using different methods.

In this work, we shall prove that open dynamical systems
with stochastic inputs can be approximated by a class of
RNNs in state space model form with an arbitrary accuracy.
There are three significant differences between [11] and our
work. The first is that we consider the more general stochastic
dynamical systems rather than deterministic. The second is
that [11] considers finite time horizon while we investigate the
performance of RNN when time goes to infinity. The third one,
which is also the most challenging one, is that all the inputs
of the maps in [11] are assumed to be in a compact subset,
whereas the inputs are stochastic and can be unbounded on
Euclidean space in our work.

As a significant application, finite dimensional filters (FDFs)
can be formulated as a special class of dynamical systems
with stochastic inputs. The nonlinear filtering problem involves
estimating a stochastic process {xk}k≥0 (the state process) that
cannot be observed directly, from the observations of a related
process {yk}k≥0 (the observation process). This problem arises
in many areas including target tracking, mathematical finance,
and communication. The goal of nonlinear filtering is to seek
the conditional expectation E[xk |y j , 1 ≤ j ≤ k], which can be
completely determined by the conditional density p(xk |y j, 1 ≤
j ≤ k) based on the observation history {y1, . . . , yk}. More
introductions of nonlinear filtering can be found in the classic
textbook [15].

The famous Kalman filter (KF) and Kalman–Bucy filter
were proposed in [16] and [17]. However, they need Gaussian
and linear assumptions w.r.t. the system. Therefore, there
spring up many works aiming to solve the nonlinear filtering
problems, such as the extended KF (EKF) [15], unscented
KF [18], ensemble KF [19], and particle filter (PF) [20].
Nonetheless, these filtering algorithms are suboptimal for
general nonlinear systems and we are interested in a special
class of systems which possess FDFs, i.e., we can obtain
the conditional density p(xk |y j , 1 ≤ j ≤ k) by recursively
computing a statistic of finite dimension using the observa-
tions. Historically, Kalman [16] and Kalman and Bucy [17]
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Fig. 1. Framework of this article.

first established the FDFs for linear filtering system with
Gaussian initial distributions. Since then, there has been an
intense interest in finding new classes of FDFs, such as Beneš
filter [21], [22]. From 1990s, Chiou and Yau [23], Dong et
al. [24], Yau [25], [26], and Yau and Hu [27] and his collab-
orators have completely classified all the finite dimensional
estimation algebra of maximal rank and constructed explicitly
the so-called Yau filter which includes Kalman–Bucy filter and
Beneš filter as special cases [25].

In this work, we formulate the FDF as the dynamical
system with stochastic inputs. Therefore, one natural idea is
to approximate FDFs by RNN, i.e., we can solve filtering
problems by RNN as shown in Fig. 1. Actually, there already
have existed some works about nonlinear filtering algorithms
using neural networks. Lo [28] proposed a neural filter using
recurrent multilayer perceptron and analyzed the estimation
error when time is finite and all the observations are in
a compact set. Parlos et al. [29] presented some practical
algorithms for adaptive state filtering using the framework of
EKF and RNN. Kutschireiter et al. [30] proposed a neural PF
whose capability was demonstrated by numerical experiments.
However, to our knowledge, the connections between FDF and
RNN have not been investigated, as well as the accumulated
error of neural filter when time goes to infinity. Following
the work [31], we start to investigate the mathematical theory
behind the neural filtering algorithms. In our RNN-based filter,
the inputs are observations and the outputs are the optimal
estimates of the states, i.e., both inputs and outputs are random.

The motivation of this work is twofold. First, as mentioned
in the classic book [32], “Much as almost any function can
be considered a feedforward neural network, essentially any
function involving recurrence can be considered a RNN.”
Therefore, it is of great significance to investigate the approx-
imation ability of RNN. We need to mention that the term
“RNN” used here is not a specific type of RNN, and it is a
more general framework as shown in (24). Second, FDF is
a direct application of the universal approximation ability of
RNN. Besides, FDF is the extension of KF and Beneš filter;
on the other hand, the suboptimal filters can be regarded as
the approximations of optimal filters by FDFs, such as EKF.
Hence, it is very meaningful to study the FDFs.

The main contributions of this work are listed as follows.

1) We prove that an open dynamical system with stochastic
possibly unbounded inputs can be well-approximated
by a specific class of RNN functions. More explicitly,

we carefully analyze the approximation errors between
the open dynamical system and RNN as time goes to
infinity.

2) We use a new viewpoint to formulate the FDFs, which
include the classic KF as a special case. Using the
concept of sufficient statistics, we express the FDF as
a special class of dynamical systems with stochastic
inputs, in which the system functions are unknown in
most cases.

3) Based on the previous two points, we construct a novel
RNN-based filter. Furthermore, for systems with FDFs,
the L1 error between the optimal estimate and the
estimate by RNN filter (RNNF) can be arbitrarily small
as time goes to infinity.

It needs to be pointed out that our work is for time-invariant
filtering systems without delays and Markovian jump. The
recently proposed asynchronous filtering scheme can be used
to deal with the Markovian jump systems subjected to
time-varying delays and infinite distributed delays, and the
filtering error system is exponentially stable in mean square
and satisfies a given performance index simultaneously [33].
These two filters are used to deal with different filtering
problems and both possess some kinds of stabilities.

This article is organized as follows. In Section II, we list
some preliminary results about filtering problems, KF, FDFs,
and uniform integrability. Section III is devoted to present our
first main result, i.e., any open dynamical systems can be
well-approximated by RNNs under some natural conditions.
In Section IV, we approximate the dynamical system of FDF
by RNN and propose a novel RNNF. The convergence of this
new filter is also carefully analyzed. In Section V, we show
some numerical results which exhibit the efficiency of our
algorithm. The conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, we list some preliminary knowledges. Some
frequently used notations are introduced first. Then we give
the general framework of filtering problems and introduce
two special classes of filters subsequently, i.e., KF and FDF.
Finally, we introduce the uniform integrability which is the
key part in the proofs of the main results.

A. Notations

For readers’ convenience, the notations used in this article
are summarized here.

We use N (m, P) to denote the Gaussian distribution with
mean m and covariance P . The indicator function of a subset
A ⊂ � is a function

�A : �→ {0, 1}
which is defined as

�A(x) :=
{

1, if x ∈ A

0, if x /∈ A.

Since all the norms on R
n are equivalent [34], without loss

of generality, let |·| denote the 2-norm on R
n . That is, for

∀ x = (x1, . . . , xn)
T ∈ R

n , |x | := (
∑n

i=1 |xi |2)1/2. Note that

Authorized licensed use limited to: Tsinghua University. Downloaded on October 07,2023 at 01:48:36 UTC from IEEE Xplore.  Restrictions apply. 



7994 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 10, OCTOBER 2023

all the random variables are defined on the probability space
(�,F , P). We set

L p(�;Rn) := {X (ω) : �→ R
n; X (ω) is measurable and

E[|X (ω)|p] <∞}
and the norm on the space L p(�;Rn) is defined as 	X	p :=
E

1/p[|X |p], where p = 1, 2.
We define the truncation operator TK with level K > 0 as

TK (xi) =
{

xi , if |xi | ≤ K

K · sign(xi), otherwise
(1)

and

TK (x) := (TK (x1), . . . ,TK (xn))
T (2)

for x = (x1, . . . , xn)
T ∈ R

n. It can be easily checked that
TK x = x when |x | ≤ K , and |TK x | ≤ |x | for all x ∈ R

n.
In addition∥∥TK X − TK X̄

∥∥
1 ≤

∥∥X − X̄
∥∥

1 ∀ X, X̄ ∈ L1(�;Rn) (3)

and this property is proven in Appendix A.

