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Ever since the technique of the Kalman filter was popularized,
there has been a lot of research interest in finding more classes of
finite-dimensional recursive filters. In past research, the estimation
algebra method could only be used for time-invariant systems. In this
article, we extend the estimation algebra method so that it applies
to a general class of time-varying filtering systems. Then, the Wei-
Norman method can be used to derive the explicit solution of the
posterior distribution of state estimation. As a special control law,
tangent flow is derived for the nonlinear filtering system based on the
Monge-Ampère equation in optimal transport. As a result, we propose
an optimal transportation filter by applying stochastic tangent flow to
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Yau filtering systems. The numerical experiments demonstrate the
higher efficacy and accuracy of the proposed optimal transportation
filter compared to common traditional algorithms such as the extended
Kalman filter and feedback particle filter.

I. INTRODUCTION

In the 1960s, Kalman and Bucy [1], [2] first proposed
linear filtering systems with Gaussian initial distributions.
The general nonlinear filtering (NLF) problem is described
by the following stochastic differential equations (SDE):{

dxt = f (t, xt )dt + σB(t, xt )dBt

dyt = h(t, yt )dt + dWt
(1)

where xt ∈ R
n, yt ∈ R

m are state and observation vectors,
respectively, f ∈ R

n, σB ∈ R
n×r, h ∈ R

m are C∞ functions
and Bt ,Wt are Wiener processes of appropriate dimen-
sion with E [dBt dBT

t ] = Q̃(t )dt, Q̃(t ) > 0, E [dWt dW T
t ] =

S(t )dt, S(t ) > 0. Here, we refer to f (t, xt ) as the drift term,
Q̃(t ), S(t ) as the covariance matrix of noises.

It is a central problem for the filtering algorithm to calcu-
late the expectation of the conditional distribution p(xt |Yt ),
where Yt is the σ -algebra generated by the process {ys, 0 ≤
s ≤ t}. In the 1960s, Duncan, Mortensen, and Zakai [3],
[4], [5] independently derived Duncan–Mortensen–Zakai
(DMZ) equation, which is satisfied by the unnormalized
conditional density. The DMZ equation can be further
transformed into the robust form [6]. In the 1970s, Brockett
and Clark [7], Brockett [8], and Mitter [9] independently
proposed to construct finite-dimensional filters by using the
estimation algebra method. Traditionally, the robust DMZ
equation can be solved by the Wei-Norman approach [10]
if one knows the explicit basis of estimation algebra. So
seeking more filters with finite-dimensional estimation al-
gebra (FDEA) is quite meaningful. Furthermore, there are
many other ways to solve the DMZ equation. For example,
Yau and Yau [11] proposed a new effective method to
solve the “pathwise-robust” DMZ equation. Recently, an
approximate real-time filtering algorithm was proposed to
solve the robust DMZ equation based on “direct method”
and Gaussian approximation [12], [13]. There are many
other approximate algorithms to construct suboptimal filters
to solve NLF problems such as the extended Kalman filter
(EKF) [14], the unscented Kalman filter (UKF) [15], and
particle filters (PF) [16]. Due to the importance of the
estimation algebra method in NLF problems, a lot of work
was focused on the classification of FDEA. Since the 1990s,
in a series of works [17], [18], [19], [20], [21], [22], Yau and
his collaborators have completely classified FDEAs with
maximal rank on an arbitrary state space dimension, which
include both Kalman–Bucy and Benés filtering systems as
special cases. Since the 2000s, Yau and coworkers finished
the complete classification of the estimation algebra of state
dimension 2 and deeply studied nonmaximal rank FDEA
with state dimension no more than four [23], [24], [25],
[26], [27]. Recently, Jiao and Yau [28] made significant
progress and constructed a new class of finite-dimensional
filters with nonmaximal rank FDEA on an arbitrary state
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space dimension. However, exploring estimation algebra
structure in the time-varying filtering system is still an open
problem. The classification of FDEA made by Yau and his
coworkers can naturally yield a formal explicit solution
of the DMZ equation by the Wei-Norman method [29].
However, the formal solution derived by the Wei-Normal
method is still hard to calculate numerically, especially in a
high-dimensional situation.

With the consistent update and progress of sampling
technology, the particle filter algorithm has been greatly
developed in recent years. Several variants of the PF have
emerged that employ resampling techniques to address the
degeneracy problem. A framework for a gradual transition
before the posterior was introduced in [30]. An important
breakthrough came from feedback particle filter (FPF) [31].
The FPF applies a feedback structure to each particle and
can be regarded as a generalization of the traditional linear
regression filters such as the UKF or the smart-sampling
Kalman filter [32].

Optimal transport (OT) is an old but very active research
area. Starting from the original formulation of Monge, and
the relaxation of Kantorovich [33], and following up with a
sequence of important works, the OT has become a powerful
tool in mathematics, physics, economics, engineering, and
biology. Briefly speaking, OT deals with the problems of
transporting from an initial distribution to a terminal distri-
bution in a mass-preserving the manner with minimum cost.
When the unit cost is the square of the Euclidean distance,
the OT problem induces an extremely rich geometry for
probability densities, especially Gaussian distribution [34].
And there are several filtering algorithms motivated by OT.
Taghvaei and Mehta [35], [36], [37] proposed an optimal
transportation method between prior and posterior distri-
bution that can lead to unique control law under linear
filtering with independent noise. Soon, the OT structure was
extended to a linear filtering system with correlated noise
in [38].

In this article, we first reformulate the controlled SDE
for density evolution into the tangent flow equation based on
optimal transportation using the Monge-Ampère equation.
Generally speaking, it is hard to construct the corresponding
tangent flow explicitly since it depends on the explicit
expression of posterior densities. Second, we will extend the
estimation algebra method to a new class of time-varying
filtering systems so that the tangent flow can be calculated
explicitly. And we shall prove this class of time-varying fil-
tering system possesses FDEA and includes time-invariant
Yau filter [17] as a special case. Finally, we explicitly cal-
culate the tangent flow of the time-varying FDEA system.
It can be considered as the nonlinear extension of [36].
The algorithm of the tangent flow for the general filtering
problem is open. Taghvaei and Mehta [37] derived the
corresponding tangent flow by first obtaining the exactness
equation and then setting the optimal coupling condition
to get the gradient form of control terms. Taghvaei and
Mehta’s series of works play an important role in the relation
between nonlinear filtering and optimal transport. Inspired
by their work about optimal transport filters, especially

tangent flow, we exploit another new perspective to rederive
deterministic/stochastic tangent flow. More specifically, our
new derivation is based on the Monge-Ampère equation and
uses the PDE expansion technique. The two derivations are
ultimately equivalent. The benefit of our derivation is that it
gives a connection between the estimation algebra and the
tangent flow.

The map of optimal transportation used in this article
is motivated by the several methods that are used in un-
certainty propagation and Bayesian inference [39], [40],
[41], [42].

The rest of this article is organized as follows. In
Section II, we give some basic concepts including the filter-
ing algorithm, estimation algebra, and optimal transporta-
tion. In Section III, the FDEA of a class of time-varying fil-
tering systems is defined and an explicit solution of the DMZ
equation is derived by the Wei-Norman method. In Section
IV, tangent flow based on optimal transport is derived for the
nonlinear filtering system. By applying stochastic tangent
flow to a time-varying Yau filtering system, we proposed
a new optimal transport filter. We gave a detailed analysis
between the proposed method and the FPF. We present the
numerical algorithm in Section IV, the numerical results in
Section V. Finally, Section VI concludes this article.

II. BASIC CONCEPTS AND PRELIMINARY RESULTS

In this article, we use ‖ · ‖2 to represent the L2 norm of
the vectors or the matrices, ‖ · ‖F to describe the Frobenius
norm of the matrices. The Tr(A) is the matrix/operator trace.
The R is the real-number field. The E[·] is expectation
operator. The space of continuous and smooth functions
on R

n is denoted as C∞(Rn). The ∇ is the gradient operator
of C∞(Rn) and ∇ · () is the divergence operator of C∞(Rn).
And �(∗) := ∇ · (∇(∗)) denotes as the Laplace operator.
However, the �t denotes the small time step. If A and B
are differential operators, the Lie bracket of A and B, [A, B]
is defined by [A, B]φ = A(Bφ) − B(Aφ) for any C∞(Rn)
function φ. We denote ◦ as Stratonovich integral. Here, we
define two new operators, ∇̄(∗) and ∇̄ · (∗), as follows:

∇̄(ϕ0(t, x)) := (∇ϕ1
0 (t, x), . . . , ∇ϕm

0 (t, x))

where ϕ0(t, x) := (ϕ1
0 (t, x), . . . , ϕm

0 (t, x)) is a m di-
mensional row vector value functions

∇̄ · (K ) := (∇ · (K1(t, x)), . . . , ∇ · (Km(t, x)))

whereKi(t, x) with 1 ≤ i ≤ m are all n dimensional column
vector fields.

Combining the two new operators, we can define �̄(∗) as

�̄ϕ0(t, x) := ∇̄ · (∇̄ϕ0(t, x))

= (�ϕ1
0 (t, x), . . . , �ϕm

0 (t, x).