B. Discrete Filtering Problems

The discrete time-invariant filtering system considered here
is as follows:{

xk = f (xk−1)+ g(xk−1)wk−1

yk = h(xk)+ vk
(4)

where xk ∈ R
n is the state at the discrete time instant k,

f : R
n → R

n is the drift function, g : R
n → R

n×r is
the diffusion function, yk ∈ R

m is the observation or the
measurement of the system, h : Rn → R

m is the observation
function, {wk ∈ R

r , k = 0, 1, . . .}, and {vk ∈ R
m, k =

1, . . .} are the Gaussian white noise processes with wk ∼
N (0, Q) and vk ∼ N (0, R). Here, we need to assume that
{wk, k = 0, 1, . . .}, {vk, k = 1, . . .} and the initial state x0 are
independent of each other. We use Yk to denote the history of
the observations up to time instant k, that is

Yk := {y1, . . . , yk}. (5)

The aim of the filtering problem is to obtain the optimal
estimate of state xk based on the observation history Yk . Here,
optimal means that the estimate can minimize the mean square
error, and the rigorous definition is as follows:

Definition 1 (Minimum Mean Square Error Estimate [15]):
Let x̂ be an estimate of random variable x . Then the minimum
mean square error estimate of x is

arg min
x̂

E[(x − x̂)T(x − x̂)].
The minimum mean square error estimate of state xk based

on Yk is given by the following theorem.
Theorem 1 (Theorem 5.3 in [15]): Let the estimate of xk

be a functional on Yk . Then the minimum mean square error
estimate of state xk is its conditional mean E[xk |Yk].

Apparently, if we can obtain the conditional density of xk

based on Yk , i.e., p(xk |Yk), then we can simply compute

E[xk |Yk]. However, for the general nonlinear filtering sys-
tem (4), we cannot obtain p(xk |Yk) by solving finite ordinary
differential equations, except for some special cases, such as
linear Gaussian systems, which can be solved by KF.

C. Kalman Filter

In this part, we shall introduce the KF for linear Gaussian
systems, i.e., f , g, and h in (4) are linear functions, and the
distribution of the initial state x0 is Gaussian. More explicitly,
we consider the following special case of system (4):{

xk = Fxk−1 + Gwk−1

yk = H xk + vk
(6)

where the initial state x0 is Gaussian, and {wk, k = 0, 1, . . .}
and {vk, k = 1, . . .} are two independent white Gaussian
sequences that are also independent of the initial state
x0 jointly.

It is well-known that the conditional density function
p(xk|Yk) is Gaussian for system (6) and it can be determined
by the conditional mean and covariance. Let us denote the
conditional means as

mk|k−1 := E[xk|Yk−1], mk|k := E[xk |Yk] (7)

the conditional covariances as

Pk|k−1 := E
[
(xk − mk|k−1)(xk − mk|k−1)

T|Yk−1
]

Pk|k := E
[
(xk − mk|k)(xk − mk|k)T|Yk

]
(8)

and their evolution equations are given by KF in two iterative
steps. Assume the distribution of the initial state x0 is p(x0) =
N (m0|0, P0|0). For k = 1, 2, 3, . . .,

1) Prediction: Given mk−1|k−1 and Pk−1|k−1 , we obtain
mk|k−1 and Pk|k−1 by{

mk|k−1 = Fmk−1|k−1

Pk|k−1 = G QGT + F Pk−1|k−1 FT.
(9)

2) Updating: When the latest observation yk arrives, mk|k
and Pk|k are obtained by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mk|k = mk|k−1 + Pk|k−1 H T(H Pk|k−1 H T + R)−1

· (yk − H mk|k−1)

Pk|k = Pk|k−1 − Pk|k−1 H T(H Pk|k−1 H T + R)−1

· H Pk|k−1.

(10)

It is apparent that the Gaussian conditional density p(xk |Yk)
is totally determined by the conditional mean mk|k and covari-
ance Pk|k , so we put them together into a vector sk|k , which is
defined as follows:

sk|k :=
[
mT

k|k, vecT(Pk|k)
]T ∀ k ≥ 0 (11)

where vec(◦n1×n2) is the n1n2× 1 column vector obtained by
stacking the columns of the matrix ◦ on top of one another.
Then we can easily have

sk|k = ϕ(sk−1|k−1, yk) (12)

where ϕ is determined by (9) and (10).
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Obviously, p(xk |Yk) can be completely determined by sk|k ,
we call sk|k sufficient statistic, and its definition is given as
follows.

Definition 2 (Sufficient Statistic [21]): If the conditional
distribution p(xk|Yk) can be completely determined by a
vector-valued function sk|k ∈ R

ns of the observation sequence
Yk , where ns ∈ N, then we say sk|k is a sufficient statistic for
p(xk |Yk).

Hence, there exists a function γ : Rns → R
n , such that

E[xk|Yk] = γ (sk|k) (13)

since the optimal estimate E[xk |Yk] is determined by p(xk |Yk),
which is completely determined by the sufficient statistic sk|k .

Similarly, when the noises {wk} and {vk} in (6) are corre-
lated, we can also have (12) and (13), and more details can
be found in Appendix C.

D. Finite Dimensional Filter

Naturally, we can generalize (12) and (13) to any filtering
systems with finite statistics, i.e., the filtering systems with
FDFs, which include KF and Beneš filter [21] as special
cases. For instance, in KF, the conditional density function is
determined by the conditional mean and covariance for linear
Gaussian systems. In [21], it is proven that for a class of
special filtering systems, the unnormalized conditional density
can be written explicitly in terms of just ten sufficient statistics
satisfying a matrix-vector equation.

Similarly, we use vector Sk|k to denote the finite dimensional
sufficient statistics of the posterior distribution p(xk|Yk). The
evolution function of the statistics is denoted as �, and the
map from Sk|k to conditional mean E[xk|Yk] is denoted as �,
that is

Sk|k = �(Sk−1|k−1, yk) (14)

E[xk |Yk] = �(Sk|k). (15)

As we know, in most cases, it is not easy to write down
the explicit forms of the map functions � and �. However,
by taking advantage of neural networks, we can approximate
these functions just using the input and output data, which
motivates us to use neural networks to solve the FDF problems.

E. Uniform Integrability

Before we start the analysis of RNN, we need to introduce
an important concept, i.e., uniform integrability.

Definition 3 [35]: A collection of random variables {Xi ∈
R, i ∈ I } in L1(�;R) is said to be uniformly integrable if

lim
M→+∞

(
sup
i∈I

E
[|Xi |�|Xi |>M

]) = 0.

Similarly, this definition can be extended to random vectors.
Definition 4: A collection of random vectors {Xi ∈ R

n,
i ∈ I } in L1(�;Rn) is said to be uniformly integrable if

lim
M→+∞

(
sup
i∈I

E
[|Xi |�|Xi |>M

]) = 0. (16)

A common way to check the uniform integrability is listed
in the following lemma.