A. DMZ Equation and Robust Form

In this section, we first introduce a classical filtering
algorithm. In the continuous time-varying filtering system
(1), we assume that G(t ) := σBQ̃(t )σ T

B is a positive definite
matrix. The posterior density p(t, x) of Xt conditioned on the
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observation history Ft satisfies the Kushner equation [43]
as follows:⎧⎪⎨

⎪⎩
d p(t, x) = Lp(t, x)dt + (h(t, x) − ĥt )T

× S−1(t )p(t, x) ◦ (dyt − ĥt dt )

p(0, x) = p0(x)

(2)

where

L(∗) := 1

2

n∑
i, j=1

Gi j (t )
∂2

∂xi∂x j
(∗) −

n∑
i=1

fi
∂

∂xi
(∗)

−
(

n∑
i=1

∂ fi

∂xi
− 1

2
(h(t, x) − ĥt )T

× S−1(h(t, x) − ĥt ) − c(t )

)
(∗) (3)

and ĥt = ∫
Rn h(t, x)p(t, x)dx and c(t ) = ∫

Rn
1
2 (h(t, x) −

ĥt )T S−1(h(t, x) − ĥt )p(t, x)dx, which can be considered as
a normalizing constant.

The unnormalized density function σ (t, x) of Xt con-
ditioned on the observation history Ft satisfies the DMZ
equation as follows [3], [4], [5]:{

dσ (t, x) = L0σ (t, x)dt + hT (t, x)S−1(t )σ (t, x) ◦ dyt

σ (0, x) = σ0(x)
(4)

where

L0 := 1

2

n∑
i, j=1

Gi j (t )
∂2

∂xi∂x j
−

n∑
i=1

fi
∂

∂xi

−
n∑

i=1

∂ fi

∂xi
− 1

2
hT (x, t )S−1h(x, t ). (5)

The DMZ equation can be transformed into a PDE
with stochastic coefficients by using the following robust
exponential transformation

u(t, x) = exp[−K (t, x)]σ (t, x)

K (x, t ) = hT (x, t )S−1(t )yt . (6)

By using the robust transformation, we can obtain the robust
DMZ equation as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t (t, x) = L0u(t, x) + [L0, K (t, x)]u(t, x)

+ 1
2 [[L0, K (t, x)], K (t, x)]u(t, x)

− ∂hT (t,x)S−1

∂t yt u(t, x)

u(0, x) = σ0(x)

where K (t, x) = hT (t, x)S−1(t )yt , [L0, K (t, x)] =∑n
i, j=1

∂K
∂xi

Gi, j
∂

∂x j
−∑n

i=1 fi
∂K
∂xi

, and [[L0, K (t, x)], K (t, x)] =∑n
i, j=1 Gi, j

∂K
∂xi

∂K
∂x j

.

B. Estimation Algebra of Time-Invariant System

Next, we will introduce some basic concepts about the
estimation algebra of a time-invariant system. In the fol-
lowing, in (1), we assume Bt ,Wt are mutually independent

standard Wiener processes and σB is a constant orthogonal
matrix.

Then DMZ equation (4) will become (Stratonovich
form) as follows:{

dσ (t, x) = L0σ (t, x)dt +∑m
i=1 Liσ (t, x) ◦ dyi(t )

σ (0, x) = σ0(x)
(7)

where

L0 = 1

2

n∑
i=1

∂2

∂x2
i

−
n∑

i=1

fi
∂

∂xi
−

n∑
i=1

∂ fi

∂xi
− 1

2

m∑
i=1

h2
i (8)

and Li is the zero degree differential operator of multiplica-
tion by hi, 1 ≤ i ≤ m.

Let

Di = ∂

∂xi
− fi, η =

n∑
i=1

(
∂ fi

∂xi
+ f 2

i

)
+

m∑
i=1

h2
i . (9)

So that

L0 = 1

2

(
n∑

i=1

D2
i − η

)
. (10)

The robust DMZ equation (7) will have the following form:⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t (t, x) = L0u(t, x) +∑m

i=1 yi(t )[L0, Li]u(x, t )

+ 1
2

∑m
i, j=1 yi(t )y j (t )[[L0, Li], Lj]u(x, t )

u(0, x) = σ0(x).
(11)

In the following, we give some basic concepts about esti-
mation algebra.

DEFINITION 2.1 A vector space F with the Lie bracket
operation F × F → F denoted by (x, y) 
→ [x, y] is called
a Lie algebra if the following axioms are satisfied.

(1) The Lie bracket operation is bilinear.
(2) [x, x] = 0 for all x ∈ F.
(3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ F.

DEFINITION 2.2 The estimation algebra E of a time-
invariant filtering system is defined to be the Lie algebra
generated by {L0, L1, . . . , Lm} with coefficient as real num-
ber R, i.e., E = 〈L0, h1, . . . , hm〉L.A..

DEFINITION 2.3 Let L(E ) ⊂ E be the vector space con-
sisting of all the homogeneous degree 1 polynomial in E .
Then the linear rank of estimation algebra E is defined by
r := dim L(E ). If r is equal to the dimension of state space,
we call E has maximal rank.

DEFINITION 2.4 ([19]) The Wong matrix is a antisymmetric
matrix O = (ωi, j ) with ∂ fi

∂x j
− ∂ f j

∂xi
= ω j,i, 1 ≤ i, j ≤ n.

C. Optimal Transportation

Finally, we introduce the basic concepts of the OT.
Let α and β be two probability measures on measure

spaces �X and �Y , respectively. P(�) denotes the set of
probability measures on �. Let c : �X × �Y → R

+ be a
cost function and c(x, y) measures the cost of transporting
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one unit of mass from x ∈ �X to y ∈ �Y . The transport map
is defined below.

DEFINITION 2.5 Let α ∈ P(�X ) and β ∈ P(�Y ). We say
that T is a transport map from α to β if

β(B) = α
(
T−1(B)

)
for all β-measurable sets B ⊂ �Y .

(12)
Equivalently, we write

β = T#α. (13)

Monge’s optimal transportation problem is formulated
as follows.

THEOREM 2.1 MONGE’S OPTIMAL TRANSPORTATION PROB-
LEM [44] Given α ∈ P(�X ), β ∈ P(�Y ), let

I[T] =
∫

�X

c(x,T(x))dα(x) (14)

where T : �X → �Y is a transport map from α to β, i.e.,
β = T#α. Then Monge’s optimal transportation problem is
to minimize the above integral among all transport maps
from α to β.

If we further assume that the density functions of α

and β are C2 smooth, the optimal transportation map is the
gradient form of some function �, i.e., ∇�(x) = T(x). The
� function is determined by the following equation, which
is the so-called Monge-Ampère equation [44]:

det ∇2�(x) = β0(x)

α0(∇�(x))
(15)

where ∇2�(x) is the Hessian matrix and α0, β0 are the
density functions of α and β, respectively [45].

III. OPTIMAL TRANSPORTATION FILTERING
ALGORITHM

In this section, we shall reformulate the known prob-
ability flow satisfied by controlled SDE as a tangent flow
based on OT. Tangent flow is a type of gradient flow and it
is hard to calculate explicitly for a general filtering system
(1).

A. Optimal Transportation in SPDE

The key step of the Yau-Yau algorithm [46] is to dis-
cretize the time interval so that the PDE of posterior density
between time steps can be established.

In this subsection, we shall first derive the tangent flow
for the PDE (16) based on the Monge-Ampère equation in
optimal transport

∂ p

∂t
= D(p), t ∈ [0, S] (16)

where D(·) is some differential operator and

p(t, ·) ∈ P2(Rd )

:= {q is a distribution on R
d |x0 ∈ R

d

s.t. Eq
[‖x − x0‖2

2

]
< ∞}

P2(Rd ) is the so-called Wasserstein space equipped with the
well-known Wasserstein distance W 2 [44].

Considering the optimal transport problem between
two distributions p(t, x) and p(t + �t, x), we will get the
following Monge-Ampère equation by letting the β0(x) =
p(t + �t, x) and α0(x) = p(t, x):

det ∇2�t = p(t + �t, x)

p(t, ∇�t (x))
. (17)

The Monge-Ampère equation is a nonlinear PDE that is
hard to solve, but luckily the p(t, x) and p(t + �t, x) are
close when �t is small. So ∇2�t should be close to In,
we can expand both sides of (17) in the asymptotic sense
of �t → 0. First, we can expand p(t + �t, x) according to
the following (16):

p(t + �t, x) = p(t, x) + D(p(t, x))�t + O(�t2). (18)

Divide p(t, x) for both sides, which yields

p(t + �t, x)

p(t, x)
= 1 + D(p(t, x))

p(t, x)
�t + O(�t2). (19)

And, we consider expanding �t (x). Since ∇2�t should be
close to In, then �t (x) should be close to |x|2

2 . So, we have

�t (x) = |x|2
2

+ ϕ1(t, x) · �t + O(�t2) (20)

where ϕ1 is an undetermined function. So, submit (20) and
(19) into (17), the left-hand side can be rewritten as

det ∇2�(n)(t, x) = det(In + ∇2ϕ1(t, xt ) · �t + O(�t2))

= 1 + �ϕ1(t, xt ) · �t + O(�t2)) (21)

where the second equality holds since Lemma A.1 in Ap-
pendix. And, the right-hand side can be rewritten as

p(t + �t, x)

p(t, ∇�t (x))
= p(t + �t, x)

p(t, x)
· p(t, x)

p(t, ∇�t (x))

=
(

1 + D(p(t, x))

p(t, x)
�t + O(�t2)

)

·
(

1 − 1

p(t, x)
∇p(t, x)T (∇�t (x) − x) + O(�t2)

)

= 1 + D(p(t, x)

p(t, x)
�t − 1

p(t, x)
∇p(t, x)T

× ∇ϕ1(t, x)�t + O(�t2) (22)

where

∇�t (x) = x + ∇ϕ1(t, x)�t + O(�t2). (23)

We can combine the two sides (21) and (22), and take �t →
0, then we can get

�ϕ1(t, x) + (∇ log p(t, x))T ∇ϕ1(t, x) = −D(p(t, x))

p(t, x)
.