Lemma 1 [35]: Let {Xi ∈ R
n, i ∈ I } be a collection of

random vectors. If

sup
i∈I

E
[|Xi |p

]
<∞, for some p > 1 (17)

then {Xi i ∈ I } is uniformly integrable.
Following Lemma 1, we can obtain the following two useful

results which will be used in Sections III and IV.
Lemma 2: Assume a collection of random vectors {Xi ∈

R
n, i ∈ I } is uniformly integrable. Then for any ε > 0, there

exists a positive K > 0, such that

sup
i∈I
	Xi − TK Xi	1 < ε (18)

where the truncation operator TK is defined in (2).
Proof: Since {Xi : i ∈ I } is uniformly integrable, that is

lim
M→+∞

(
sup
i∈I

E[|Xi |�|Xi |>M ]
)
= 0 (19)

there exists K > 0, such that

sup
i∈I

E[|Xi |�|Xi |>K ] < ε

2
. (20)

Then we have

sup
i∈I
	Xi − TK Xi	1

≤ sup
i∈I

E
[|Xi − TK Xi |�|Xi |≤K

]
+ sup

i∈I
E
[|Xi − TK Xi |�|Xi |>K

]
= 0+ sup

i∈I
E
[|Xi − TK Xi |�|Xi |>K

]
≤ sup

i∈I

(
E
[|Xi |�|Xi |>K

]+ E
[|TK Xi |�|Xi |>K

])
≤ 2E

[|Xi |�|Xi |>K
]

< ε.

�
Remark 1: According to Lemma 2, it is known that we can

find a sufficiently large cube, such that most of the densities of
the uniformly integrable random vectors fall in this bounded
set. In other words, if {Xi ∈ R

n, i ∈ I } is uniformly
integrable, then we can choose a sufficient large K > 0, such
that uniformly over Xi ∈ {Xi ∈ R

n, i ∈ I }, the random vector
TK Xi is a good approximation of Xi in terms of the L1-norm.
Crucially, every TK Xi is a bounded random vector, which is
the desired property allowing us to approximate functions in
RNN with infinite time steps.

Combing Lemma 1 and Lemma 2, we can easily obtain the
following lemma.

Lemma 3: Assume that a collection of random vectors
Xi ∈ R

n, i ∈ I , satisfy supi∈I	Xi	2 < ∞. Then for any
ε > 0, there exists a positive K > 0, such that

sup
i∈I
	Xi − TK Xi	1 < ε (21)

where the truncation operator TK is defined in (2).
Proof: It is apparent that

sup
i∈I

E
[|Xi |2

]
<∞.
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Then according to Lemma 1, we know that {Xi , i ∈ I } is
uniformly integrable. Using Lemma 2, we obtain the desired
result. �

III. UNIVERSAL APPROXIMATION OF RNN
WITH STOCHASTIC INPUTS

In this section, we shall investigate the universal approxi-
mation ability of RNN with stochastic inputs. First, we need
to introduce the feedforward networks whose approximation
ability will be used in our analysis. Then we give a class of
systems which can be approximated by RNN. Furthermore,
the accumulated error is also delicately analyzed.

A. Feedforward Network

Now we revisit some well-known results of feedforward
networks presented in [14]. To begin with, we need to define
several classes of functions precisely.

Definition 5: For any r ∈ N ≡ {1, 2, . . .}, Ar is the set of
all affine functions from R

r to R, that is

Ar := {
A(x) = wTx + b : w, x ∈ R

r×1, b ∈ R
}
. (22)

In the feedforward network, x , w, and b represent the input,
weight, and bias of the network, respectively. A(x) is the linear
operator in feedforward networks.

Definition 6: A function κ : R → [0, 1] is a squashing
function if it is nondecreasing, limλ→+∞ κ(λ) = 1, and
limλ→−∞ κ(λ) = 0.

Here, κ represents the activation function.
Definition 7: �r (κ) be the class of functions⎧⎨

⎩ζ̄ : Rr → R : ζ̄ (x) =
q∑

j=1

β jκ(A j(x)), x ∈ R
r , β j ∈ R,

A j ∈ Ar , q = 1, 2, . . .

⎫⎬
⎭.

Apparently, ζ̄ represents the standard three-layered feed-
forward network with r input neurons, q hidden neurons,
and one output neuron. It is well-known that this class of
feedforward network functions is capable to approximate any
continuous function over a compact set to any desired degree
of accuracy. Let Cr be the set of continuous functions from
R

r to R. We now state the universal approximation theorem
of feedforward neural network.

Theorem 2 (Universal Approximation of Multilayer Feed-
forward Networks [14]): For every squashing function κ , every
r ∈ N, �r (κ) is uniformly dense on compacta in Cr , i.e., for
every compact subset S ⊂ R

n , �r (κ) is ρS-dense in Cr , where
for f, g ∈ Cr , ρS( f, g) := supx∈S | f (x)− g(x)|.

This theorem tells us that standard feedforward networks
with only a single hidden layer can approximate any continu-
ous function uniformly on any compact set.

Naturally, Theorem 2 can be extended to the approximation
of vector-valued functions. Let Cr,N be the set of continuous

Fig. 2. Open dynamical system with external input α, state s, and output β.

functions from R
r to R

N , and �r,N (κ) be the class of functions⎧⎨
⎩ζ̄ = (ζ̄1, . . . , ζ̄N )T : Rr → R

N : ζ̄l(x) =
q∑

j=1

βl, j κ(A j(x)),

x ∈ R
r , βl, j ∈ R, A j ∈ Ar , 1 ≤ l ≤ N, q = 1, 2, . . .

⎫⎬
⎭.

Then we have the following corollary.
Corollary 1 [11]: Theorem 2 holds for the approximation

of functions in Cr,N by the extended function class �r,N (κ).
Thereby the metric ρN

S ( f, g) := supx∈S

∑N
l=1 | fl(x)− gl(x)|.

B. Open Dynamical Systems and RNNs

While feedforward networks can be used to approximate
continuous functions in compact set, RNN can be mapped to
an open dynamical system with sequential external inputs [11],
which is shown in Fig. 2.

An open dynamical system in discrete time can be repre-
sented by the following equations:{

sk+1 = η(sk, αk+1), state transition

βk = ξ(sk), output equation
(23)

where αk is the stochastic external input, sk is the state, and
βk is the observable output for ∀ k ≥ 1 .

Now we aim to approximate the open dynamical
system (23) with stochastic inputs by a class of RNNs. More
explicitly, we investigate RNNr1,r2,r3(κ), which is defined as
follows:

Definition 8: For any squashing function κ , and r1, r2,
r3 ∈ N, RNNr1,r2,r3(κ) is a class of functions with the following
state space model form:{

s̃k+1 = η̃(s̃k, αk+1)

β̃k = ξ̃ (s̃k)
(24)

where αk ∈ R
r1 is the input, s̃k ∈ R

r2 is the hidden state,
β̃k ∈ R

r3 is the output, and

η̃(s̃, α) = η̄(TK s s̃,TK αα) (25)

ξ̃ (s̃) = ξ̄ (TK s s̃) (26)

in which η̄ ∈ �r1+r2,r2(κ), ξ̄ ∈ �r2,r3(κ), K s and K α are two
positive numbers which are the parameters of RNN, and T is
the truncation operator defined in (2).
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Fig. 3. RNNs with input α, hidden state s̃, and output β̃.

It can be seen that compared with the standard RNN, we use
truncations in the inputs of η̄ and ξ̄ in (25) and (26). This is
because the inputs α and the hidden state s̃ can be unbounded
instead of in some compact sets. We aim to approximate s̃ and
α by bounded TK s s̃ and TK αα, respectively.

The framework of RNN is displayed in Fig. 3 [32], which
is similar to the open dynamical system as shown in Fig. 2.
In the following theorem, we shall prove that the open
dynamical system (23) can be approximated by functions in
RNNr1,r2,r3(κ) with arbitrary accuracy.

Theorem 3 (Universal Approximation Theorem for RNN
With Stochastic Inputs): Let η(·) : R

r2 × R
r1 → R

r2 and
ξ(·) : Rr2 → R

r3 be continuous, the external stochastic inputs
αk ∈ R

r1 , the inner state sk ∈ R
r2 , and the output βk ∈ R

r3 ,
k = 1, 2, . . . For any open dynamical system of the form{

sk+1 = η(sk, αk+1)

βk = ξ(sk)
(27)

if the following conditions hold:
1) {αk, k ≥ 1} and {sk, k ≥ 1} are uniformly integrable;
2) for ∀ s, s̄ ∈ L1(�;Rr2) and ∀ α, ᾱ ∈ L1(�;Rr1),
	η(s, α) − η(s̄, ᾱ)	1 ≤ Cη1	s − s̄	1+Cη2	α − ᾱ	1, and
the Lipschitz constant Cη1 satisfies |Cη1| < 1;

3) for ∀ � > 0, there exists δ > 0, such that for any
s, s̄ ∈ L1(�;Rr2) satisfying 	s − s̄	1 < δ, we have
	ξ(s)− ξ(s̄)	1 < �,

then (27) can be approximated by the functions in
RNNr1,r2,r3(κ) with an arbitrary accuracy, i.e., for ∀ ε > 0,
there exist functions η̃ and ξ̃ of forms (25) and (26),
which determine the RNN system (24) with the same input
{αk, k ≥ 1} of (27), such that

lim
k→∞

	sk − s̃k	1 < ε

lim
k→∞

∥∥βk − β̃k

∥∥
1 < ε (28)

where s̃k and β̃k are the state and the output of the RNN
system (24), respectively.

Proof: The theorem is proven in three steps. We first
construct appropriate approximated RNN functions using the
universal approximation of multilayer feedforward networks.
Then we try to obtain the iterative inequalities for errors.
Finally, we compute the upper bounds of the accumulated
errors.

Step 1: In this step, we will construct functions in
RNNr1,r2,r3(κ) to approximate system (27).

Since {αk, k ≥ 1} and {sk, k ≥ 1} are uniformly integrable,
for ∀ ε1 > 0, we can find K1 > 0 and K2 > 0, such that

sup
k≥1

∥∥sk − TK1 sk

∥∥
1 < ε1

sup
k≥1

∥∥αk − TK2αk

∥∥
1 < ε1 (29)

according to Lemma 2. Let

B1 := {x = (x1, . . . , xr2)
T ∈ R

r2 : |xi | ≤ K1, 1 ≤ i ≤ r2}
B2 := {x = (x1, . . . , xr1)

T ∈ R
r1 : |xi | ≤ K2, 1 ≤ i ≤ r1}.

Observing B1 and B2 are compact sets, and by Corollary 1,
we know that for ∀ ε2 > 0, there exist functions η̄ ∈ �r1+r2,r2

and ξ̄ ∈ �r2,r3 represented by feedforward networks, such that

sup
s∈B1

∣∣ξ(s)− ξ̄ (s)
∣∣ < ε2

sup
s∈B1,α∈B2

|η(s, α) − η̄(s, α)| < ε2. (30)

Set

ξ̃ (s) := ξ̄ (TK1 s)

η̃(s, α) := η̄(TK1 s,TK2α). (31)

Step 2: Define ek := 	sk − s̃k	1, where s̃k is the state of
system (24) with η̃ and ξ̃ defined in (31). Now we derive the
evolution equation of the error ek .

Comparing (24) and (27), we have

ek+1 = 	sk+1 − s̃k+1	1

= 	η(sk, αk+1)− η̃(s̃k, αk+1)	1

= ∥∥η(sk, αk+1)− η̄(TK1 s̃k,TK2αk+1)
∥∥

1

≤ ∥∥η(sk, αk+1)− η(TK1 sk,TK2αk+1)
∥∥

1

+ ∥∥η(TK1sk,TK2αk+1)− η(TK1 s̃k,TK2αk+1)
∥∥

1

+ ∥∥η(TK1 s̃k,TK2αk+1)− η̄(TK1 s̃k,TK2αk+1)
∥∥

1

� �1 +�2 +�3. (32)

Now we analyze these three terms separately. As for �1,
we have

�1 =
∥∥η(sk, αk+1)− η(TK1 sk,TK2αk+1)

∥∥
1

≤ Cη1

∥∥sk − TK1 sk

∥∥
1 + Cη2

∥∥αk+1 − TK2αk+1

∥∥
1

<
(
Cη1 + Cη2

)
ε1 (33)
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where the first inequality is due to the second condition and
the second inequality comes from (29). In terms of �2, using
the Lipschitz property of η and (3), we have

�2 =
∥∥η(TK1 sk,TK2αk+1)− η(TK1 s̃k,TK2αk+1)

∥∥
1

≤ Cη1

∥∥TK1 sk − TK1 s̃k

∥∥
1

≤ Cη1ek . (34)

As for �3, according to the second inequality in (30), we know
that

�3 =
∥∥η(TK1 s̃k,TK2αk+1)− η̄(TK1 s̃k,TK2αk+1)

∥∥
1 < ε2

(35)

since TK1 s̃k ∈ B1 and TK2αk+1 ∈ B2. Substituting (33)–(35)
into (32), we can obtain

ek+1 < Cη1ek +
(
Cη1 + Cη2

)
ε1 + ε2. (36)

Step 3: Now we analyze the accumulated errors. Using (36)
repeatedly, it follows that:

ek+1 < Cη1ek +
(
Cη1 + Cη2

)
ε1 + ε2

< C2
η1ek−1 + (Cη1 + 1)

((
Cη1 + Cη2

)
ε1 + ε2

)
...

< Ck
η1e1 +

((
Cη1 + Cη2

)
ε1 + ε2

) k−1∑
i=0

Ci
η1

= Ck
η1e1 +

Ck
η1 − 1

Cη1 − 1

((
Cη1 + Cη2

)
ε1 + ε2

)
. (37)

Thus, we have

lim
k→∞ ek ≤ 1

1− Cη1

((
Cη1 + Cη2

)
ε1 + ε2

)
(38)

once the condition |Cη1| < 1 holds.
Based on the third condition, we know that for ∀ ε > 0,

there exists δ > 0, such that for any s, s̄ ∈ L2(�;Rr2)
satisfying 	s − s̄	1 < δ, we have 	ξ(s)− ξ(s̄)	1 < ε/6.
Apparently, we can choose small enough ε1 and ε2, so that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
k→∞

ek ≤ 1

1− Cη1

((
Cη1 + Cη2

)
ε1 + ε2

)
< min

{
ε,

δ

2

}
∥∥sk − TK1 sk

∥∥
1 < ε1 < δ

sup
s∈B1

∣∣ξ(s)− ξ̄ (s)
∣∣ < ε2 < ε/6

(39)

based on (29) and the first inequality in (30). It follows that
there exists N0 > 0, such that

ek = 	sk − s̃k	1 < δ ∀ k ≥ N0.