(24)

Thus, we get optimal transport ∇�t (x) in Monge’s optimal
transportation problem in Theorem 2.1. We can design
probability flow xt+�t = ∇�t (xt ) and by using (23) which
leads to

xt+�t = xt + ∇ϕ1(t, xt )�t + O(�t2). (25)
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In the asymptotic sense for (25), we get tangent flow

dxt = ∇ϕ1(t, x)dt (26)

where x0 ∼ p(0, x). It is noticed that the posterior distribu-
tion of (26) satisfies the following Fokker-Planck equation:

∂ p(t, x)

∂t
= −∇ · (∇ϕ1(t, x)p(t, x)). (27)

And, combining with (24), we have

∂ p(t, x)

∂t
= −∇ · (∇ϕ1(t, x)p(t, x))

= −�ϕ1(t, x)p(t, x) − ∇ϕ1(t, x) · ∇p(t, x)T

= −p(t, x)

(
−D(p(t, x))

p(t, x)

)
= D(p(t, x)). (28)

So, we show that the densities of dynamical system (26)
satisfy (16). So, we call that (26) is the tangent flow for
(16).

In the following, we can extend the tangent flow to the
situation where density evolution satisfies an SPDE:

d p = D(p)dt + H(p) ◦ dIt t ∈ [0, S] (29)

where D(·) and H(·) are some differential operators, and It

is m−dimensional Gaussian process. Generally speaking,
It is multidimensional, and H(p) is a m-dimensional row
vector function value operator.

Similarly, we consider a discretization of (29). Notice
that if we want to apply the Monge-Ampere equation, p(t +
�t, x) and p(t, x) should be determined explicitly, which
means that the path of dIt is given in the analysis. In the
following, we take the realization of a stochastic process
It = It (ω) by fixing ω. For a time sequence {0 = t0 ≤ t1 ≤
· · · ≤ t2n = S} with n ∈ Z

+ and ti = iS2−n, we approximate
the dIt

dt ≈ İt
(n) = 2n(Iti+1 − Iti ) for t ∈ [ti, ti+1). So, we have

∂ p(n)

∂t
= D(p(n) ) + H(p(n) ) · İt

(n) (30)

where the İt
(n) = 2n(Iti+1 − Iti ) if t ∈ [ti, ti+1). As before, we

need to solve (17) and assume its solution has the following
form:

�̃t (x) = |x|2
2

+ ϕ1(t, x) · �t + ϕ0(t, x)İ (n)
t �t + O(�t2)

(31)

where ϕ1, ϕ0 = (ϕ1
0, . . . , ϕ

m
0 ) are undetermined scale and

vector value functions. Similarly with (26), after getting
solution �̃t , by using Theorem 2.1, we can get tangent flow
(30)

dx(n)
t

dt
= ∇ϕ1

(
t, x(n)

t

)+ ∇̄ϕ0

(
t, x(n)

t

) · İt
(n) (32)

where the İt
(n) = 2n(Iti+1 − Iti ) if t ∈ [ti, ti+1) and x(n)

ti =
x. Here, the ∇̄ϕ0(t, x(n)

t ) is a slightly abuse of symbols.
In fact ∇̄ϕ0(t, x) = (∇ϕ1

0 (t, x), · · · , ∇ϕm
0 (t, x)). In the

following, we substitute the specific form of �̃t to (17) and

expand the right-hand side of (17) as a series in terms of
�t :

det ∇2�̃(n)(t, x(n)
t ) = 1 + �ϕ0(t, x(n)

t ) · �It

+ �ϕ1(t, x(n)
t ) · �t + O(�t2) (33)

where (33) holds by using Lemma A.1 in Appendix. And,

p(n)(t + �t, x)

p(n)(t, x(n)
t+�t )

= p(n)(t + �t, x)

p(n)(t, x)

p(n)(t + �t, x)

p(n)(t, x(n)
t+�t )

=
(

1 − ∇p(n)(t, x(n)
t )

p(n)(t, x(n)
t )

dx(n)
t

dt
�t + O(�t2)

)

·
(

1 + D(p(n) )

p(n)
�t + H(p(n) )

p(n)
· İt

(n)
�t + O(�t2)

)

= 1 + D(p(n) )

p(n)
�t + H(p(n) )

p(n)
· İt

(n)
�t

− ∇p(n)(t, x(n)
t )

p(n)(t, x(n)
t )

dx(n)
t

dt
�t + O(�t2). (34)

Then, we take the limit n → ∞ which put �t → 0, the
ODE (32) will converge to SDE according to Wong-Zakai
approximation as follows [47]:

dxt = ∇ϕ1(t, xt )dt + ∇ϕ0(t, xt ) ◦ dIt . (35)

And, the left-hand side of (17) will become the following:

lim
n→∞ det ∇2�̃

(n)
t (x(n)

t ) = 1 + �̄ϕ0(t, xt ) ◦ dIt + �ϕ1(t, xt )dt

(36)

the right-hand side of (17) will become the following:

p(t, x) + d p(t, x)

p(t, x)

= 1 + 1

p(t, x)

[
D(p(t, x)dt + H(p(t, x)) ◦ dIt

− ∇p(t, x)T
(∇ϕ1(t, x)dt + ∇̄ϕ0(t, x) ◦ dIt

) ]
. (37)

Therefore, substituting (36) and (37) to (17), we will get the
constraint equation satisfied by ϕ1 and ϕ0, we summarized
the result in the following Theorem.

THEOREM 3.1 (OPTIMAL TRANSPORTATION CONDITION FOR

THE SPDE) Let p(t, x) be the solution of (29). Then, the
tangent flow for general SPDE (29) is

dxt = ∇ϕ1(t, xt )dt + ∇̄ϕ0(t, xt ) ◦ dIt . (38)

Here, ϕ0 = (ϕ1
0, . . . , ϕ

m
0 ) is the vector value function and

satisfies the following:

�̄ϕ0(t, x) + ∇(log p(t, x))T ∇̄ϕ0(t, x) = −H(p)

p
(39)

where H is the m dimensional row vector operator.
Then, ϕ1 is the scale function and satisfies the following:

�ϕ1(t, x) + ∇(log p(t, x))T ∇ϕ1(t, x) = −Dp

p
. (40)

KANG ET AL.: FINITE DIMENSIONAL ESTIMATION ALGEBRA FOR TIME-VARYING FILTERING SYSTEM 8009

Authorized licensed use limited to: Tsinghua University. Downloaded on December 13,2023 at 02:47:15 UTC from IEEE Xplore.  Restrictions apply. 



The tangent flow of Kushner (2) can be constructed as
follows.

REMARK 1 (OPTIMAL TRANSPORTATION CONDITION FOR

THE KUSHNER EQUATION) Let p(t, x) be the solution of (2).
By using Theorem 3.1, we assume that H(p) = (h(t, x) −
ĥt )T S−1(t )p and Dp = Lp, where L is the operator defined
in Kushner (2) and ĥt = ∫

Rn h(t, x)p(t, x)dx. Then, the tan-
gent flow for Kushner (2) is

dxt = ∇ϕ1(t, xt )dt + ∇̄ϕ0(t, xt ) ◦ dIt (41)

where

�̄ϕ0(t, x) + ∇(log p(t, x))T ∇̄ϕ0(t, x)

= (h(t, x) − ĥt )T S−1(t ) (42)

and

�ϕ1(t, x) + ∇(log p(t, x))T ∇ϕ1(t, x) = −Lp

p
. (43)

REMARK 2 The right-hand side of (42) and (43) is only
determined by the estimation algebra. As the form of (42)
and (43), the system of OT maps between the posterior
distributions is highly relied on the estimation algebra due
to the explicit expression for p(t, x).

B. Optimal Transportation Corresponding Dynamic
Flow

In the last subsection, we proposed a new way to op-
timally transfer the posterior distribution. In recent years,
there has been another dynamic-based PF motivated by the
mean-field control, which is the so-called FPF.

Similar to MCMCs [48], [49], although FPF [50] has
the guarantee of asymptotic accuracy, the effect of their
limited number of samples is usually difficult to guarantee
in practice, and due to the stochastic simulation and the
cross-correlation, its convergence is relatively slow [51].
Sampling from high-dimensional distribution, even Gaus-
sian distribution, is slow, which violates the real-time re-
quirements of high-dimensional filtering algorithms.