Therefore, for any k ≥ N0, we have∥∥βk − β̃k

∥∥
1

= ∥∥ξ(sk)− ξ̃ (s̃k)
∥∥

1

= ∥∥ξ(sk)− ξ̄ (TK1 s̃k)
∥∥

1

≤ ∥∥ξ(sk)− ξ(TK1 sk)
∥∥

1 +
∥∥ξ(TK1 sk)− ξ(TK1 s̃k)

∥∥
1

+ ∥∥ξ(TK1 s̃k)− ξ̄ (TK1 s̃k)
∥∥

1

< ε/6+ ε/6+ ε/6 = ε/2 (40)

since
∥∥sk − TK1 sk

∥∥
1 < δ and

∥∥TK1 sk − TK1 s̃k

∥∥
1 < δ. Then

lim
k→∞

∥∥βk − β̃k

∥∥
1 < ε. (41)

It is obvious that we obtain the desired results from the first
inequality of (39) and (41). �

Remark 2: As for the three conditions in Theorem 3,
we have the following discussions.

1) In terms of the first condition, if supk≥1 E[|sk |p1] < ∞
and supk≥1 E[|αk |p2] < ∞, for some p1, p2 > 1,
then by Lemma 1, we know that this condition is
satisfied. We put this condition since we need to find
a big enough high-dimensional cube, which can capture
most of the densities of all the input and state random
vectors. Then we can approximate the functions on
the bounded domain using the approximation ability of
feedforward networks and neglect the unbounded parts.
This is why we can approximate functions on the whole
space.

2) The second condition implies that the system (27) is
stable [36], which is natural and useful in practice. This
condition is used to ensure that the accumulated error
will not blow up.

3) The third condition means that ξ is continuous in the
given metric space. So that we can estimate the approxi-
mation error of the outputs from the approximation error
of the hidden state.

Now we give an example which satisfies the three conditions
in Theorem 3.

Example 1: Consider the following linear scalar system:{
sk+1 = c0sk + c1αk+1

βk = c2sk
(42)

where |c0| < 1, c1 = 0, and {αk, k ≥ 0} is a white Gaussian
random sequence which is independent of s1. By iterations,
we can easily get

sk = ck−1
0 s1 + c1

k−2∑
i=0

ci
0αk−i ∀ k ≥ 2 (43)

then we have

E[|αk |2] = 1

E[|sk |2] = c2(k−1)
0 E[|s1|2] + c2

1

k−2∑
i=0

c2i
0

= c2(k−1)
0 E[|s1|2] + c2

1
1− c2(k−1)

0

1− c2
0

. (44)

Apparently, supk≥1 E[|sk |2] < ∞ and supk≥1 E[|αk |2] < ∞.
It can be easily checked that the three conditions in Theorem 3
are satisfied.

IV. RNN BASED FDFS

In this section, we shall investigate the connections between
RNNs and FDFs. KF, as a special case of FDFs, is discussed
explicitly.
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Fig. 4. Framework of FDFs with observation y, sufficient statistics S, and
optimal estimate E[xk |Yk ].

A. Algorithm

Observing that, in FDFs, we have the following evolution
functions of the sufficient statistics and the estimation:{

Sk|k = �(Sk−1|k−1, yk)

E[xk |Yk] = �(Sk|k )
(45)

by (14), which includes KF with (12) and (13) as a special
case. The framework of dynamical system (45) is shown in
Fig. 4. Comparing Figs. 3 and 4, it is obvious that (45) is an
open dynamical system with the stochastic inputs {yk, k ≥ 0}
and the stochastic outputs {E[xk|Yk]} which are the desired
optimal estimates of the states.

Naturally, using the universal approximation of RNN with
stochastic inputs as shown in Theorem 3, we can approximate
the open dynamical system (45) by RNN functions as detailed
in Section III. Following Theorem 3, it is known that we can
approximate � and � by functions �̃ and �̃ represented by
feedforward networks, respectively, that is

�̃(s, y) = �̄(TK1 s,TK2 y) (46)

�̃(s) = �̄(TK1 s) (47)

where �̄ ∈ �ns+m,ns (κ), �̄ ∈ �ns ,n(κ), K1 and K2 are two
positive numbers which are the parameters of RNN, and T is
the truncation operator defined in (2). Then we can obtain an
RNN system which is as follows:{

S̃k|k = �̃(S̃k−1|k−1, yk)

x̂k|k = �̃(S̃k|k)
(48)

where S̃k|k and x̂k|k are defined as the state and the output of
the RNN system (48), respectively. We need to remark here
that x̂k|k is a function of Yk .

Using the data {yk, E[xk |Yk]}k≥0, we can train the RNN
system (48) such that E[xk|Yk] can be well-approximated by
the output x̂k|k , which can be regarded as the estimate of the
state xk of (4) based on observation history Yk . We call this
filtering method as RNNF.

B. Error Analysis

1) RNN Based FDFs: Following the results in Theorem 3,
we can easily obtain the following theorem, which says that the

error between the optimal estimate E[xk |Yk] and the estimate
x̂k|k by RNNF can be arbitrarily small as time k approaches
infinity.

Theorem 4: Consider a discrete filtering system (4) with
optimal FDF. Let Sk|k , k ≥ 0 be the theoretical statistics
evolving according to (45) and S̃k|k, k ≥ 0 be the statistics
generated by our RNNF which evolve according to (48).
We need the following assumptions.

1) The sufficient statistics {Sk|k}k≥0 and the observations
{yk}k≥0 are uniformly integrable.

2) Function � is Lipschitz, i.e., for any S, S̄ ∈ R
nS and

y, ȳ ∈ R
m

∥∥�(S, y)−�(S̄, ȳ)
∥∥

1 ≤ C�1

∥∥S − S̄
∥∥

1 + C�2	y − ȳ	1

(49)

where nS is the dimension of Sk|k , C�1 and C�2 are
Lipschitz constants, and C�1 satisfies |C�1| < 1.

3) For ∀ � > 0, there exists δ > 0, such that for any s,
s̄ ∈ L1(�;RnS) satisfying 	s − s̄	1 < δ, we have
	�(s)− �(s̄)	1 < �.

then for any ε > 0, there exists an RNNF (48), i.e., there exist
�̃ and �̃ of the forms (46) and (47), respectively, such that

lim
k→∞

∥∥Sk|k − S̃k|k
∥∥

1 < ε (50)

and

lim
k→∞

∥∥x̂k|k − E[xk |Yk]
∥∥

1 < ε. (51)

Proof: The proof is similar to that of Theorem 3. �
This theorem highlights that RNNF can approximate any

optimal FDFs.
2) RNNF for Linear Gaussian System (6): Obviously, The-

orem 4 works for the linear Gaussian system (6), which is
a special case of (4). Furthermore, the first assumption in
Theorem 4 can be replaced by some more explicit assumptions
w.r.t. the system.

Naturally, for linear Gaussian system (6), we can assume
that the observations and the sufficient statistics in KF are
uniformly integrable, which is the same as the first condition
in Theorem 4, i.e., we need the following assumption.

Assumption 1: The sufficient statistics {sk|k}k≥0 and the
observations {yk}k≥0 are uniformly integrable.