Numerous studies show that feedback control law is
not unique. Taghvaei and Mehta [35] proposed an optimal
transportation method between prior and posterior distri-
bution, which can lead to a unique control law in a linear
setting. Furthermore, Taghvaei and Mehta [36] proposed the
optimal transportation formulation of EnKF which can con-
struct a unique control law with noises. Taghvaei and Mehta
[37] summarized the development from the viewpoint of
optimal coupling. General-controlled SDE is formulated as
follows:

dxt = U(t, xt )dt + K(t, xt ) ◦ dIt (44)

where K(t, x) := (K1(t, x), . . . ,Km(t, x)) is a n × m-
dimensional vector function.

LEMMA 3.1 (FOKKER-PLANCK DENSITY EQUATION) The
forward Fokker-Planck density equation of (44) is deter-

mined by the following SPDE:

d p = −∇ · (U(t, xt )p(t, x))dt
− ∇̄ · (K(t, x)p(t, x)) ◦ dIt (45)

where ∇̄ · (K(t, x)p(t, x)) := (∇ · (K1(t, xt )p(t, x)), . . . ,
∇ · (Km(t, x)p(t, x))).

Taghvaei et al. [37] gave a comprehensive review of
FPF. They derived the exactness condition satisfied by the
control term and from the optimization of optimal coupling
revealed that control terms must be in gradient form. This
result is important to design filtering algorithms for different
nonlinear systems.

THEOREM 3.2 (FORWARD CONSISTENCY CONDITION

[37]) Consider the process xti that evolves according
to (44). If the forward Fokker-Planck equation is exactly
the Kushner equation of the filtering system. Then, the
control terms satisfy the following:

Lp(t, x) = −∇ · (U(t, x)p(t, x)) (46)

and

∇̄ · (K(t, x)p(t, x)) = −(h(t, x) − ĥt )T S−1(t )p(t, x). (47)

Due to that, the solutions of (46) and (47) are not unique.
There is a natural requirement for the control term, which
is to minimize the second-order moment

min
U(t,x)

∫
|U(t, x)|2 p(t, x)dx (48)

min
K(t,x)

∫
‖K(t, x)‖2

F p(t, x)dx (49)

where the conditions (46) and (47) are needed, respectively.
The optimal solutions of (48) are some gradient form [52].

REMARK 3 It is important to find that if we assume that
∇ϕ0(t, x) = K(t, x) and the ∇ϕ1(t, x) = U(t, x), then the
(46) and (47) will become (42) and (43), respectively. The
optimal solutions of (48) are exactly the optimal transporta-
tion conditions in Theorem 1.

C. Locally Optimal Transportation Method and General
Dynamic Flow

In this subsection, we will summarize many control
version PF methods into a uniform framework. There is
a bunch of dynamic flows and their posterior distributions
are exactly the posterior distributions of the filtering system,
which is

dX i
t = f (t, X i

t )dt + σB(t, X i
t )dBi

t︸ ︷︷ ︸
diffusion

+
update︷ ︸︸ ︷

K(t, X i
t ) ◦ dIt (50)

such as FPF [50], Xiong’s filter [53], and Reich filter [54].
The relationship with the Poisson equation in FPF is

through the ensemble transform filter, which relies on a
linear programming construction to approximate the opti-
mal transport map. As discussed, the solution of the Poisson
equation yields an optimal transport map from the “prior” to
the “posterior.” So, FPF is used as the optimal transportation
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method in the update step [55]. The new framework we
proposed uses optimal transportation not only in the update
step but also in the diffusion step.

In this section, we have established the conditions for the
tangent flow. Now, we need to design numerical algorithms
based on the tangent flow. However, the conditions for
the tangent flow depend on the posterior density p(t, x).
Therefore, we are interested in filtering systems that allow
for explicit representations of the posterior densities, i.e., the
FDEA systems. Using the Wei-Norman approach, one can
construct the posterior densities of the FDEA system explic-
itly. However, traditional FDEA systems are time-invariant,
and in the next section, we shall extend the FDEA system
to time-varying cases.

IV. ESTIMATION ALGEBRA IN TIME-VARYING SYSTEM

In this section, we aim to extend the estimation algebra
structure to more general time-varying Yau filtering sys-
tems. This will allow us to construct the tangent flow of the
general FDEA system.

First, we shall introduce the normalizing tricks. Since
G(t ) is positive definite, G(t ) can be decomposed to FF T (t )
by Cholesky decomposition, where F (t ) is a nonsingular
matrix. Setting F (t )zt = xt , we obtain the SDE for zt

dzt = F−1(t ) f (t, F (t )zt )dt

+ dF (t )

dt
F−1(t )zt dt + F−1(t )σB(t )dBt .

It is easy to check that F−1(t )σB(t )dBt is standard white
noise. So, we can denote F−1(t )σB(t )dBt = dB̃t , where B̃t

is n-dimensional standard Brownian motion. Here, we can
define a normalizing filtering system as{

dzt = f̃ (t, zt )dt + dB̃t

dyt = h̃(t, zt )dt + dWt
(51)

where f̃ (t, z) := F−1(t ) f (t, F (t )zt ) + dF (t )
dt F−1(t )zt and

h̃(t, zt ) := h(t, F (t )zt ). Since the F (t )zt = xt holds for all
t , then The posterior distributions of zt and xt are mutu-
ally transformable by variable substitution. Thus, we can
focus on the system modified by the normalizing trick to
generalize the estimation algebra.

A. Conclusions and Main Assumptions of the Estimation
Algebra in the Time-Varying System

In this subsection, we shall present the main assump-
tions of the general estimation algebra.

ASSUMPTION 4.1 The system function f satisfies

f (t, x) = L(t )x + l (t ) + F (t )∇φ(F (t )−1x) (52)

where L(t )= (li j (t )), 1≤ i, j ≤n, lT (t ) = (l1(t ), . . . , ln(t )).
F (t ) is an invertible matrix satisfying F (t )F T (t ) = G(t ).
φ(x) is a C∞ function on R

n.

ASSUMPTION 4.2 The observation function h(t, x) is a lin-
ear function in variable x, i.e.,

h(t, x) = H (t )x (53)

where H (t ) ∈ R
m×n has rank m.

Assumption 4.1 is equivalent to say that

f̃ (t, z) = F−1 f (t, Fz) + dF−1

dt
Fz

= L̃z + l̃ + ∇zφ(z), L̃ = F−1LF + dF−1

dt
F,

l̃ = F−1l.

Assumption 4.2 is equivalent to say that

h̃(t, z) := H̃ (t )z = H (t )F (t )z.

Assumption 4.1 contains all the previous FDEA system
with maximum rank as special cases.

ASSUMPTION 4.3
∑n

i=1( f̃ 2
i + ∂ f̃i

∂zi
) is quadratic with respect

to z, where f̃i is ith component of the f̃ (t, z).

And, in Lemma 4.2, we prove that if Assumptions 4.1,
4.2, and 4.3 are satisfied, then the estimation algebra asso-
ciated with this filtering system will be finite-dimensional.

B. Derivation of the General Estimation Algebra

To derive estimation algebra for the time-varying sys-
tem, we first give an important lemma for the analysis.

LEMMA 4.1 [17] If A and B are two differential operators
where the order of A is less than 1, then the following
equation holds:

e−ABeA = B + [B, A] + 1

2!
[[B, A], A] + · · ·

+ 1

n!
[[[B, A], A] · · · ] + · · ·

eABe−A = B + [A, B] + 1

2!
[A, [A, B]] + · · ·

+ 1

n!
[· · · [A, [A, B]]] + · · · . (54)

In order to extend the concept of estimation algebra
based on robust DMZ equation, we define some notations

D̃i := ∂

∂zi
− f̃i, D̃ = (D̃1, . . . , D̃n)T

ω̃i j := ∂ f̃ j

∂zi
− ∂ f̃i

∂z j

η̃(t, z) :=
n∑

i=1

(
f̃ 2
i + ∂ f̃i

∂zi

)
+ hT (t, Fz)S−1h(t, Fz)

− tr

(
dF−1

dt
F

)

L̃0 := 1

2

(
n∑

i=1

D̃2
i − η̃

)
, L̃i = hi, 1 ≤ i ≤ m. (55)

By applying above notations, the robust DMZ equation
v(t, z) of system (51) is as follows:

∂v

∂t
= L̃0v + ∇zK

T (t, Fz)D̃v(t, z)
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+ 1

2
∇zK

T (t, Fz)∇zK (t, Fz)v(t, z)

− ∂hT (t, Fz)S−1

∂t
ytv(t, z). (56)

REMARK 4 Equation (56) is important in extending the
estimation algebra method to time-varying systems. We use
the techniques in [21] for (56).

In what follows, we shall need the following
assumption.

Next, the estimation algebra in time-varying filtering
systems will be introduced and the structure will be ana-
lyzed.

DEFINITION 4.1 The estimation algebra Ẽ of a filtering
system (52) is defined to be the Lie algebra generated
by {L̃0, h̃1, . . . , h̃m}, where h̃i is the ith row of h̃(t, z) :=
h(t, F (t )z) = H (t )F (t )z.

REMARK 5 In the traditional time-invariant finite dimen-
sional filter, the coefficients of the basis in the estimation
algebra are constant. But in the time-varying system, the
basis is time-varying and the coefficient of the basis is a
function only dependent on time which makes the corre-
sponding estimation algebra be a C∞([0, ∞))- module.