Instead of Assumption 1, we can also make two more
explicit but strong assumptions, which can make sure that the
sufficient statistics and the observations are uniformly bounded
under 	·	2 norm. Then according to Lemma 1, we know that
Assumption 1 can be satisfied. The two new assumptions are
as follows.

Assumption 2: We assume that the linear dynamical system
of the state in (6) is stable in mean square sense ( [37]), that
is

lim
k→∞

	xk	2 ≤ C2 (52)

where C2 > 0 is a finite constant.
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Assumption 3: The dynamical system (6) is uniformly com-
pletely observable and uniformly completely controllable.1

Based on Assumption 2 and Assumption 3, we give the key
Lemma 4 which says that the sufficient statistics {sk|k}k≥0 and
the observations {yk}k≥0 are uniformly bounded.

Lemma 4: In the discrete linear system (6), if Assumption 2
and Assumption 3 are satisfied, then {sk|k}k≥0 and {yk}k≥0 are
uniformly bounded, i.e., there exists a constant C3 > 0, such
that

sup
k≥0

∥∥sk|k
∥∥

2 ≤ C3 (53)

and

sup
k≥0
	yk	2 ≤ C3. (54)

The proof of this lemma is technical and we put it into
Appendix B.

Here, we list an example satisfying Assumption 2 and
Assumption 3.

Example 2: The system is as follows:{
xk = (1− α)xk−1 +√αwk−1

yk = αxk +√αvk
(55)

where 0 < α < 1 is a small positive parameter.
1) As for Assumption 2, from the state equation of (55) we

have

xk = (1− α)xk−1 +√αwk−1

= (1− α)2xk−2 + (1− α)
√

αwk−2 +√αwk−1

...

= (1− α)k x0 +
k−1∑
i=0

(1− α)k−1−i√αwi (56)

then we can obtain

E[|xk|2] = (1− α)2k
E[|x0|2] +

k−1∑
i=0

(1− α)2k−2−2i αQ

= (1− α)2k
E[|x0|2]

+ (1− α)2k−2 − (1− α)2

(1− α)2 − 1
αQ. (57)

It can be easily checked that Assumption 2 is satisfied.
2) As for Assumption 3, it can be easily checked that

the system shown in (55) satisfies Assumption 3 using
the definitions of uniformly completely observable and
uniformly completely controllable in [15, Sec. 7.5].

We then derive our result for the linear Gaussian system (6).
Theorem 5: Assume sk|k , k ≥ 0 are the theoretical statistics

evolving according to (12) and (13), and S̃k|k , k ≥ 0 are
the real statistics computed by our RNN-based filter evolving
according to (48). We make the following assumptions.

1) Assumption 2 and Assumption 3 are satisfied,
or Assumption 1 is satisfied.

2) Functions ϕ and γ are Lipschitz, i.e., for any s, s̄ ∈
L1(�;Rns ), and y, ȳ ∈ L1(�;Rm)

	ϕ(s, y)− ϕ(s̄, ȳ)	1 ≤ Cϕ1	s − s̄	1 + Cϕ2	y − ȳ	1

1The definitions of uniformly completely observable and uniformly com-
pletely controllable can be found in [15, Sec. 7.5].

where ns is the dimension of sk|k , Cϕ1 and Cϕ1 are
Lipschitz constants, and Cϕ1 satisfies |Cϕ1| < 1.

3) For ∀ � > 0, there exists δ > 0, such that for any
s, s̄ ∈ L1(�;Rns ) satisfying 	s − s̄	1 < δ, we have
	γ (s)− γ (s̄)	1 < �.

Then for any ε > 0, there exists an RNNF (48), i.e., there
exist �̃ and �̃ of the forms (46) and (47), respectively, such
that

lim
k→∞

∥∥sk|k − S̃k|k
∥∥

1 < ε (58)

and

lim
k→∞

∥∥E[xk |Yk] − x̂k|k
∥∥

1 < ε. (59)

Proof: Under Assumption 2 and Assumption 3, it is
known from Lemma 4 that {∥∥sk|k

∥∥
2}k≥0, {∥∥sk+1|k

∥∥
2}k≥0,

and {	yk	2}k≥0 are uniformly bounded. Then according to
Lemma 3, we know that for any ε1 > 0, there exist positive
numbers K1 and K2, such that

sup
k≥0

∥∥sk|k − TK1(sk|k)
∥∥

1 < ε1

sup
k≥0

∥∥sk+1|k − TK1(sk+1|k)
∥∥

1 < ε1

sup
k≥0

∥∥yk − TK2(yk)
∥∥

1 < ε1.

Then we can obtain the desired results following the same
procedures as in Theorem 3. �

V. EXPERIMENTS

In the experiments, our proposed RNNF is compared with
KF which provides the optimal estimate. For the purpose of
comparing the performance of different methods, we introduce
the mean of the squared error (MSE) based on 100 realizations,
which is defined as follows:

MSE := 1

100

100∑
i=1

1

K2 + 1

K2∑
k=0

∣∣∣x (i)
k − x̂ (i)

k

∣∣∣2
(60)

where x (i)
k is the real state at discrete time instant k in the i th

experiment and x̂ (i)
k is the estimation of x (i)

k , with 0 ≤ k ≤ K2,
where K2 ∈ N is the total time step.

A. Neural Network Architecture and Training Algorithm

The RNN-based filter (48), which is also denoted as
RNNF(y; θ), consists of two parts

S̃k|k = �̃(S̃k−1|k−1, yk; θ1)

x̂k|k = �̃(S̃k|k ; θ2) (61)

where θT = [θT
1 , θT

2 ] is all the trainable parameters in RNNF,
�̃ is represented by a single-layer feedforward network with
l neurons, l is a hyperparameter to be determined, and �̃ is a
linear function with input dimension l and output dimension
n equal to the dimension of state xk .

Naturally, we aim to minimize

L0(θ) := 1

K1 + 1
E

[
K1∑

k=0

∣∣x̂k|k − E[xk |Yk]
∣∣2

]
(62)
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where K1 ∈ N is the total time step in training. Observing that

E

[∣∣xk − x̂k|k
∣∣2

]
= E

[∣∣xk − E[xk |Yk] + E[xk |Yk] − x̂k|k
∣∣2

]
= E

[|xk − E[xk |Yk]|2
]+ E

[∣∣E[xk |Yk] − x̂k|k
∣∣2

]
+ 2E

[
(xk − E[xk |Yk])T

(
E[xk |Yk] − x̂k|k

)]
= E

[|xk − E[xk |Yk]|2
]+ E

[∣∣E[xk |Yk] − x̂k|k
∣∣2

]
+ 2E

[
E
(
(xk − E[xk |Yk])T

(
E[xk |Yk] − x̂k|k

)∣∣Yk
)]

= E
[|xk − E[xk |Yk]|2

]+ E

[∣∣E[xk |Yk] − x̂k|k
∣∣2

]
+ 2E

[
E( xk − E[xk |Yk]|Yk)

T
(
E[xk |Yk] − x̂k|k

)]
= E

[|xk − E[xk |Yk]|2
]+ E

[∣∣E[xk |Yk] − x̂k|k
∣∣2

]
where the third equality comes from the tower property of
conditional expectation, and the fourth equality is due to the
fact that x̂k|k is σ(Yk)-measurable; it follows that:

arg min
θ

L0(θ) = arg min
θ

L(θ) (63)

where

L(θ) := 1

K1 + 1
E

[
K1∑

k=0

∣∣x̂k|k − xk

∣∣2

]
. (64)

Therefore, instead of data {yk, E[xk |Yk]}k≥0 where E[xk |Yk]
cannot be obtained in most cases, we only need data
{yk, xk}k≥0 which can be easily generated from the system (4).
We need to remark that this step is crucial since it allows us
to get accessible data.