LEMMA 4.2 Under Assumptions 4.1, 4.2, and 4.3, the es-
timation algebra Ẽ of filtering system (52) and (53) is a
subalgebra of (2n + 2) dimensional Lie algebra with a basis
{L̃0, D̃1, . . . , D̃n, z1, . . . , zn, 1}.

The proof is given in the appendix.
In the following, we shall try to extend the Baker-

Campbell-Hausdorff type relations appears in [21].

LEMMA 4.3 If ζ is a C∞ function in z and t , then for all s ≥
0, the following Baker-Campbell-Hausdorff type relations
hold.

1) For 1 ≤ j ≤ n

esD̃ j L̃0ζ =
(

L̃0 + s
n∑

i=1

ω̃i, j D̃i − s

2

∂η̃

∂z j
+ s2c j

)

× esD̃ j ζ (57)

where the c j = 1
2 [[L̃0, D̃ j], D̃ j].

2) For 1 ≤ j ≤ n

esz j L̃0ζ =
(

L̃0 − sD̃ j + s2

2

)
esz j ζ . (58)

3) Assume that the E1 = D̃1, . . . , En = D̃n, En+1 =
z1, . . . , E2n = zn. Then

esEi E jζ = (Ej + sγi, j )e
sEiζ (59)

where the γi, j = 0 if i, j > n, γi, j = 1 if i − j = n or j −
i = n and γi, j = ω̃ j,i if i, j ≤ n.

The proof is given in the appendix.

In the following, we will use the structure of estimation
algebra in Lemma 4.2 to derive a finite-dimensional filter
by the Wei-Norman method.

THEOREM 4.1 Under Assumptions 4.1, 4.2, and 4.3, let
Ẽ be an FDEA of filtering system (52) with η̃(t, x) =∑n

i, j=1 η̃i, j (t )ziz j +∑n
i=1 η̃i(t )zi + η0(t ) where η̃i, j (t ), η̃i(t )

and η̃0(t ) are functions of t . Then the robust Duncan-
Morten-Zakai equation (56) has a solution for all t ≥ 0 of
the following form:

v(t, z) = eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n · · · es1(t )D̃1 e
∫ t

0 L0(τ )dτ σ0 (60)

where T (t ), r1(t ), . . . , rn(t ), s1(t ), . . . , sn(t ) satisfy the fol-
lowing ordinary differential equations:

d�s

dt
− �(t )�s −�r = ∇zK (t, F (t )z) (61a)

d�r

dt
−
(

1

2
∇2

z η + dF−1(t )

dt
F (t ) + F−1(t )L(t )F (t )

)T

�s

= −yT
t

dS−1(t )H (t )

dt
F (t ) (61b)

and

dT (t )

dt
=
(

n∑
i=1

dsi

dt
ri(t ) −

n∑
i=1

dl̃i
dt

)

−
n−1∑
i=1

n∑
m=i+1

L̃i,m(t )sm(t ))

−
n∑

j=1

s j (t )2

2

(
n∑

i=1

ω̃2
i, j + 1

2

∂2η̃

∂z2
j

))

+
n−1∑
j=1

n∑
k= j+1

s jsk

(
n∑

i=1

ω̃i, jω̃i,k

)
+ 1

2

∂2η̃

∂z j∂zk
)

−
n∑

j=1

s j

n∑
i=1

ω̃i, jri(t ) + 1

2

n∑
i=1

∂K (t, F (t )z)

∂zi

∂K (t, F (t )z)

∂zi

(62)

where�s = (s1, s2, . . . , sn)T ,�r = (r1, r2, . . . , rn)T are n × 1
vectors.

The proof is given in the appendix.
Hence, the robust DMZ equation can be solved explic-

itly when the estimation algebra is finite-dimensional. But
in the real application, ODEs (61a), (61b), and (62) are
still hard to be solved accurately. Therefore, we need to
design an effective numerical algorithm for time-varying
finite-dimensional filters.

C. Explicit Solution of Tangent Flow

Although the tangent flow presents a general filtering
framework, solving it for general systems can be challeng-
ing. However, the time-varying Yau system is a nonlinear
case that admits an explicit solution of the tangent flow.
Therefore, a new optimal transport particle algorithm for the
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time-varying Yau system can be designed based on tangent
flow.

To start, we need to calculate ϕ0, which can be nu-
merically obtained by solving (42). Then, we recall the
definition of H̃ (t ) from Assumption 4.3, which is given
by H (t )F (t ). Previous work on FPF [50] proposed the
constant gain approximation to apply to high-dimensional
filtering systems. This approximation is based on the fact
that E[∇̄ϕ0(t, z)|Yt ] = �t H̃ T (t )S−1(t ) where �t is the con-
ditional variance. The constant gain approximation is to
approximate ∇ϕ0(z) by E[∇̄ϕ0(t, z)|Yt ]. According to (42),
we can get the following:

�̄ϕ0(t, z) + ∇(log p(t, z))T ∇̄ϕ0(t, z)

= −(z − μ(t ))T H̃T (t )S−1(t ) (63)

where μ(t ) = ∫
Rn zp(t, z)dz. We multiply term zp(t, x) on

both sides of (63) and take integration in terms of z, which
yields∫

p(t, z)∇̄φ0(t, z)dz =
∫

z(z − μ(t ))T H̃T (t )S−1 p(t, z)dz

(64)

by using integration by parts. Equivalently, we get
E[∇̄ϕ0(t, z)|Yt ] = ∫ z(z − μ(t ))T H̃T (t )S−1(t )p(t, z)dz.
Then, we have

E[∇̄ϕ0(t, z)|Yt ] =
∫

z(z − μ(t ))T H̃T S−1(t )p(t, z)dz

= (E[zzT |Yt ] − μ(t )μ(t )T )H̃T S−1(t )

= �t H̃
T S−1(t ) (65)

where �t denotes the conditional covariance matrix. More
details about constant gain can refer to [50] and [55].

Then, we shall calculate ϕ1. Since the density function
must be positive, we can assume the solution is

p(t, z) := e−u(t,z). (66)

And, we substitute the condition (66) into the tangent flow
condition (43). The new drift condition equation will be

�ϕ1(t, z) − ∇u(t, z)T ∇ϕ1(t, z)

= 1

2

[
�u(t, z) − |∇u(t, z)|22

]
− f̃ · ∇u(t, z) +

n∑
i=1

∂ f̃i

∂zi

+ 1

2
(z − μ(t ))T H̃T (t )S−1(t )

× H̃ (t )(z − μ(t )) − c(t ). (67)

1) Linear System and Its OTPF: This subsection will
focus on the simplest situation: a linear system. Specifically,
we will set φ = 0 in (52), resulting in f̃ (t, z) = L̃(t )z + l̃ (t ).
In addition, we will consider the filtering system with a
Gaussian initial distribution. The OTPF for linear filtering
systems was first proposed in [35], and it has been extended
to correlated noise cases in [38].

For such a system, there is a well-known filtering
Kalman-Bucy filter, and the posterior distributions are all

Gaussian. Their means and variance satisfy the following:

dμ(t ) = L̃(t )μ(t )dt + l̃ (t )dt
+ �t H̃

T (t )S−1(t )(dyt − H̃ (t )μ(t )dt ) (68)
d�t

dt
= L̃(t )�t + �t L̃

T (t ) + In − �t H̃
T (t )S−1

t H̃ (t )�t .

(69)

And, (63) and (67) will become

∇̄ϕ0(t, z) = �t H̃
T (t )S−1(t )

∇ϕ1(t, z) = L̃(t )z + l̃ (t ) + 1

2
�−1

t (z − μ(t ))

− 1

2
�t H̃

T (t )S(t )−1H̃ (t )(z − μ(t )) + ξ (t, z)

(70)

where ∇u(t, z)T ξ (t, z) = 0. The detailed derivation of (70)
is given in Appendix.

The SDE (72) was first proposed in [35]. They define
ξ (t, z) := �(t )�−1

t (z − μ(t )), where �(t ) satisfies the fol-
lowing matrix equation:

�(t )�−1
t + �−1

t �(t )

= L̃T (t ) − L(t ) + 1

2

(
�t H̃

T (t )S(t )−1H̃ (t )

− H̃T (t )S(t )−1H̃ (t )�t
)
. (71)

By using the result (70), the tangent flow of the linear
filtering system (51) is as follows:

dzt = L̃(t )zt dt + l̃ (t )dt + 1

2
�−1

t (zt − μ(t ))dt

× Kt

(
dyt − H̃ (t )μ(t ) + H̃ (t )zt

2
dt

)
+ �(t )�−1

t (z − μ(t ))dt . (72)

REMARK 6 In the linear Gaussian case, it has been shown
that different skew-symmetric �(t ) choices result in the
same posterior distributions [36]. However, a unique choice
is defined in (72) that makes the dynamics symmetric and
optimal in the optimal transportation sense. This choice can
be seen as a correction term. If we set �(t ) to be zero,
then the SDE (72) becomes the same dynamical flow as the
well-known square-root ensemble Kalman filter [36]. It is
worth noting that the linear system is the simplest system
in the FDEA system.