In real computations, the expectation in L(θ) is approx-
imated by the average of the results obtained from a large
number of trials. Hence, we define the loss function as follows:

L(N)(θ) := 1

N

1

K1 + 1

N∑
n=1

(
K1∑

k=0

∣∣xk(ωn)− x̂k|k(ωn)
∣∣2

)
(65)

where x̂k|k(ωn) = RNNF(yk(ωn); θ) is the output of RNNF
with input yk(ωn), and N and K1 are the numbers of Monte
Carlo paths and total time steps in training, respectively.

The detailed procedures of RNNF are listed as follows.
We have given the theoretical support of RNNF in

Section IV. Now from computational point of view, we do
not have to check the conditions posed in Theorem 4 and
Theorem 5 which are required in the proof of the convergence
of the proposed algorithm. During the implementation of
the RNNF, our algorithm is divided into two parts: off-line
computational step and on-line computational step. In the
off-line step, as shown in Algorithm 1, we only need to
generate data from the system model (4) to train the RNN
of the form (24) with the MSE loss defined in (65). This is a
rather standard procedure in deep learning. In the on-line step,
we just get the estimate x̂k|k using the trained RNNF with yk

as the input. Therefore, our algorithm can be implemented in
a real-time manner [38].

For the purpose of showing that RNN is a universal approx-
imator with stochastic inputs which means that a well-trained
RNN within finite time can be an approximator in global

Algorithm 1 RNNF Training Algorithm
Require:

Train data:
{
{(yk(ωn), xk(ωn))}K1

k=0

}N

n=1
;

Batch size: M;
Total epochs: I ;
Learning rate: λ;

Ensure:
RNNF output:

{
{RNNF(yk(ωn)); θ}K1

k=0

}N

n=1
;

1: for i = 1, . . . I do

2: Sample batch
{
{(yk(ωn), xk(ωn))}K1

k=0

}N

n=1
from Train

data;
3: Compute loss L(θ) via Eq. (65);
4: Update θ via θ ←− θ − λ∇θ L(θ).
5: end for

TABLE I

PARAMETERS OF RNNF USED IN TWO EXAMPLES

time (infinite time theoretically), in the following experiment,
we train the RNN with K1 = 1000 and test it on the data
generated from the system with K2 = 1000 and K2 = 10 000.
The former proves validity, and the latter proves universality.

B. Implementation Details

In the following two numerical examples, we shall inves-
tigate the efficiency of our RNNF through comparison with
KF. All the experiments use NVIDIA RTX2060s and run
on 16 Intel2 Core3 i7-10700 CPU at 2.90 GHz. Besides, we use
Pytorch in RNNF and numpy which is a python package for
scientific computing in KF.

The parameters used in RNNF are summarized in Table I.
The sample paths in the training set are used to approximate
the true loss function via Monte Carlo, and we find that the
number of paths N can be chosen to be greater than 2000. The
batch size mainly affects the speed of training, but has little
effect on the results. We need to remark that the dimensions of
the hidden layer, learning rate, and total epochs have a greater
impact on the results. The dimension of the hidden layer l is
directly related to the approximation ability of the model. If l is
too small, the RNNF cannot capture the filtering information.
If it is too large, RNNF will converge slowly. As suggested

2Register Trademark
3Trademarked
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TABLE II

AVERAGE PERFORMANCE OF DIFFERENT METHODS BASED ON
100 SIMULATIONS WITH TIME STEP K2 = 1000,

10 000 FOR SYSTEM (66)

by the design of RNNF, and also through our experiments,
we can choose this parameter approximately as the square of
state dimension n. The choice of the initial learning rate is
very critical. We find that λ ∈ [10−5, 10−4] is appropriate.
The number of total epochs can be chosen to be in the range
[2000, 5000].

C. Linear System With Independent Noises

The first example we consider here is a linear Gaussian
system with independent noises which is as follows:{

xk = (αAn + In)xk−1 +√αwk−1

yk = αxk +√αvk
(66)

where x0 ∼ N (0, In) with identity matrix In ∈ R
n , n = 10,

α = 0.01, wk and vk are standard white noises, In is a n × n
identity matrix, and An = [ai j ] is a matrix with elements as
follows:

ai j =

⎧⎪⎨
⎪⎩

0.1, if i + 1 = j

−0.4, if i = j

0, otherwise.

First, we test the RNNF on the data generated from the
system (66) with K2 = 1000 = K1. The estimation results of
our RNNF and KF in one experiment are shown in Fig. 5.
It can be easily seen that the estimation result of our RNNF
is very close to that of optimal KF. Second, we test the
RNNF on the data generated from the system (66) with
K2 = 10 000 while we train RNNF with K1 = 1000 < K2.
The L1-error between the estimate by RNNF and the optimal
estimate by KF is displayed in Fig. 6. It is obvious that
our RNNF can still perform well on the larger time interval
0 ≤ k ≤ 10 000. This is natural since the filtering system (66)
is time-invariant, and therefore the parameters of RNNF in
every step are the same. That is, �̃ and �̃ in (48) corresponding
to this example are independent of time k. Furthermore, it can
be seen that the L1-error between the estimate by RNNF and
the optimal estimate by KF stabilizes around a small value as
time step k increases, which also verifies our conclusion in
Theorem 5.

The MSE defined in (60) and the average running time
based on 100 simulations are listed in Table II. We can
know that RNNF has comparable performance compared with
optimal KF.

D. Linear System With Correlated Noises

The second example is similar to the first one, and the only
difference is that the noises in state equation and observation

Fig. 5. Estimation results of KF and RNNF in one experiment for the linear
filtering system (66) with 0 ≤ k ≤ 1000.

Fig. 6. L1-error between the estimates of KF and RNNF over discrete time
k for the linear filtering system (66) with 0 ≤ k ≤ 10 000.

equation are correlated. More explicitly, we consider the
following system:{

xk = (αAn + In)xk−1 +√αwk−1 +√αvk−1

yk = αxk +√αvk
(67)

where x0 ∼ N (0, In).
As pointed out in Appendix C, we can obtain the optimal

estimation of state in system (67) by KF, which means that
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Fig. 7. Estimation results of KF and RNNF in one experiment for the linear
filtering system (67) with 0 ≤ k ≤ 1000.

Fig. 8. L1-error between the estimates of KF and RNNF over discrete time
k for the linear filtering system (67) with 0 ≤ k ≤ 10 000.

system (67) possesses an FDF. The estimation results in one
experiment with K2 = 1000 are displayed in Fig. 7. The MSEs
and running time with K2 = 1000 and K2 = 10 000 are listed
in Table III. The L1-error between the estimate by RNNF
and the optimal estimate by KF is shown in Fig. 8 when
K2 = 10 000.

These two examples illustrate that a well-trained RNNF
can learn the true optimal estimate which is given by KF

TABLE III

AVERAGE PERFORMANCE OF DIFFERENT METHODS BASED ON
100 SIMULATIONS WITH TIME STEP K2 = 1000,

10 000 FOR SYSTEM (67)

in the linear case. We no longer need to distinguish whether
the noises of the system are correlated or not. As long as
the system has FDF, we can use RNNF to solve it. Actually,
for systems that do not possess FDF, we can also use RNNF.
In this case, RNNF can be regarded as the approximation of the
optimal filter through FDF, and this idea is also used in many
suboptimal filters such as EKF. Compared with traditional
suboptimal filters, we do not need to know the exact models
of the filtering system, and all we need are the data {yk, xk}
generated from the dynamical systems. Moreover, the RNNF
can have better capability to capture the information of the
optimal filter since it aims to minimize the mean square error
loss (64).

VI. CONCLUSION

In this work, we investigate the approximation capability
of RNN and prove that any open dynamical system with
stochastic inputs can be well-approximated by RNN. Based on
this, we construct a novel filter by RNN, and the estimation
error has also been analyzed for systems with FDF. In addition,
our theoretical results have also been verified by numerical
examples.

However, we use traditional RNNs in this work, and the
numerical performances may be improved using some other
RNNs such as long short term memory (LSTM) [39] and gated
recurrent units (GRUs) [40]. Besides, we have not investigated
general nonlinear filtering systems which do not possess FDFs
in this work. We will focus on these problems in our future
works.

APPENDIX A
PROOF OF (3)

In order to obtain (3), we only need to prove that

|TK x − TK x̄ | ≤ |x − x̄ | ∀ x, x̄ ∈ R. (68)

Without loss of generality, we can assume |x | ≤ |x̄ |, and then
the proof can be divided into three cases.

Case 1 (0 < K ≤ |x | ≤ |x̄ |): We have

|TK x − TK x̄ | = |K · sign x − K · sign x̄ |
=

{
0, if x · x̄ > 0

2K , if x · x̄ < 0

≤ |x − x̄ |.
Case 2 (0 ≤ |x | ≤ K ≤ |x̄ |): In this case, we have

|TK x − TK x̄ | = |x − K · sign x̄ |
=

{
|x − K |, if x̄ > 0

|x − (−K )|, if x̄ < 0

≤ |x − x̄ |.
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Case 3 (0 ≤ |x | ≤ |x̄ | ≤ K ): It is obvious that |TK x −
TK x̄ | = |x − x̄ |.

Combining these three cases, we obtain the desired (68),
and then (3) holds naturally.

APPENDIX B
PROOF OF LEMMA 4

Before we give the proof, we need to list a lemma which
gives the bound of the conditional covariance.

Lemma 5 (Lemma 7.1 in [15]): If Assumption 3 is satis-
fied and P0|0 � 0,4, then Pk|k is uniformly bounded from above
for all k ≥ N

Pk|k �
(

1+ αβ

α

)
I, k ≥ N (69)

where N is a positive integer, I is the n × n identity matrix,
and α and β are positive constants.

Based on Lemma 5, Assumption 2, and Assumption 3,
we give the proof of Lemma 4.

Proof of Lemma 4: The proof can be divided into two
steps. In the first step, we shall analyze the bounds of the
sufficient statistics, and in the second step, the bounds of the
observations will be discussed.

Step 1: It can be known from the evolution functions (9)
and (10) of the conditional covariance that⎧⎪⎨

⎪⎩
Pk|k−1 = G QGT + F Pk−1|k−1 FT

Pk|k = Pk|k−1 − Pk|k−1 H T (H Pk|k−1 H T + R)−1

· H Pk|k−1

(70)

and the initial value is P0|0. It follows that the conditional
covariance P evolves in a deterministic manner and without
any randomness according to the evolution equation (70), and
therefore P is independent of the observations. Since

Pk|k = E

[(
xk − mk|k

)(
xk − mk|k

)T
∣∣∣Yk

]
and Pk|k is independent of Yk , we have

Pk|k = E

[(
xk − mk|k

)(
xk − mk|k

)T
]
. (71)

According to Lemma 5, we have

Pk|k �
(

1+ αβ

α

)
I, k ≥ N (72)

where N is a positive integer, and α and β are positive
constants. It can be easily checked that there exists a positive
constant α0, such that

Pk|k � α0 I ∀ k ≥ 0. (73)

According to (71), we have

	xk − mk|k	2
2 = E

[(
xk − mk|k

)T (
xk − mk|k

)]
= tr

(
Pk|k

)
. (74)

Combining (73) and (74), we know that∥∥xk − mk|k
∥∥

2 ≤
√

nα0 ∀ k ≥ 0. (75)

4Here, X � Y (X � Y resp.) if and only if X − Y (Y − X resp.) is positive
semidefinite, where X and Y are symmetric matrices.

Then according to (52) and (75), we have∥∥mk|k
∥∥

2 ≤
∥∥xk − mk|k

∥∥
2 + 	xk	2

≤ √nα0 + C2 ∀ k ≥ 0. (76)

Now we have the conclusion that mk|k and Pk|k are bounded
for all k ≥ 0. Following the similar procedure as above,
we can know that mk|k−1 and Pk|k−1 are bounded for all
k ≥ 0. According to (11), we know that all sufficient statistics
{∥∥sk|k

∥∥
2, k ≥ 0} are uniformly bounded by some constant

C31 > 0.
Step 2: We now prove 	yk	2 is uniformly bounded. Accord-

ing to (6), we have

E
[
yT

k yk
] = trE

[
yk yT

k

]
= trE

[
H xkx T

k H T + vkv
T
k

]
≤ C2

2

m∑
l=1

n∑
i, j=1

Hl, j Hl,i + trR (77)

where Hl, j is the (l, j)th entry of the matrix H , and the
inequality follows from Assumption 2. Apparently, 	yk	2
is uniformly bounded by some constant C32 > 0 for all
k ≥ 0.

Let C3 := max{C31, C32}, then we obtain (53) and (54).

APPENDIX C
KF FOR LINEAR SYSTEM WITH CORRELATED NOISES

Instead of the linear system (6) with uncorrelated noises,
we consider the following system:{

xk = Fxk−1 + Gwk

yk = H xk + vk
(78)

where the initial state x0 ∼ N (m0|0, P0|0) is Gaussian, and
{wk, k = 0, 1, . . .} and {vk, k = 1, . . .} are two correlated
white Gaussian sequences which are independent of the initial
state x0. More explicitly, we have

E
[
wkv

T
l

] = Cδkl .

Similar to the KF, the discrete Kalman–Bucy filter for
system (78) is listed as follows, where the conditional mean
m and covariance P are defined in (7) and (8), respectively.
For k ≥ 1:

1) Prediction: Given mk−1|k−1 and Pk−1|k−1 , we obtain
mk|k−1 and Pk|k−1 by{

mk|k−1 = Fmk−1|k−1

Pk|k−1 = G QGT + F Pk−1|k−1 FT .

2) Updating: mk|k and Pk|k are updated according to{
mk|k = mk|k−1 + K c

k (yk − H mk|k−1)

Pk|k = Pk|k−1 − K c
k

[
H Pk|k−1 + CT G

]
where the Kalman gain

K c
k =

[
Pk|k−1 H T + GC

] · [H Pk|k−1 H T + H GC

+CT GT H T + R
]−1

.
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Obviously, system (78) has the FDF, i.e., the conditional
density function p(xk |Yk) can be determined by finite statistics.
Therefore, we have Theorem 4 for system (78).
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