2) Solution of FDEA System: To construct the tangent
flow of the nonlinear FDEA system satisfying Assumptions
4.1, 4.2, and 4.3, we need to characterize the conditional
posterior densities of the FDEA system. The following
theorem is summarized by several studies [13], [46]:

THEOREM 4.2 Assume that Assumptions 4.1, 4.2, and 4.3
are satisfied. Then, we consider the corresponding normal-
izing system (51) and denote the p(t, x) as the posterior
density. If the p(0, z)e−φ(z) is Gaussian distribution, then
the posterior distribution p(t, z) at any time t satisfies the
following:

p(t, x) = d (t )e− 1
2 (z−a(t )))T �−1(t )(z−a(t ))+φ(z) (73)
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where d (t ) is some normalized factor.

The proof is given in the appendix. Here, we need to
point out that a(t ) and �(t ) may not be the mean and
the covariance matrix of p(t, z), respectively. By using
Theorem 4.2, the solution of ϕ1 can be rewritten as follows:

∇ϕ1(t, z) = f̃ (t, z) + 1

2
�−1(t )(z − a(t )) − 1

2
∇φ(z)

− 1

2
�t H̃

T (t )S(t )−1H̃ (t )(z − μ(t )) + ξ (t, z)

(74)

where we apply the constant gain approximation
∇ϕ0(t, z) ≈ �t H̃ T S(t )−1. Motivated by the fact that two
terms L̃(t )z and 1

2�t H̃ T (t )S(t )−1(H̃ (t )z − H̃ (t )μ(t )) in (74)
are not in gradient form, which is same in the linear filter
case. So, we shall set ξ (t, z) still as �(t )�−1(t )(z − μ),
which is defined in (71). Then, the tangent flow of FDEA
can be given as

dzt = L̃(t )zt dt + l̃ (t )dt + 1

2
∇φ(zt )dt

+ 1

2
�(t )−1(zt − a(t ))dt

+ Kt ◦
(

dyt − (H̃zt + H̃μ(t ))dt

2

)
+ �(t )�−1

t (zt − μ(t ))dt (75)

where Kt = �t H̃ T (t )S−1(t ), and the �(t ) satisfies (71).
Next, we shall propose a method to numerically calculate
the term �(t ) and a(t ). According to Theorem 3.2, we have

a(t ) =
∫

ze−φ(z) p(t, z)dz∫
e−φ(z) p(t, z)dz

= E[ze−φ(z)]

E[e−φ(z)]
(76)

and similarly

�(t ) = E[zzT e−φ(z)]

E[e−φ(z)]
−
(
E[ze−φ(z)]

E[e−φ(z)]

)(
E[ze−φ(z)]

E[e−φ(z)]

)T

.

(77)

V. NUMERICAL ALGORITHM

In this section, we will design a numerical algorithm
based on Section IV. In the real application, we shall nor-
malize the FDEA system as (51). Then, we can construct
the tangent flow of this new system explicitly by using the
constant gain approximation and (74), which is

dzi
t = L̃(t )zi

t dt + l̃ (t )dt + 1

2
∇φ(zi

t )dt

+ 1

2

(
�(N )(t )

)−1 (
zi

t − a(N )(t )
)

dt

+ K (N )
t ◦

(
dyt − (H̃zi

t + H̃μ(N )(t ))dt

2

)
+ �(t )�−1

t (x − μ(t ))dt (78)

where a(N )(t ) =
∑N

i=1 zi
t e

−φ(zi
t )∑N

i=1 e−φ(zi
t )

, �(N )(t ) =
∑N

i=1 zi
t (zi

t )T e−φ(zi
t )∑N

i=1 e−φ(zi
t )

−
a(N )(t )(a(N )(t ))T , μ(N )(t ) = 1

N

∑N
i=1 zi

t , �
(N )
t = 1

N−1

∑N
i=1

(zi
t − μ(N )(t ))(zi

t − μ(N )(t ))T and K (N )
t = �

(N )
t H̃ T (t )

S−1(t ).

VI. SIMULATION

In this section, we will test the efficiency of the OT
method [optimal transportation particle filter, (OTPF)] and
show numerical results. We consider three numerical exam-
ples including the time-invariant scalar case, time-variant
scalar case, and high dimensional vector case.

To measure the accuracy of the numerical algorithm, the
definitions of the mean of mean norm error (MMNE) and
the mean time (MT) is as follows:

MMNE := 1

20

20∑
i=1

⎡
⎣ 1

NS + 1

NS∑
j=0

‖x̂i
t j

− xtrue
t j

‖2
2

⎤
⎦ (79)

MT := 1

20

20∑
i=1

RTi (80)

where NS means the number of steps in the experiments and
the RTi means the total running time of the ith experiment,
the x̂i

t j
is the filtering result of the ith experiment at time t j ,

and xtrue
t j

is the real state of the ith experiment at time t j .
In this subsection, the following high-dimensional cases

will be tested. In this subsection, we test the performance of
the OTPF by considering high-dimensional cases, and the
following filters are simulated for the comparison.

1) FPF: the constant gain FPF algorithm described
in [50].

2) UKF: the unscent Kalman filter described in [15]
with parameters α = 0.01, β = 1.8.

3) EKF: the extended Kalman filter described in [14].
4) IEKF: the iterated extended Kalman filter described

in [56].

EXAMPLE 1 (HIGH-DIMENSIONAL CASE) We choose the
model⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dXt = 0.8(1 + 0.2 cos(t )) ·

⎛
⎜⎝An

1 0 0

0 · · · 0

0 0 An
k

⎞
⎟⎠Xt dt

+ ∇φ(Xt )dt + 1.5IndBt

dYt = HnXt dt + dWt

(81)

where the nondiagonal positions is zero, n = 2 k

An
i =

(
0 1 − (i − 1) · 2

n

(i − 1) · 2
n − 1 0

)
(82)

and φ(xt )=∑n
i=1 ln(e[xt ]i +e−[xt ]i ), [·]i denotes i-

components of the vector. Hn ∈ R
n×n is defined as

follows:

Hn =
(

H (n)
i, j

)
1≤i, j≤n

, H (n)
i, j
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Fig. 1. 100 dimension case with 200 particles. (a) 1st dimension. (b)
25th dimension. (c) 50th dimension. (d) 75th dimension. (e) 100th

dimension. (f) RMSE.

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, i = j

−0.1(i − j), 0 < i − j ≤ 5

0.003(i − j)2 + 0.03, −5 ≤ i − j < 0

0, else

and dBt and dWt are the standard n dimensional Brownian
motions. The initial distribution σ0 satisfies σ0e−φ(xt ) ∼
N(μn, 2In), where the first [ n

2 ] ([·] is the rounding function)
components in μn are 1 and the others are −1.

The simulation results are discussed next.

1) The figure of the filtering results: The numerical
results of the 100-D case with 200 particles are
depicted in Fig. 1, where we chose to show the result
of 1st dimension in (a), the result of 25th dimension
in (b), the result of 50th dimension in (c), the result of
75th dimension in (d), the result of 100th dimension
in (e), and the RMNE of time in (f). It is observed
that OTPF provides a more accurate approximation
than other algorithms.

2) The comparison with different particle numbers: In
this simulation, we test the 10-D case system of
(81) with different particle numbers N ∈ {10, 20,

40, 100}. The average results are shown in Table I.
The OTPF with 20 particles performs better than
EKF, UKF, and IEKF. The computation time of
OTPF growth is much slower than FPF when the
number of particles increases. It can be observed that
the FPF with 100 particles performs similarly to the

TABLE I
Experiment Results 10-D Cases With Different Simulated Particle

Number N

TABLE II
Dimensions in Simulation and Experiment Result

OTPF with 40 particles while the computational time
of FPF is ten times that of OTPF. For comparison,
the MMNE of the trivial filter obtained by sim-
ply inverting the observation matrix X̂t = H−1

n
�Yt
�t is

1107.4029 in this 10-D case.
3) The comparison with different dimensions: In this

simulation, we test the performance of the proposed
algorithm via the different dimensions of system
(81), n ∈ {2, 4, 6, 8, 10, 20, 30, 40, 50, 100} and the
particle number are chosen as n and 2n. The results
are summarized in Tables II and III. The OTPF with
2n particles continues to exhibit the best performance
via dimension n changes. The FPF with 2n particles
has good performance but the computational time
becomes unacceptable as the dimension increases
(it takes over 90 s to simulate a 10 s system). We
can conclude that OTPF is designed to deal with
finite-dimensional Yau systems by utilizing particle
evolution methodology. More importantly, OTPF is
a real-time algorithm for the 100-D system.

4) The dimensional comparisons where the dimension
of the observation vector is half of the state vector
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TABLE III
Dimensions in Simulation and Experiment Result

TABLE IV
Dimensions in Simulation and Experiment Result (With Half of

Observation)

dimension: In this simulation, we replaced the obser-
vation matrix with its first m = n/2 rows in Example
1. For such a new model, we test the performance
of the algorithms via the different dimensions n ∈
{2, 4, 6, 8, 10}, and the particle number are chosen
as n and 2n. The numerical results are summarized
in Table IV. By comparing these results with those
presented in Tables II and III, we find that the EKF
achieves relatively poor performance under these
conditions. The OTPF, however, continues to display
stable and effective performance.

5) The comparison via different dimensions of the ob-
servation vector: In this simulation, we replaced
the observation matrix with its first m rows in the

TABLE V
Parameter Setting in Simulation 10-D Experiment Result With

Different Dimensions of Observation (Dim Denotes the Dimension of
the Observation Vector)

TABLE VI
Parameter Setting in Simulation 10-D Experiment Result With

Different Time Step With 20 s

example 1, and the dimension of the state vector n
is chosen as 10. For such a new model, we test the
performance of the algorithms via the different di-
mensions m ∈ {1, 2, 3, 4, 5}, and the particle number
is chosen as 20. The numerical results are summa-
rized in Table V. As the dimension of observations
changes, OTPF remains stable and maintains good
performance in this numerical example.

6) The comparison with different time-steps: In this
simulation, we test the performance of the proposed
OTPF with 20 particles via the different time steps
dt which are 0.01, 0.02, 0.05, fixed the dimension
as 10, and the total time as 20 seconds. The results
are shown in Table VI. The OTPF still has the lowest
MMNE in all situations. The IEKF becomes more
efficient as the time step becomes larger. The OTPF
is a stable algorithm for the FDEA system.

VII. CONCLUSION

We have successfully solved a class of time-varying
filtering systems by using the Lie algebra method. The
previous estimation algebra theory is only restricted to
time-invariant filtering systems. In this work, we first extend
the related estimation algebra theory to time-varying Yau
filtering systems.

We extended a unified framework for FPF based on op-
timal transportation. Furthermore, we find the relationship
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between the operators of the Lie algebra method and tangent
flow derived by optimal transport. Through the proposed
framework, it is shown that the FPF is a particle filter
updated by optimal transportation.

APPENDIX
A. PROOFS IN SECTION II

THEOREM 1.1 (REMARK 2.31 IN [34]) If α = N(μα, �α )
and β = N(μβ, �β ) are two Gaussians in R

n and �α, �β

are positive-definite matrix, then one can show that the
following map:

T : x 
→ μβ + V (x − μα ) (83)

is the optimal transportation with the cost function

c(α, β ) := ‖μα − μβ‖2
2 + ‖�

1
2
α − �

1
2
β ‖2

F (84)

where

V = �
− 1

2
α (�

1
2
α �β�

− 1
2

α )−
1
2 �

− 1
2

α . (85)

�

B. PROOFS IN SECTION III

First, we introduce a vital lemma used in derivations of
tangent flows.

LEMMA 1.1 (SPECIAL VERSION OF JACOBI’S FOR-
MULA [57]) Let B be a R

n×n matrix, then

lim
ε→0

det(In + εB) − det(In)

ε
= Tr(B).

Next, we will give detailed proof in Section III.

PROOF OF THEOREM 3.1 For any arbitrary SPDE (29), there
is an associate dynamical flow (35) after given the history
path ωt for dIt where the (37) is equal to (36). Here, we can
take out the coefficients of dIt and dt at the left and right
ends of the equation, and they must be equal, respectively.
Finally, we can assume the SPDE is exactly Kushner (2) to
complete the proof. �

PROOF OF LEMMA 3.1 We choose a test function a(x) ∈
C∞, then ∫

Rn

a(x)p(x)dx = E[a(xt )]. (86)

Using the Ito lemma, we have that

da(xt ) = ∇a(xt ) · dxt

= ∇a(xt ) {U(t, xt )dt + K(t, xt ) ◦ dIt } . (87)

Furthermore, (87) is equal to∫
Rn

a(x)p(t, x)dx = E
[∫ t

0
∇a(xt ) · U(t, xt )dt

]

+ E
[∫ t

0
∇a(xt ) · K(t, xt ) ◦ dIt

]
.

(88)

The forward equation follows using integration by
parts. �
PROOF OF THEOREM 3.2 The proof directly comes from the
fact that the Fokker-Planck equation of (44) should be the
same as (2). �

C. PROOFS IN SECTION IV

Next, we will give detailed proofs of Section IV.

PROOF OF LEMMA 4.2 First, we can consider the bigger
basis which is {L̃0, z1, · · · zn}. And it is easy to find that
hi ∈ span〈z1, . . . , zn〉 with 1 ≤ i ≤ m. We denote Ẽ1 as the
estimation algebra generated by {L̃0, z1, · · · zn}. So, we have
Ẽ ⊂ Ẽ1.

It can be shown that zi ∈ Ẽ1, 1 ≤ i ≤ n. Then we calcu-
late the following Lie bracket:[

L̃0, zi
] = D̃i ∈ Ẽ1, 1 ≤ i ≤ m

[D̃i, D̃ j] = ω̃ ji ∈ Ẽ1

[D̃i, z j] =
{

1 i = j

0 i �= j
(89)

and [
L̃0, D̃ j

] = 1

2

[
n∑

i=1

D̃2
i − η̃, D̃ j

]

=
n∑

i=1

ω̃ j,iD̃i + 1

2

∂η̃

∂z j
∈ Ẽ . (90)

Equation (55) yields ω̃ j,i, 1 ≤ i, j ≤ n only depends on t .
Notice that Assumption 4.3 yields that ∂η̃

∂z j
, 1 ≤ j ≤ n is a

degree 1 polynomial in zi, 1 ≤ i ≤ n. Therefore, estimation
algebra Ẽ1 is a 2n + 2 dimensional Lie algebra with basis
given by {L̃0, D̃1, . . . , D̃n, z1, . . . , zn, 1}. �
PROOF OF LEMMA 4.3: By Lemma 4.1 and direct calcula-
tion, the following results hold.

(1)

esD̃ j L̃0ζ

= esD̃ j L̃0e−sD̃ j esD̃ j ζ

=
(

L̃0 + s[D̃ j, L̃0] + 1

2
s2[D̃ j, [D̃ j, L̃0]] + · · ·

)
esD̃ j ζ

=
(

L̃0 + s
n∑

i=1

ω̃i, j D̃i − s

2

∂η̃

∂z j
+ 1

2
s2[D̃ j, [D̃ j, L̃0]]

)
esD̃ j ζ .

(91)

(2)

esz j L̃0ζ

= esz j L̃0e−sz j esz j ζ

=
(

L̃0 + s[z j, L̃0] + 1

2
s2[z j, [z j, L̃0]] + · · ·

)
esz j ζ

=
(

L̃0 − sD̃ j + s2

2

)
esz j ζ . (92)
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The proof of (3) is similar. �

PROOF OF THEOREM 4.1 First, we consider the following
derivative of operators. From the semigroup theory of partial
differential equations, for any smooth function ζ , we have

∂

∂t

(
esi (t )D̃iζ (x)

)
=
(

dsi(t )

dt
D̃i + si(t )

dD̃i

dt

)
esi (t )D̃iζ (x)

(93)

and

∂

∂t

(
e
∫ t

0 L0(τ )dτ ζ (x)
)

= L̃0(t )e
∫ t

0 L̃0(τ )dτ ζ (x). (94)

By differentiating (60), we have

∂v

∂t
(t, x)

= dT

dt
eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

+ eT (t )

(
drn

dt
zn

)
ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

+ · · ·

+ eT (t )ern(t )zn · · ·
(

dr1

dt
z1

)
er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

+ eT (t )ern(t )zn · · · er1(t )z1

×
(

dsn(t )

dt
D̃n − sn(t )

∂ f̃n

∂t

)
esn(t )D̃n(t ) · · · es1(t )D̃1(t )

× e
∫ t

0 L0(τ )dτ σ0(x)

+ · · ·
+ eT (t )ern(t )zn · · · × er1(t )z1

× esn(t )D̃n(t ) · · ·
(

ds1(t )

dt
D̃1 − s1(t )

∂ f̃1

∂t

)
es1(t )D̃n(t )

× e
∫ t

0 L0(τ )dτ σ0(x)

+ eT (t )ern(t )zn · · · er1(t )z1

esn(t )D̃n(t ) · · · es1(t )D̃1(t )L0(t )e
∫ t

0 L0(τ )dτ σ0(x). (95)

Since si(t ), ri(t ), T (t ) are all smooth functions of t , they
can be exchanged with each other. In the following demon-
stration, we will exchange the operators dri

dt zi,
dsi (t )

dt D̃i +
si(t ) f̃i (t )

dt , 1 ≤ i ≤ n and L0(t ) to the first term of the cor-
responding function, so that we can transform (60) to the
equation in terms of v(t, z).

First, we focus on the dri
dt zi. They are commutative with

any other function multiplication operator. So we have

eT (t ) drn

dt
znern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

+ · · ·

+ eT (t )ern(t )zn · · ·
(

dr1

dt
z1

)
er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

=
(

n∑
l=1

drl

dt
zl

)
eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x). (96)

Second, we exchange dsi (t )
dt D̃i − si(t ) ∂ f̃i

∂t . By using Lemma
4.3, we have

esn(t )D̃n(t ) · · ·
(

dsi(t )

dt
D̃i − si(t )

f̃i(t )

dt

)
esi (t )D̃i (t ) · · · es1(t )D̃1(t )

× e
∫ t

0 L0(τ )dτ σ0(x)

=
⎛
⎝dsi(t )

dt
D̃i − si(t )

∂ f̃i

∂t
+

n∑
j=i+1

dsi(t )

dt
s j (t )ω̃ j,i

⎞
⎠

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x). (97)

So we will have

eT (t )ern(t )zn · · · er1(t )z1

×
(

dsn(t )

dt
D̃n − sn(t )

∂ f̃n

∂t

)
esn(t )D̃n(t ) · · · es1(t )D̃1(t )

× e
∫ t

0 L0(τ )dτ σ0(x)

+ · · ·
+ eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · ·
(

ds1(t )

dt
D̃1 − s1(t )

∂ f̃1

∂t

)
es1(t )D̃n(t )

× e
∫ t

0 L0(τ )dτ σ0(x)

= eT (t )ern(t )zn · · · er1(t )z1⎡
⎣ n∑

i=1

(
dsi(t )

dt
D̃i − si(t )

∂ f̃i

∂t

)
+

n−1∑
k=1

n∑
j=k+1

dsk (t )

dt
s j (t )ω̃ j,k

⎤
⎦

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x). (98)

In the following, we denote:

M :=
n∑

i=1

(
dsi(t )

dt
D̃i − si(t )

∂ f̃i

∂t

)

+
n−1∑
k=1

n∑
j=k+1

dsk (t )

dt
s j (t )ω̃ j,k. (99)

Next, we only need to exchangeM and the function multipli-
cation operator eT (t )ern(t )zn · · · er1(t )z1 . Again using Lemma
4.3 (3), we can transform (98) to[

n∑
i=1

(
dsi(t )

dt
D̃i − si(t )

f̃i(t )

dt

)
+ dsi(t )

dt
ri(t )

+
n−1∑
k=1

n∑
j=k+1

dsk (t )

dt
s j (t )ω̃ j,k

⎤
⎦

8018 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 59, NO. 6 DECEMBER 2023

Authorized licensed use limited to: Tsinghua University. Downloaded on December 13,2023 at 02:47:15 UTC from IEEE Xplore.  Restrictions apply. 



× eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n (t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x). (100)

Finally, by a similar method, we can switch the operator
L̃0(t ) to the first term of the function by using Lemma 4.3

esn(t )D̃n(t ) · · · es1(t )D̃1(t )L̃0(t )e
∫ t

0 L̃0(τ )dτ σ0(x)

=
[

L̃0 +
n∑

l=1

(
sl (t )

n∑
i=1

ω̃i,l (t )D̃i − sl (t )

2

∂η̃

∂zl
+ s2

l (t )cl (t )

)

+
n−1∑
j=1

n∑
k= j+1

s j (t )sk (t )

(
ω̃i, jω̃i,k − ∂2η

∂z j∂zk

)⎤⎦
× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e

∫ t
0 L̃0(τ )dτ σ0(x) (101)

where we denote that

N := L̃0 +
n∑

l=1

sl (t )
n∑

i=1

ω̃i,l (t )D̃i − sl (t )

2

∂η̃

∂zl

+ s2
l (t )cl (t )

n−1∑
j=1

n∑
k= j+1

s j (t )sk (t )

(
ω̃i, jω̃i,k − ∂2η

∂z j∂zk

)
.

(102)

Next we only need to switch theN and the function multipli-
cation operator eT (t )ern(t )zn · · · er1(t )z1 . Using the fact that the
function term in M is commutative with any other function
multiplication operator and (101), we have the following:

eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )L̃0(t )e
∫ t

0 L0(τ )dτ σ0(x)

= eT (t )ern(t )zn · · · er1(t )z1 esn(t )D̃n(t )

× Nesn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x)

=
[
N −

n∑
l=1

sl (t )
n∑

i=1

ω̃i,l (t )ri(t ) −
(

n∑
i=1

riD̃i − 1

2
r2

j

)]

× eT (t )ern(t )zn · · · er1(t )z1

× esn(t )D̃n(t ) · · · es1(t )D̃1(t )e
∫ t

0 L0(τ )dτ σ0(x). (103)

Put (103), (100), and (96) to (95), we obtain the following:

∂v

∂t
=
[
N + M +

n∑
l=1

drl

dt
zl

−
n∑

l=1

sl (t )
n∑

i=1

ω̃i,l (t )ri(t ) −
(

n∑
i=1

riD̃i − 1

2
r2

i

)
+ dT

dt

]
v.

(104)

By basic calculations, it can be obtained that in the
right-hand side of (104) coefficient vector of Div is d�s

dt −
�(t )�s −�r and coefficient vector of ziv is d�r

dt − ( 1
2∇2

z η +
dF−1(t )

dt F (t ) + F−1(t )L(t )F (t ))T�s.
By comparing (56) and (104), it is clear that v(t, z)

in (60) is a solution to (56) if (61a), (61b), and (62) are
satisfied. �

PROOF OF THEOREM 4.2 First, we shall consider the DMZ
equation of the p(t, z), and we consider the following den-
sity transformation p̃(t, z)eφ(z) = p(t, z). So, we can have
the following SPDE:

d ( p̃(t, z)eφ(z) ) = L̃0( p̃(t, z)eφ(z) )dt

+ zT H̃ (t )T ( p̃(t, z)eφ(z) ) ◦ dyt . (105)

By using Lemma 4.1, (105) can be rewritten as follows:

d ( p̃(t, z)) = e−φ(z)L̃0eφ(z)( p̃(t, z))dt

+ zT H̃ (t )T ( p̃(t, z) ◦ dyt

= L0( p̃(t, z))dt + [L0, φ(z)]( p̃(t, z))dt

+ 1

2
[[L0, φ(z)], φ(z)]p(t, z))dt

+ zT H̃ (t )T ( p̃(t, z) ◦ dyt . (106)

Then, we shall focus on the operator of the drift term in
(106), which is as follows:

L̃0 + [L̃0, φ(z)] + 1

2
[[L̃0, φ(z)], φ(z)]

= L̃0 + ∇φ(z)T ∇ − f̃ (t, z)T ∇φ(z)

+ 1

2
|∇φ(z)|2. (107)

It is easy to check that the second-order operator in (107) is
1
2�, the coefficient of the first-order operator is (∇φ − f )
(it is the linear function of z), and the function term
is −∑n

i=1( f̃ 2
i + ∂ f̃i

∂zi
) + ‖(∇φ − f )‖2, which is a quadratic

function of z according to Assumption 4.3. Finally, we can
finish the proof by using the sample fact that if the initial
is Gaussian density, then the posteriors of (107) are all
Gaussian. �

Derivation of (70): First, by using ∇u(t, z)T =
(z − μ(t ))�−1(t ), we can easily verify ∇̄ϕ0(t, z) =
�t H̃ T (t )S−1(t ).

We can submit the f̃ (t, z), 1
2∇u, and 1

2 ∇̄ϕ0(Hz −
Hμ(t )) into ∇ · (∗) − ∇u(t, z)T (∗), which yield

∇ · ( f̃ (t, z)) − ∇u(t, z)T ( f̃ (t, z))

= f̃ · ∇u(t, z) +
n∑

i=1

∂ f̃i

∂zi
, (108)

∇ ·
(

1

2
∇u

)
− ∇u(t, z)T

(
1

2
∇u

)
= 1

2

[
�u(t, z) − |∇u(t, z)|22

]
(109)

and

∇ ·
(

−1

2
∇̄ϕ0H (t )(z − μ(t ))

)
− ∇u(t, z)T

(
1

2
∇̄ϕ0(t, z)H (t )(z − μ(t ))

)
= 1

2
�̄ϕ0(t, z)H (t )(z − μ(t ))) + 1

2
Tr(ϕ0(t, z)H (t ))

+ ∇u(t, z)T

(
1

2
∇̄ϕ0H (t )(z − μ(t ))

)
= 1

2
(z − μ(t ))T H̃T (t )S−1(t )H̃ (t )(z − μ(t ))
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− 1

2
Tr(ϕ0H (t )) (110)

where the last equality holds according to (63). Here, by
using 1

2 Tr(ϕ0H̃ (t )) = Tr(�t H̃ T (t )S−1(t )H̃ (t )), and

c(t ) =
∫
Rn

1

2
(z − μ(t ))T H̃T (t )S−1(t )

× H̃ (t )(z − μ(t ))p(t, z)dz

= 1

2
Tr

(∫
Rn

H̃T (t )S−1(t )H̃ (t )(z − μ(t ))

)
× (z − μ(t ))T p(t, z)dz

= Tr(�t H̃
T (t )S−1(t )H̃ (t )). (111)

By using (111), (110) equals to 1
2 (z − μ(t ))T H̃T (t )

S−1(t )H̃ (t )(z − μ(t )) − c(t ). Finally, adding (108)–(110),
then the right-hand side of the sums is the same as
the right-hand side of (112). However, the f̃ (t, z) and
− 1

2 ∇̄ϕ0H (t )(z − μ(t )) are not in gradient form. So, we can
add a divergence-free term ξ (t, z) satisfied ∇ · (ξ (t, z)) −
∇u(t, z)T ξ (t, z) = 0. In this case, the solution of ϕ1 can be
given as

∇ϕ1(t, z) = f̃ (t, z) + 1

2
∇u(t, z)

− 1

2
∇̄ϕ0(t, z)(Hz − Hμ(t )) + ξ (t, z).

(112)

The proof can be completed by using f̃ (t, z) := L̃(t )z +
l̃ (t ). �
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